We use cookies to improve your experience on our site and to show you personalised advertising. To find out more, read our privacy policy and cookie policy

Skip to Content
University of Wollongong Australia. Logo. University of Wollongong Australia. Logo. University of Wollongong Australia. Logo.
  • Search
  • Library
  • Current Students
  • Staff
  • UOW Global
    • Our global presence
    • UOW in Dubai
    • UOW in Hong Kong
    • UOW in Malaysia
  • Menu
  • Study at UOW

    • Courses
    • Apply
    • Scholarships & grants
    • Accommodation
    • High-school students
    • Non-school leavers
    • Postgraduate students
    • International students
    • Moving to Wollongong
    • Study abroad & exchange
    • Global sports programs
    • Campuses
    Study at UOW
  • Engage

    • Future student
    • Alumni
    • Visit UOW
    • Jobs
    • Volunteer
    • The Stand Magazine
    • Community Members
    • Grants and funding
    • Give to UOW
    • Visit the Library
    • Key contacts
    • Educators & school teachers
    Engage with us
  • About UOW

    • Welcome
    • Our people
    • Services
    • Contacts
    • What's on
    • Global presence
    • Media Centre
    • Faculties & schools
    • Our vision & strategy
    • Our Aboriginal & Torres Strait Islander Strategy
    • Our reputation & experience
    • Locations, campuses & partners
    See more about UOW
  • Research

    • Our research
    • Researcher support
    • Research impact
    • Partnership & collaboration
    • Graduate Research School
    • Commercial research
    • Global Challenges
    • Media, news & events
    • Find an expert
    • Our people
    See more about research
  • Industry

    • Generator Lab
    • Advantage SME
    • Success stories
    • Industry research engagement
    • Equipment & Labs
    • Funding opportunities
    • Intellectual property
    • Collaboration for business
    • Collaboration for researchers
    See more about Industry
  • Alumni

    • Benefits
    • Outlook Magazine
    • Events & webinars
    • Volunteer
    • Awards
    • Honorary alumni
    • Testamurs & transcripts
    • Update your details
    • Your career journey
    • Contact us & FAQ
    See more about alumni
  • Quick links

    • Contact directory
    • Staff Intranet
    • Campus maps
    • Transport & parking
    • Key dates
    • Events
    • Password management
    • Jobs
    • Accommodation
    • Policy directory
  • Library
You are here More Pages
  • Home
  • About UOW
  • Media Centre
  • 2020
  • Million-year journey from the mountains to the sea

Media Quick Links

  • Contact UOW Media
  • Visiting campus
  • Image library
  • UOW key facts
  • Find an expert
  • News Corp subscription
  • Sign up for the latest news from UOW Media

June 23, 2020


  • Story By
  • Benjamin Long
  • Photo By
  • Reka Fulop
Share
Type
Media Release
Category
Science and Technology
Tags
ResearchScience

UOW in the News

Million-year journey from the mountains to the sea

Slow transit of sediment in Australia’s Murray-Darling river system distorts environmental signal: study


Sediment can take a million years or more to travel from the mountains of the Great Dividing Range to the mouth of the Murray River, new research has found.

The study, led by University of Wollongong (UOW) scientists in collaboration with colleagues from Australia’s Nuclear Science and Technology Organisation (ANSTO), found that sediments in Australia’s Murray-Darling Basin typically experience multiple episodes of storage on their journey, with cumulative residence times exceeding one million years in the downstream reaches of the Murray and Darling rivers.

The amount of time it takes sediment to travel from source to sink, and the frequent stops along the way, limits its ability to reveal information about the climate and geology of its source area. 

Rivers act as sediment conveyor belts, keeping soils fertile, and delivering over 40 billion tonnes of particulate and dissolved sediment to the global ocean every year.

The primary source of the sediment are mountains, where the continuous interplay between tectonic forces, climate, and surface processes – such as chemical and physical erosion – breaks down rock, converting it to dirt and soil.

Changes in climate or tectonic forcing result in changes in the sediment flux, and the response of the landscape to these environmental forcings is recorded permanently by mineralogical, textural, or geochemical proxies.

Thus, each parcel of sediment carries information about the geology, geomorphology, and the climate of the contributing upland areas, information that builds the narrative of Earth’s history.

However, large river systems are complex and their internal dynamics may buffer and distort environmental signals carried by sediments.

In the new study, published in Science Advances, researchers calculated sediment transit times in Australia’s largest river system, the Murray-Darling Basin by measuring downstream changes in the ratios of cosmogenic radionuclides -- rare isotopes produced by cosmic ray bombardment of surface rocks – in modern river sediment.

Dr Reka Fulop in the lab

Dr Reka Fulop in the University of Wollongong's Cosmogenic Nuclide Chemistry Laboratory. 

Lead author Dr Reka Fulop, from UOW’s School of Earth, Atmospheric and Life Sciences, said the results showed that environmental signals from the sediments will not only be distorted, but may even be completely erased.

“The message of our study is twofold: on the one hand sediment takes a very long time in transit, and on the other hand travel happens in many shorter episodes,” Dr Fulop said.

“At every stop on this very long journey, there is an opportunity for the ‘message’ (environmental signal) that each parcel of sediment carries to be altered or erased.”

The Murray-Darling basin has a subtropical climate with a marked latitudinal gradient of contrasting climatic settings. In the northern part, the Darling sub-basin has weak dominance of summer monsoon rainfall, whereas in the southern part, the Murray sub-basin is influenced more strongly by winter precipitation associated with Southern Hemisphere westerly winds.

As a consequence, studies have sought to use Murray-Darling Basin sedimentary archives as proxies of past hydroclimate variability by applying geochemical fingerprinting techniques to discriminate between Darling versus Murray sediment sources.

The inherent assumption behind these studies is that sediment will move quickly from source to sink and any variability in sediment provenance is directly linked to changes in discharge and/or sediment production rates.

“Our study suggests that the transmission of environmental signals from Murray and Darling source-areas will potentially be out of sync – due to both the long cumulative residence times and the multiple episodes of burial and re-exposure – precluding any interpretations of source-area paleoclimate from these sediment,” Dr Fulop said.

The million year transit times and the reworking of old sediment observed in the Murray Darling Basin are likely to be a characteristic feature of similar river systems globally. This may limit the amount of interpretation possible from the sediment deposits of tectonically inactive continents such as Africa and Australia.

Images of Dr Reka Fulop and Murray Darling Basin locations

Dr Fulop in the lab and in the field at various locations around Australia's Murray-Darling Basin. 

ABOUT THE STUDY

‘Million-year lag times in a post-orogenic sediment conveyor’, by R.-H. Fulop, A.T. Codilean, K.M. Wilcken, T.J. Cohen, D. Fink, A.M. Smith, B. Yang, V.A. Levchenko, L. Wacker, S.K. Marx, N. Stromsoe, T. Fujioka, and T.J. Dunai, is published in Science Advances (19 June 2020).

The research was funded by Australian Research Council and ANSTO grants.

Media Assets for this article

  • Images

Media Contacts for this article

UOW Media Office

You may also be interested in

Leading South Korean energy engineering experts visit ISEM
Innovative lipidomics research wins $1.85M grant
UOW-based Women’s Research Engineers Network to expand into ASEAN Countries
Services & Help
  • Current students
  • Library
  • Information technology
  • Accommodation
  • Security & safety
  • Pool, gym & retail
News, Media & Events
  • Media Centre
  • The Stand
  • Alumni Magazine
  • Research news
  • Events
  • Find an expert
Faculties
  • Arts, Social Sciences & Humanities
  • Business & Law
  • Engineering & Information Sciences
  • Science, Medicine & Health
Administration
  • Graduation
  • Environment
  • Policy directory
  • Learning and teaching
  • Financial Services
  • Access to information
  • Jobs
UOW Entities
  • Innovation Campus
  • UOW College Australia
  • UOW College Hong Kong
  • UOW in Dubai
  • UOW Global Enterprises
  • UOW Malaysia KDU
  • UOW Pulse
Connect with us
  • Facebook
  • Twitter
  • YouTube
  • Instagram
  • LinkedIn
  • Conversation
  • Contact us
  • Feedback
  • Give to UOW

Northfields Ave Wollongong,  NSW 2522  Australia 
Phone: 1300 367 869 
International: +61 2 4221 3218 
Switchboard: +61 2 4221 3555

  • NUW Alliance: Smarter Solutions for NSW
  • University Global Partnership Network (UGPN)
  • Reconciliation Australia

Aboriginal flag Torres Strait Islander flag

On the lands that we study, we walk, and we live, we acknowledge and respect the traditional custodians and cultural knowledge holders of these lands.

Copyright © 2022 University of Wollongong
CRICOS Provider No: 00102E | TEQSA Provider ID: PRV12062 | ABN: 61 060 567 686
Copyright & disclaimer | Privacy & cookie usage | Web accessibility

Close