CONNECT: Volume, Surface Area

1. VOLUMES OF SOLIDS

A solid is a three-dimensional (3D) object, that is, it has length, width and height. One of these dimensions is sometimes called thickness or depth. It is this third dimension that distinguishes a solid from a plane shape. If you need to know more about plane shapes, areas and perimeters, please refer to CONNECT: Areas, Perimeters - 1. AREAS OF PLANE SHAPES and CONNECT: Areas, Perimeters - 2. PERIMETERS OF PLANE SHAPES.

The words volume and capacity are often used interchangeably; however there is a subtle difference. "Volume is the amount of space occupied by an object or substance" whereas "capacity refers to the amount a container can hold ... and generally refers to liquid measurement" (NSW Board of Studies, n. d.).

Measuring and calculating volume and capacity are done in different ways.
Volume is probably easiest to talk about if we think of a box. The boxes we are probably used to are rectangular in shape - in fact they are called rectangular prisms.

PRISMS

A prism is a solid where the cross-section is always identical and parallel to the top and bottom faces. Here are some examples. The first is a rectangular prism, the second is a triangular prism and the third is a "circular prism" otherwise known as a cylinder. The cross-sections, top and bottom faces are rectangles, triangles and circles, respectively.

Diagrams retrieved January 24, 2013, from
http://www.regentsprep.org/Regents/math/geometry/GG2/PrismPage.htm and http://hotmath.com/hotmath help/topics/cross-sections.html

Let's talk about the rectangular prism first of all.

Think of the volume consisting of all the material in the container. Now try to imagine that all of that material could consist of layers of the material that have the same shape as the cross-section. Starting at the base, we would build up those layers, all the way to the top which forms the last layer. If we know the area of the cross-section (which is the same as the area of the base) and we know how high the prism is, then we can multiply the area of the base by the height and the result is the volume.

In the rectangular prism, the cross-section is a rectangle. We know that the area of a rectangle is $A=l \times w$ units 2, (where A units ${ }^{2}$ is the area, l units is the length of the rectangle and w units is the width of the rectangle). If we let h units be the height of the rectangular prism and V units 3 be its volume, then the volume is given by

$$
V=l \times w \times h \text { units }^{3}
$$

We use cubic units (units ${ }^{3}$) because there are 3 dimensions to take into account with volume. The units we use could be $\mathrm{cm}^{3}, \mathrm{~mm}^{3,} \mathrm{~m}^{3}$ and so on.

Example: Calculate the volume of this rectangular container:

$$
\begin{aligned}
& V=l \times w \times h \\
& \text { In this case, } l=3 \mathrm{~cm}, w=4 \mathrm{~cm}, h=12 \mathrm{~cm} \\
& \qquad \begin{array}{l}
\text { so } V=3 \mathrm{~cm} \times 4 \mathrm{~cm} \times 12 \mathrm{~cm} \\
=144 \mathrm{~cm}^{3}
\end{array}
\end{aligned}
$$

That is, the volume is $144 \mathrm{~cm}^{3}$.

The volumes of other prisms are calculated in the same way. Find the area of the base (or cross-section) and multiply that by the height.

Note that the diagram of the prism might show it lying on its side. Example: calculate the volume of this prism (cylinder):

The "base" of this cylinder is a circle because if you cut a cross-section vertically through the cylinder, you would get a circle. So the volume is found by calculating the area of the circle and multiplying by the height.

$$
\begin{aligned}
\text { For the circle, Area } & =\pi r^{2} \\
& =\pi \times 6^{2} \mathrm{~cm}^{2} \\
& =113.0973355 \ldots \mathrm{~cm}^{2}
\end{aligned}
$$

Keeping that result in the calculator (that is, without rounding), we then multiply by h.

So the volume is $113.0973355 \ldots \mathrm{~cm}^{2} \times 10.3 \mathrm{~cm}=1164.902556 \ldots \mathrm{~cm}^{3}$.
Round that answer to find the volume, it is (approximately) $1164.903 \mathrm{~cm}^{3}$.

Over the page is one for you to try. You can check your result with the solution at the end of the resource.

Calculate the volume of the figure.

Diagram retrieved January 24, 2013, from
http://www.mathsteacher.com.au/year8/ch13 volume/02 prisms/prisms.htm

Converting between cubic units

We need to remember that we are dealing with 3 dimensions when converting between cubic units.

For example, this diagram represents a centimetre cube where all the dimensions are 1 cm in length.

Diagram retrieved January 24, 2013, from
http://betaus.icoachmath.com/math dictionary/Cubic Centimeter.html

When we find the volume of the cube, we get

$$
\begin{aligned}
\mathrm{V} & =1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm} \\
& =1 \mathrm{~cm}^{3}
\end{aligned}
$$

But we can also measure each dimension as $10 \mathrm{~mm},(1 \mathrm{~cm}=10 \mathrm{~mm})$ and using this measure to calculate the volume, we get

$$
\begin{aligned}
V & =10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 10 \mathrm{~mm} \\
& =1000 \mathrm{~mm}^{3}
\end{aligned}
$$

That means

$$
1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3}
$$

In the same way, $1 \mathrm{~m}^{3}=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}$

$$
=1000000 \mathrm{~cm}^{3}
$$

Converting between volume units and capacity units

We have seen above that volume is measured in cubic units such as metres ${ }^{3}$, centimetres ${ }^{3}$ and so on.

Capacity is measured in litres (L), millilitres (mL), kilolitres (kL) and so on.
It can be shown that one cubic centimetre holds one millilitre of water, that is,

$$
1 \mathrm{~cm}^{3} \text { holds } 1 \mathrm{~mL}
$$

and one cubic metre holds 1000 litres, that is
$1 \mathrm{~m}^{3}$ holds 1000 L

We also know that 1000 L is 1 kL , so

$$
1 \mathrm{~m}^{3} \text { holds } 1 \mathrm{~kL}
$$

We could calculate the amount of liquid a solid might hold by converting between units.

For example, a swimming pool is rectangular in shape and has length 8 m , width 5 m and can be filled to a height of 2 m . How many litres of water could it hold?

First, we draw the pool (not to scale):

Volume of the pool $=8 \mathrm{~m} \times 5 \mathrm{~m} \times 2 \mathrm{~m}$

$$
=80 \mathrm{~m}^{3}
$$

Each m^{3} holds 1000 L , and so the pool holds $80 \times 1000 \mathrm{~L}$, that is 80000 L .
(We can also do this in kL : each m^{3} holds 1 kL , so the pool can hold 80kL.)

Here is one for you to try. You can check your result with the solution at the end of the resource.

Calculate the volume of a cylinder that has a radius of 10 cm and height of 20 cm . How many litres can the cylinder hold? (It's a really good idea to draw a diagram to help you complete this sort of problem.)

PYRAMIDS

Another kind of solid you might be interested in is a pyramid.

It can be shown that the volume of a pyramid is one third the volume of its corresponding prism. "Corresponding" means that the pyramid and prism both have the same sized base and height, but the pyramid's side faces meet at a point, called the vertex. We can have a rectangular pyramid (the corresponding prism is a rectangular prism), a square pyramid (corresponding prism is a square prism), a triangular pyramid (corresponding prism is a triangular prism), a circular pyramid, which we know as a cone (corresponding prism is a cylinder), a hexagonal pyramid ...

Other than the cone, all pyramids' side faces are triangles. Here are examples of a square pyramid and corresponding square prism:

Square pyramid inside square prism

Diagrams retrieved January 30, 2013, from http://www.ck12.org/book/CK-12-Foundation-and-Leadership-Public-Schools\%2C-College-Access-Reader\%3A-Geometry/r1/section/7.6/

When calculating the volume of a pyramid, we need to know the height of the pyramid, just as we need to know it to calculate the volume of a prism. The height that we need to know MUST be the perpendicular height of the pyramid, that is, it must be at right angles with the base of the pyramid.

Example. We need to calculate the volume of a rectangular pyramid, with a base length 3 m , width 2 m and perpendicular height 2.5 m .

Diagram retrieved January 30, 2013, from http://www.matheschumann.de/tokyo/schumannlectureICME9.htm

The corresponding prism would be rectangular, its volume would be the area of the rectangular base times the height.

$$
\begin{aligned}
\text { Area of the base } & =3 \mathrm{~m} \times 2 \mathrm{~m} \\
& =6 \mathrm{~m}^{2} \\
\text { Volume of prism } & =6 \mathrm{~m}^{2} \times 2.5 \mathrm{~m} \\
& =15 \mathrm{~m}^{3}
\end{aligned}
$$

So, the volume of the pyramid is $\frac{1}{3} \times 15 \mathrm{~m}^{3}=5 \mathrm{~m}^{3}$

Here is one for you to try. You can check your result with the solution at the end.

Calculate the volume of a cone where the radius of the circular base is 10.3 cm and its height is 20 cm .

How many mL does the cone hold? How many litres is this?

SPHERES

Spheres are special because they do not fit the prisms or pyramids categories. If you need to calculate the volume of a sphere, there is a special formula:

$$
V=\frac{4}{3} \pi r^{3} \text { units }^{3}
$$

If you need help with any of the Maths covered in this resource (or any other Maths topics), you can make an appointment with Learning Development through Reception: phone (02) 4221 3977, or Level 3 (top floor), Building 11, or through your campus.

Solutions

Volume of prism (page 4)

The "base" (or cross-section) of this prism is a triangle. The area of a triangle is $A=1 / 2 \times b \times h$ units ${ }^{2}$, where A units 2 represents the area of the triangle, b units represents the length of the base of the triangle and h units represents the height of the triangle.

Here the length of the base (b) of the triangle is 19 cm , and the height (h) of the triangle is 24 cm , so the area of the triangle is

$$
\begin{aligned}
A & =1 / 2 \times 19 \times 24 \mathrm{~cm}^{2} \\
& =228 \mathrm{~cm}^{2}
\end{aligned}
$$

So, the volume of the prism is $228 \mathrm{~cm}^{2} \times$ the height of the prism, that is $228 \mathrm{~cm}^{2} \times 47 \mathrm{~cm}$, which is $10716 \mathrm{~cm}^{3}$.

Volume of cylinder (page 6)

Area of circle $($ cross-section $)=\pi r^{2}$

$$
\begin{aligned}
& =\pi \times 10^{2} \mathrm{~cm}^{2} \\
& =314.1592654 \ldots \mathrm{~cm}^{2}
\end{aligned}
$$

Volume of the cylinder $=314.1592654 \ldots \mathrm{~cm}^{2} \times 20 \mathrm{~cm}$

$$
=6283.185307 \ldots \mathrm{~cm}^{3}
$$

Each cm^{3} of water holds 1 mL , so the cylinder holds $6283.185307 \ldots \mathrm{~mL}$. To find this in litres, divide by 1000, and obtain 6.283185307...L. Now round that answer to 6.283 L , so the cylinder holds approximately 6.283 L .

Volume of cone (page 8)

Corresponding prism is a cylinder, radius 10.3 cm , height 20 cm .
Volume of cylinder $=\pi r^{2} \times h$

$$
\begin{aligned}
& =\pi \times 10.3^{2} \times 20 \mathrm{~cm}^{2} \\
& =6665.831292 \ldots \mathrm{~cm}^{2}
\end{aligned}
$$

So, volume of cone $=\frac{1}{3} \times 6665.831292 \ldots \mathrm{~cm}^{3}$

$$
=2221.943764 \ldots \mathrm{~cm}^{3}
$$

That is, the volume of the cone is approximately $2221.943 \mathrm{~cm}^{3}$.

REFERENCES

NSW Board of Studies (n. d.). NSW Syllabuses for the Australian Curriculum. Mathematics K-10 - Stage 2 - Measurement and Geometry: Volume and Capacity. Retrieved February 18, 2013, from
http://syllabus.bos.nsw.edu.au/mathematics/mathematics-k10/content/1127/

