
1

On Scheduling Unicast and Multicast Traffic in
High Speed Routers

Kwan-Wu Chin
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong
kwanwu@uow.edu.au

Abstract— Researchers have thus far considered scheduling
unicast and multicast traffic separately, and have paid little
attention to integrated schedulers. To this end, we present a new
integrated scheduler that considers both unicast and multicast
traffic simultaneously and also addresses key shortcomings of
existing approaches. Specifically, we outline a scheduler that
achieves 100% throughput, and unlike existing schemes, do not
require a tuning knob. Moreover, from our extensive simulation
studies, we show that it works well in uniform, non-uniform and
bursty traffic scenarios.

Index Terms— Input Queued Routers, Integrated Schedulers,
Unicast, Multicast

I. INTRODUCTION

The Internet is growing at a rapid pace, driven by the pro-
liferation of high bandwidth applications capable of delivering
voice and video traffic. This is particularly evident on Internet
2, where such applications are being used to deliver television
programs, lectures, conduct video conferences, and to create
interactive and collaborative research environments [1]. As a
result, given their high bandwidth demands, Internet service
providers are in need of switches/routers that are capable of
switching unicast and multicast cells at high speeds.

To date, researchers have proposed a myriad of router
designs capable of switching packets or cells at speeds ranging
from gigabits to terabits per-second; see [5]. The most popular
design is based on the input queued architecture, as it has good
scalability with respect to switch size and link rate [5]. Figure
1 shows a block diagram of one such router with N inputs
and N outputs connected by a crossbar fabric. It operates
in cell mode where variable length packets are fragmented
into fixed size cells before traversing the crossbar. They are
then re-assembled at their respective output before leaving the
router [8]. Each input has N virtual output queues (VoQs) for
storing the corresponding unicast cells of N outputs. Without
VoQs, a router will experience the head of line (HOL) blocking
problem, which limits its throughput to only 58.6% [4]. Unlike
previous router designs [3][15][6], which maintain k < 2 N −1
multicast queues, our router has a single multicast queue and
N staging buffers; their use will be explained in Section III.

The scheduler is a key component of any high speed routers.
It is responsible for arbitrating cells/packets from input ports
across a switching fabric to output ports. Ideally, the scheduler
must have 100% throughput and low complexity. In this
respect, a significant amount of work has been devoted to
unicast scheduling algorithms, the most popular being iSLIP

Fig. 1. Input-queued switch architecture. Also shown is an Arbitrator
managing N staging buffers.

[10]. Similarly, a lot of efforts have been devoted to developing
high speed multicast scheduling algorithms. Examples include
Concentrate, TATRA and WBA [12], ESLIP [9] and Max-
Scalar [6]. However, little attention has been paid to integrated
schedulers. That is, a scheduler that considers both unicast and
multicast cells simultaneously rather than separately.

This paper, therefore, adds to the existing state-of-the-art by
proposing an integrated scheduler that overcomes limitations
with existing approaches. Specifically, it works in conjunction
with staging buffers to overcome the multicast cell HOL
problem. Moreover, the proposed scheduler considers the
weight of both unicast and multicast cells simultaneously, and
hence works well in both uniform and non-uniform traffic
scenarios. Our simulation studies involving uniform, non-
uniform and bursty traffic sources show that our scheduler has
100% throughput, fair to both unicast and multicast traffic,
and achieves superior performance over existing schedulers.
Lastly, unlike Zhu et al. [16]’s scheduler, our scheme does not
involve a tuning knob. This is a significant advantage because
it frees the scheduler from continuously adjusting its behavior
with changing traffic conditions.

2

This paper is organized as follows. We first review existing
works and highlight their limitations in Section II. After that,
Section III outlines our integrated scheduler and the afore-
mentioned staging buffers. Then, in Section IV, we discuss our
simulation parameters. Section V presents our experimentation
results on a NxN switch over varying traffic load and cell
types. We then discuss our results in Section VI, before
concluding in Section VII. Note, in our discussions to follow,
we use the term router and switch interchangeably.

II. BACKGROUND

Each multicast cell has a fanout set that specifies its outgo-
ing outputs. This is the key reason that complicates multicast
cells scheduling, especially when cells have varying fanout
sizes that can range from 1 to N, assuming a NxN switch.
Hence, in each time slot,a router’s load can increase by N 2.
Moreover, Andrews et al. [2] have shown that scheduling
multicast cells is a NP-hard problem. Besides that, there is
also the HOL multicast cell blocking problem. Assume cell
C1 and C2’s fanout vector is {0,1,2,3} and {1,2} respectively.
If C2 is queued behind C1, then it will have to wait until
all destination outputs of C1 have a received a copy of C1

before it receives service; i.e., at least four time slots. Note
that each cell will have to contend with other multicast and
unicast cells headed to the same output. Clearly, a switch’s
performance degrades when it persistently receives multicast
cells with a large fanout. One naive approach to address this
problem is to have 2N − 1 queues, where each queue stores
cells headed to the same set of outputs. Unfortunately, this
solution is not scalable, especially in large switches. Hence,
researchers, such as [3], use k multicast queues instead, where
k < 2N − 1. As a rule of thumb, for a switch with N outputs,
2N multicast queues are needed to ensure good performance.
We will show in Section III how staging buffers reduce this
memory requirement further by storing only the address of a
multicast cell.

As mentioned earlier, most researchers have developed
schedulers that are optimized for either unicast or multicast
traffic, and not many are designed for both unicast and multi-
cast cells. In fact, only a handful of schedulers exist. Andrews
et al. [2] propose that inputs transmit unicast traffic to outputs
left unmatched by the multicast scheduler. Unfortunately, their
approach leads to the starvation of unicast flows, and does
not address the HOL blocking problem. Apart from that, their
scheme is unfair to unicast traffic because it gives higher
priority to multicast cells.

Schiattarella et al. [13] propose an approach that first uses a
unicast and a multicast scheduler to independently derive the
maximal matchings for unicast and multicast cells. A module
then filters and integrates the matchings found from both
schedulers in a fair manner. To avoid starvation, the module
ensures edges that missed out in the current time slot will
receive service in the next time slot. Their approach, however,
is unnecessarily complex and do not consider the weight of
unicast and multicast cells simultaneously.

Minkenberg [11] proposes to duplicate the address of a
multicast cell into VOQs that correspond to its fanout. In

effect, treating a multicast session with a fanout size of n
as n unicast sessions. They showed that their scheme is
better than the Concentrate scheme [12], but unfortunately
its performance is worst than Concentrate for input queued
switches. In particular, it does not take advantage of a crossbar
switch innate multicast ability. Apart from that, it is not
scalable, as input buffers need to have high write bandwidth.

In [8], McKeown presents ESLIP, a multicast extension
of iSLIP [10]. Each input has a multicast queue, and a
global multicast pointer aM that points to the input receiving
multicast service. The pointer aM is updated in a round robin
manner after the scheduler has sent a copy of a cell to all
outputs in its fanout. In each round, inputs send a request
to outputs corresponding to non empty queues. Outputs then
consider these requests and send a grant to the input with
the highest priority traffic. If that happens to be a multicast
cell, the output sends its grant to the input aM is pointing
at. Inputs then send an accept to the output corresponding
to its highest priority traffic. ESLIP, however, suffers from the
HOL blocking problem, and does not allow different multicast
queues to receive service in the same round. Moreover, like
iSLIP, it does not perform well when traffic are non-uniform.

Lastly, Zhu et al. [16] propose a scheduler, called slot-
coupled integration algorithm (SCIA), that preferentially
schedules unicast or multicast cells according to a probabilistic
parameter called Sm. Specifically, if a time slot is marked
as unicast, outputs will first consider unicast requests from
inputs before considering multicast requests. Hence, a multi-
cast request is only granted if there are no unicast requests.
Similarly, input ports preferentially accept unicast grants. On
the other hand, if a time slot is marked as multicast, then inputs
and outputs will process multicast requests/grants first. The
main limitation with Zhu et al.’s work is that their approach
does not consider the weight of unicast and multicast cells
simultaneously. For example, in a multicast time slot, some
outputs in a multicast cell’s fan-out vector may have higher
weighted unicast cells awaiting transmission. Lastly, their
scheme is designed for uniform traffic only, and is sensitive
to the parameter Sm; as we will show in Section V.

III. INTEGRATED SCHEDULER

To address the aforementioned limitations, we propose to
have staging buffers at each input, and an integrated scheduler
that makes use of them to schedule both unicast and multicast
cells simultaneously. Note, we assume fanout splitting, as this
ensures the switch is work conserving and have high through-
put [6][2]. Also, the switch operates without any speedup.

A. Staging Buffers

Each input, see Figure 1, has N staging buffers correspond-
ing to N outputs; each capable of holding the address of
one cell. We refer to a buffer corresponding to output-j at
input-i as Sij , where i and j ranges from 0 to N − 1 for
a N × N router. The aim of these buffers is to prevent the
HOL blocking problem without having to maintain 2N − 1
multicast queues. All buffers are managed by the arbitrator,
which is responsible for scanning the multicast queue and

3

determining the next multicast cell destined for a given output.
Specifically, when the arbitrator finds an empty buffer, say S ij ,
it starts looking for the oldest cell in the multicast queue that
is headed to output-j. This ensures cells destined for output-
j are not transmitted out-of-order. Once a cell is found, the
arbitrator stores the cell’s address in Sij .

Fig. 2. An example staging buffers architecture. b corresponds to the fanout
bitmap, and ts is a cell’s arrival timestamp (in slot).

Figure 2 shows an example staging buffers implementation
using Ternary Content Addressable Memory (TCAM) and
Random Access Memory (RAM) [14]. When a multicast cell
arrives, a tag is created using the cell’s fanout bitmap b and its
timestamp ts; the former is simply a bitstring of length N that
identifies the set of outputs; e.g., 101 corresponds to outputs 1
and 2. The later is the modulo of the cell’s arrival time and W ;
i.e., ts is log2(W) in size. The resulting tag is then associated
with the cell’s memory address in the cell buffer RAM. Lastly,
ts is added to the corresponding per-output timestamp FIFO
queues (POTQ).

The arbitrator is responsible for filling the staging buffers
with the address of multicast cells. When a staging buffer Sj

is empty, the arbitrator executes the following steps:

1) Set ts = Dequeue(TS[j]), where TS[j] refers to the
HOL ts value of output j’s POTQ.

2) Construct tag (j, ts), and perform a TCAM lookup.
3) Copy the returned cell’s address corresponding to (j, ts)

into Sj .

After a cell has been transferred, the arbitrator decrements
the cell’s fanout counter. Here, we assume cells have an
associated counter that stores their fanout size. Once the
counter reaches zero, the arbitrator frees the memory occupied
by the cell.

B. Scheduler

Given a N ×N switch with unmatched inputs and outputs,
the scheduler executes the following steps at each iteration
until no more matches are found:

1) Request. Each unmatched input sends a request to every
unmatched output corresponding to non-empty VoQs.

Requests are also sent for each non-empty staging buffer
corresponding to an unmatched output.

2) Grant. An unmatched output processes these requests
and grants the request with the highest weighted cell.
Moreover, the output informs the input whether the grant
is due to a unicast or multicast cell.

3) Accept. An unmatched input first determines the highest
weighted cell with a grant. If it is a unicast cell, the input
sends an accept to the corresponding output. However,
if the grant is for a multicast cell, the input sends an
accept to all outputs that have sent a grant for that cell.
In other words, for each staging buffer with a grant and
holding the highest weighted cell, an accept is sent to
the corresponding output port.

The time complexity at each output is O(2N), since there
are N unicast and N multicast requests. In the worst case
scenario, the convergence time is O(N) because in each round
it is possible only one request is granted. However, in our
experiments, convergence time is far smaller than N, especially
when multicast cells have a large fanout.

C. Example

Figure 3 shows a 3x3 input queued switch. Input-0 has two
cells for output 0 and 2, input-1 has a unicast cell for output-0
and also a multicast cell for outputs 1 and 0. Lastly, output-
2 has a cell for output-1. In this example, assume that the
multicast cells have a higher weight than all unicast cells;
this would be the case if they did not receive any service in
previous time slots. Moreover, we only show staging buffers
at input-1.

Starting at the Request stage, all inputs send a request
message to outputs corresponding to non-empty VoQs and
staging buffers. Notice that input-1 sends three requests to
output-1, corresponding to its unicast and multicast cells. Each
output then considers the cells’ weight, as specified in each
request message, and sends a grant to the input with the highest
weight. In this example, input-1 receives two grants from
input-0 and 1 respectively, and input-0 has a grant from output-
2. Finally, input-0 sends an accept to output-0, and input-1
accepts both output 0 and 1’s grant, thereby allowing the cell
to be transferred using the crossbar’s multicast capability.

IV. SIMULATION METHODOLOGY

To study our integrated scheduler, we used SIM [7], and
conducted experiments on a N × N switch; the value of
N is specific to the experiment, and the crossbar connecting
them has a speedup of one. All simulation runs are for 10
million slots time, and after each run we compute the average
latency of unicast and multicast cells. We also record the
switch’s throughput – the number of matches over the number
outputs. All inputs have infinite buffer size. In addition, we
use cells’ age as weight. Lastly, we set the maximum number
of iterations in each time slot to be five.

For comparison purposes, we implemented the following
scheduling algorithms:

• iSLIP-Emulate [11]. This algorithm creates copies of a
multicast cell, and inserts them in VoQs corresponding

4

Fig. 3. Unicast and multicast scheduling example.

to the cell’s fan-out vector. The VoQs are then scheduled
using iSLIP [8].

• SCIA [16]. At each input, we maintain k = 4 multicast
queues, similar to [16]. Cells are always added to the
shortest k queue. Apart from that, we set each queue’s
weight to be the queue length multiply by the HOL cell’s
age. To determine an appropriate Sm value, we iterate
from 0 to 1 at an increment of 0.05 to determine the Sm

that provides the best delay to both unicast and multicast
cells for a given input load. Lastly, in unicast time slots,
we use the oldest cell first (OCF) matching algorithm [8],
and for multicast time slots, we use WBA [12]

V. RESULTS

We now present results from our experiments on a NxN
switch with uniform, non-uniform and bursty traffic. In addi-
tion, we also investigate the impact of different switch sizes.

A. Uniform Traffic

Our first experiment is on a 8x8 switch. We generate
uniform Bernoulli traffic with a load of 0.1 to 0.55, and
designate half of the traffic to be multicast. Lastly, each
multicast cell has a random fanout ranging from 1 to 8.

Figures 4 and 5 show the delay incurred by unicast and mul-
ticast cells respectively. We see that iSLIP-Emulate, although
low in complexity, has the highest unicast and multicast delay.
SCIA and our integrated scheduler have comparable unicast
and multicast delays. Note that, ours has the advantage of not
requiring a tuning knob. In other words, SCIA’s performance is
achieved by tuning Sm iteratively. As the input load increases,
SCIA’s multicast delay becomes significantly higher, whereas
unicast cells experience lower delays than those scheduled by
our integrated scheduler. This is because SCIA has to prob-
abilistically provide time slots to service unicast cells, which
reduces the throughput of multicast traffic, hence increasing
delay significantly.

On the other hand, our integrated scheduler treats both
unicast and multicast cells equally, which results in both
traffic types experiencing similar delays. Apart from that, our
scheduler utilizes the crossbar fabric’s innate multicast ability
when the opportunity arises, thereby increasing throughput.
This is particularly critical during high loads, as it delays
queue instability.

In the next experiment, we study what happens when inputs
have increasing multicast cell arrivals. We fix the input load

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 4. Average delay of unicast cells. Results are for an 8x8 switch with
uniform i.i.d Bernoulli arrivals.

at 0.45, and increase the percentage of multicast traffic slowly
from 10% to 55%. Figures 6 and 7 indicate that iSLIP-
Emulate has the worst performance, and our scheduler results
in both unicast and multicast cells having similar delays.
When the percentage of multicast cells is at 35%, the queues
in SCIA become unstable. In other words, SCIA is unable
to provide sufficient scheduling opportunities to cells. This
is exacerbated by the fact that SCIA probabilistically prefer
unicast over multicast cells, and vice-versa. On the other hand,
our scheduler ensures that the most urgent cells are transferred
in a given time slot, hence it is able to delay queues instability.

1) Impact of Fanout: An important observation is the
impact of multicast cells’ fanout. To illustrate the detrimental
effects of large fanout, we used a 3x3 switch. Input-0 has a
single multicast flow that has a fixed fan-out of three, and an
input load of 0.33, thereby yielding an effective load of 1.0.
Other inputs have unicast flows that transmit cells uniformly
across all outputs. In our experiments, we vary their load from
0.1 to 1 to determine their impact on the multicast flow, and
vice-versa.

Figures 8 and 9 show the delay incurred by unicast and
multicast cells respectively. We see that iSLIP-Emulate has the
lowest unicast delay, but has the highest multicast delay. This

5

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 5. Average delay of multicast cells. Results are for an 8x8 switch with
uniform i.i.d Bernoulli arrivals.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 6. Average delay of unicast cells with uniform i.i.d Bernoulli arrivals.

is due to iSLIPs inability to handle non-uniform traffic, since
input-0 has a much higher load than other inputs. SCIA has
the lowest multicast delay. This, however, is achieved at the
expense of unicast cells. In particular, when the inputs have a
load greater than 0.8, unicast cells experience high delays. We
can reduce their delay by adjusting the parameter Sm, whereby
we dedicate more time slots to unicast cells. Unfortunately,
doing so increases the delay of multicast cells. The proposed
scheduler, however, does not have the above limitations. The
delay experienced by unicast cells is comparable to iSLIP-
Emulate. On the other hand, even though multicast cells using
our proposed scheduler have a slightly worst delay than SCIA,
our scheduler does not cause severe performance degradation
to unicast cells.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 7. Average delay of multicast cells with uniform i.i.d Bernoulli arrivals.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 8. Average delay of unicast cells. Results are for an 3x3 switch with
uniform i.i.d Bernoulli arrivals.

B. Non-Uniform Traffic

Using the same 8x8 switch, we change inputs’ arrival to
non-uniform Bernoulli traffic. Each input has a random load
to each output that ranges from 0.0 to 0.1. As before, we
designate half of the traffic to be multicast.

From Figures 10 and 11, we see that the proposed scheduler
yields the best delay for both unicast and multicast cells.
Comparatively, SCIA and iSLIP-Emulate have higher delays
because both of them are known to have poor performance
when traffic is non-uniform [16][8]. Intuitively, if a subset of
inputs have a high unicast and multicast load, these schedulers
will not consider these cells in the same round. For example,
in SCIA, in a multicast time slot, it will try to maximize the
number of multicast matchings without any regards to inputs
with higher weighted unicast cells. In contrast, our scheduler

6

 0.01

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 9. Average delay of multicast cells. Results are for an 3x3 switch with
uniform i.i.d Bernoulli arrivals.

considers both cell types in the same round, and schedules
only the highest weighted cells. Moreover, it does not try to
maximize the number of matchings unless multiple outputs
deem a multicast cell to have the highest weight amongst all
HOL cells that are destined for them.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 10. Average delay of unicast cells with non-uniform i.i.d Bernoulli
arrivals.

C. Uniform Bursty Traffic

We now experiment with bursty traffic on a 8x8 switch.
We start with uniform bursty traffic, where we increase the
load of each input from 0.20 to 0.40 at an increment of
0.02. Moreover, we set the average burst size to 10 cells, and
designate half the traffic to be multicast. Note, larger burst
sizes simply cause a proportional increase in cell delay.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 11. Average delay of multicast cells with non-uniform i.i.d Bernoulli
arrivals..

Figures 12 and 13 indicate that our scheduler has the lowest
delay. SCIA has comparable delays, both for unicast and
multicast cells, until the input load increases beyond 0.35.
After such point, SCIA consistently prefers multicast over
unicast cells, resulting in unicast queues becoming unstable.
In comparison, the queues in our scheduler remain stable for a
much higher input load, and treats both unicast and multicast
cells fairly, as both cell types experience similar delays.

 1

 10

 100

 1000

 10000

 0.2 0.25 0.3 0.35 0.4

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 12. Average delay of unicast cells. Results are for an 8x8 switch with
arrival burst length of 10 cells.

D. Non-Uniform Bursty Traffic

We continue the previous experiment but with non-uniform
bursty traffic. Figures 14 and 15 show the same trend as
the previous experiment. As the percentage of multicast cells

7

 1

 10

 100

 1000

 10000

 0.2 0.25 0.3 0.35 0.4

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 13. Average delay of multicast cells. Results are for an 8x8 switch with
an arrival burst length of 10 cells.

increases, SCIA spends more time scheduling multicast cells
at the expense of unicast cells. We could easily adjust Sm

to reduce the delays of unicast cells by providing more
opportunities to schedule them first. In practice, however,
determining the best tradeoff is difficult as different flows at
different points in time will have varying delay requirements.

 0

 10

 20

 30

 40

 50

 60

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 14. Average delay of unicast cells with non-uniform bursty traffic.

E. Throughput

A key performance metric is a scheduler’s throughput. From
Figure 16, we see that our scheduler achieves 100% throughput
when traffic is uniform and non-uniform; a significant advan-
tage over iSLIP-Emulate and SCIA, given that they achieve
100% throughput only when traffic is uniform.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
l
a
y

(
s
l
o
t
)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Fig. 15. Average delay of multicast cells with non-uniform bursty traffic.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
v
e
r
a
g
e

T
h
r
o
u
g
h
p
u
t

Input Load (cells/slot)

Uniform
Non-Uniform

Fig. 16. Average Throughput. Results are for an 8x8 switch with uniform
or non-uniform traffic.

F. Switch Size

Lastly, we investigate how a switch’s size, i.e., the number
of inputs and outputs, impact our scheduler’s performance.
Figure 17 shows the delays incurred by unicast cells on a
8x8, 16x16 and 32x32 switch. We omit the plot for multicast
cells because the delays are similar given that our scheduler
treats both traffic types fairly. We see that our scheduler’s
performance degrades with increasing switch sizes. In a 32x32
switch, when the input load reaches 0.12, there is a significant
increase in delay. This is due to multicast cell’s large fanout. In
fact, a multicast cell can have up to 32 outputs! We have also
experimented with smaller fanout sizes. Our results indicate
delays of cells for all switch sizes increase proportionally to
the load and number of outputs.

8

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 0.12 0.14 0.16 0.18 0.2 0.22

D
e
l
a
y

(
s
l
o
t
)

Input Load (cells/slot)

8x8, fanout=8
16x16, fanout=16
32x32, fanout=32

Fig. 17. Average delay of unicast cells in different switch sizes; all inputs
have uniform i.i.d Bernoulli traffic.

VI. DISCUSSION

Our integrated scheduler performs better than existing ap-
proaches because of the following reasons:

Firstly, it considers the weight of both unicast and multicast
cells simultaneously. This is in contrast to existing schemes
that have thus far considered both traffic types separately.
From our experimentations, we found this to be critical when
both unicast and multicast cells are competing for the same
output. In SCIA, a tradeoff will have to be made as to which
cell type should receive service. Moreover, this decision is not
deterministic, as Sm designates a slot to be unicast/multicast
probabilistically. Our scheduler, however, bases its decisions
on cells’ weight. Thereby, as our results showed, both unicast
and multicast cells have the same delay.

Secondly, it uses staging buffers to address the multicast
cell HOL blocking problem. Unlike existing works that utilize
k < 2N − 1 queues, our approach utilizes much less memory.
The tradeoff, however, is extra computations involving TCAM
lookups. Fortunately, these computations can be pipelined and
is not critical to the scheduling process.

Thirdly, it utilizes the crossbar fabric’s innate multicast abil-
ity opportunistically. Prior works such as [16] and [2] establish
multicast matchings without considering the weight of unicast
cells. Our scheduler, however, looks at both cell types and
only enables the crossbar’s multicast capability when multiple
outputs deem a multicast cell to be the highest weighted cell in
a given round. This is particularly advantageous as it increases
a switch’s throughput.

Fourthly, it does not use a tuning knob, e.g., Sm. From our
results, we see that when inputs have low loads, our scheduler
has comparable performance to SCIA [16]. However, we need
to take into consideration that SCIA’s performance is achieved
by adjusting Sm iteratively. Our scheduler, however, does not
have this limitation. Hence, it is able to operate with changing
traffic conditions.

Lastly, it supports both uniform and non-uniform traffic.
Existing approaches, such as iSLIP-Emulate [11] and SCIA
[16], are designed for uniform traffic. Our scheduler, however,
works well in non-uniform traffic scenarios. Specifically, in
each round, it considers cells’ weight, thereby allowing it to
adapt to input loads that vary over time.

VII. CONCLUSIONS

We have presented a novel scheduler capable of scheduling
both unicast and multicast cells simultaneously. From our
extensive simulation studies, our scheduler demonstrates com-
parable or better performance than existing schemes during
low loads, and superior performance during high loads. More
importantly, our scheduler is adaptive to changing traffic
conditions, thereby making it suitable for both uniform and
non-uniform traffic conditions.

REFERENCES

[1] Internet 2 multicast applications. http://multicast.internet2.edu/wg-
multicast-applications.shtml.

[2] M. Andrews, S. Khanna, and K. Kumaran. Integrated scheduling of
unicast and multicast traffic in an input-queued switch. In IEEE Infocom,
New York, USA, June 1999.

[3] A. Bianco, P. Giaccone, E. Leonardi, F. Neri, and C. Piglione. On the
number of input queues to efficiently support multicst traffic in input
queued switches. In IEEE Workshop on High Performance Switching
and Routing, Torino, Italy, June 2003.

[4] M. Carol, M. Hluchyj, and S. Morgan. Input versus output queueing
on a space division switch. IEEE Transactions on Communications,
35:1347–1356, Jan. 1988.

[5] J. Chao and B. Liu. High Performance Switches and Routers. Wiley-
Interscience, 2007.

[6] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri.
Multicast traffic in input-queued switches: Optimal scheduling and
maximum throughput. IEEE Transactions on Networking, 11(3):465–
477, 2003.

[7] N. McKeown. SIM: A fixed length packet simulator.
http://klamath.stanford.edu/tools/SIM/.

[8] N. McKeown. Scheduling Algorithms for Input-Queued Cell Switches.
PhD thesis, Department of Electrical Engineering, University of Cali-
fornia Berkeley, may 1995.

[9] N. McKeown. A fast switched backplane for a gigabit switched router.
Business Communications Review, 27(12):1020–1030, 1997.

[10] N. McKeown. The iSLIP scheduling algorithm for input-queued
switches. IEEE Trans. on Networking, 7(2):188–198, Apr. 1999.

[11] C. Minkenberg. Integrating unicast and multicast traffic scheduling in
a combined input and output queued packet switching system. In IEEE
ICCCN, pages 127–134, Las Vegas, USA, Oct. 2000.

[12] B. Prabhakar, N. McKeown, and R. Ahuja. Multicast scheduling for
input-queued switches. IEEE Journal on Selected Areas in Communi-
cations, 15(5):855–866, June 1997.

[13] E. Schiattarella and C. Minkenberg. Fair integrated scheduling of unicast
and multicast traffic in an input-queued switch. In IEEE ICC, Istanbul,
Turkey, June 2006.

[14] K. Schultz and P. Gulak. CAM-based single-chip shared buffer ATM
switch. In IEEE Conference on Communications, New Orelans, USA,
May 1994.

[15] M. Song and W. Zhu. Throughput analysis for multicast switches with
multiple input queues. IEEE Communications Letters, 8(7):479–481,
2004.

[16] W. Zhu and M. Song. Integration of unicast and multicast scheduling in
input-queued packet switches. Elsevier Computer Networks, 50(8):667–
687, Aug. 2006.

