Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na-O2 batteries
(Zhi Zheng, Jicheng Jiang, Haipeng Guo, Can Li, Konstantin Konstantinov, Qinfen Gu, Jiazhao Wang, Nano Energy, 81 (2021) 105529)
A nitrogen-doped carbon nanofiber (NCF) material with high nitrogen doping levels has exhibited excellent kinetics for Na-O2 electrochemistry. The doped nitrogen in the NCF could effectively optimize the surface adsorption energy of the reactants and intermediate, which contribute to achieve a low overpotential gap of 500 mV in Na-O2 batteries. This result is among the best performance reported in Na-O2 batteries and can point the way to the rational design of electrocatalytic air cathodes for rechargeable Na-O2 batteries.
Superlattices strategy to boost electrochemical performance of aqueous zinc-ion batteries
(Weijie Li, Chao Han, Qinfen Gu,Shulei Chou, Jia-Zhao Wang, Huakun Liu, Shixue Dou , Adv. Energy Mater., 2020, Volume 10, 2001852)
Highlight: The PANI-V superlattice is demonstrated as a model to improve Zn2+ diffusion kinetics and suppress cathode dissolution. It benefits from the unique advantages of 2D superlattice structure including the enlarged layer spacing, interface modulation inducing the charge redistribution and the structure stabilization. This structural engineering strategy paves a way to develop new cathode for ZIBs.
Tunabale Electorcatalysis Boosts Room-Temperature Sodium-Sulfur Batteries
(Yanxia Wang, Yangyang Lai, Jun Chu, Zichao Yan, Yun-Xiao Wang,* Shu-Lei Chou, Hua-Kun Liu, Shi Xue Dou, Xinping Ai, Hanxi Yang, Yuliang Cao*, Adv. Mater. 2021, 33, 2100229)
Researchers from UOW’s Institute for Superconducting and Electronic Materials have prepared an elaborate multifunctional architecture that acts as a superior host for S cathode in room-temperature sodium-sulfur batteries.
Their recent research results are published in Advanced Materials.
The elaborate S host consists of an N-doped carbon skeleton and tunable MoS2 sulfiphilic sites. Beyond the physical confinement and chemical binding of polarized N-doped carbonaceous microflowers, the MoS2 active sites play a key role in catalyzing polysulfide redox reactions and the electrocatalytic activity of MoS2 can be tunable via adjusting the discharge depth. The enhanced battery performance makes it an attractive option for large-scale energy storage.