We use cookies to improve your experience on our site and to show you personalised advertising. To find out more, read our privacy policy and cookie policy

Skip to Content
University of Wollongong Australia. Logo. University of Wollongong Australia. Logo. University of Wollongong Australia. Logo.
  • Search
  • Library
  • Current Students
  • Staff
  • UOW Global
    • Our global presence
    • UOW in Dubai
    • UOW in Hong Kong
    • UOW in Malaysia
  • Menu
  • Study at UOW

    • Courses
    • Apply
    • Scholarships & grants
    • Accommodation
    • High-school students
    • Non-school leavers
    • Postgraduate students
    • International students
    • Moving to Wollongong
    • Study abroad & exchange
    • Global sports programs
    • Campuses
    Study at UOW
  • Engage

    • Future student
    • Alumni
    • Visit UOW
    • Jobs
    • Volunteer
    • The Stand Magazine
    • Community Members
    • Grants and funding
    • Give to UOW
    • Visit the Library
    • Key contacts
    • Educators & school teachers
    Engage with us
  • About UOW

    • Welcome
    • Our people
    • Services
    • Contacts
    • What's on
    • Global presence
    • Media Centre
    • Faculties & schools
    • Our vision & strategy
    • Our Aboriginal & Torres Strait Islander Strategy
    • Our reputation & experience
    • Locations, campuses & partners
    See more about UOW
  • Research

    • Our research
    • Researcher support
    • Research impact
    • Partnership & collaboration
    • Graduate Research School
    • Commercial research
    • Global Challenges
    • Media, news & events
    • Find an expert
    • Our people
    See more about research
  • Industry

    • Generator Lab
    • Advantage SME
    • Success stories
    • Industry research engagement
    • Equipment & Labs
    • Funding opportunities
    • Intellectual property
    • Collaboration for business
    • Collaboration for researchers
    See more about Industry
  • Alumni

    • Benefits
    • Outlook Magazine
    • Events & webinars
    • Volunteer
    • Awards
    • Honorary alumni
    • Testamurs & transcripts
    • Update your details
    • Your career journey
    • Contact us & FAQ
    See more about alumni
  • Quick links

    • Contact directory
    • Staff Intranet
    • Campus maps
    • Transport & parking
    • Key dates
    • Events
    • Password management
    • Jobs
    • Accommodation
    • Policy directory
  • Library
You are here More Pages
  • Home
  • About UOW
  • Media Centre
  • 2019
  • ‘Sticky’ water holds the key to antifouling surfaces

Media Quick Links

  • Contact UOW Media
  • Visiting campus
  • Image library
  • UOW key facts
  • Find an expert
  • News Corp subscription
  • Sign up for the latest news from UOW Media

January 22, 2019


Share
Type
Media Release
Category
Science and Technology
Tags
EngineeringResearch

UOW in the News

‘Sticky’ water holds the key to antifouling surfaces

Insights make possible cheap, effective antifouling surfaces


Researchers have unlocked the mystery of what makes water bind to certain surfaces, with implications for creating cheap and effective antifouling solutions.

A team of researchers from the University of Wollongong (UOW) led ARC Research Hub for Australian Steel Manufacturing have been able to identify a previously unclear fundamental mechanism that inhibits surface fouling.

Effective antifouling strategies can reduce the build-up of organisms, such as bacteria, that degrade or contaminate a product, increasing maintenance and replacement costs.

A secondary challenge is developing coating systems that are cheap and simple to make in large quantitates and can be easily incorporated into manufacturing processes.

In work published recently in the journal ACS Nano, the researchers used colloidal silica, or small glass beads, that are added to a solution and mixed with other materials, such as polymers.

The addition of the glass beads can be used to modify the ability to attract or ‘stick’ to water.

Research Fellow Dr Paul Molino said the silica colloids have a surface chemistry that allows particles to bind to each other, forming a stable coating, while also interacting with water in a manner that inhibits micro-organisms from attaching and populating.

“We discovered that these silica colloids have remarkable, broad-ranging antifouling properties, with the ability to prevent adsorption of proteins, and attachment and colonisation of bacteria and micro-organisms,” Dr Molino said.

“They could help provide a simple, cheap and practical solution to producing antifouling systems, potentially on biomedical devices to prevent blood clotting, bacteria adhesion and possible infection, or for industrial applications.

A key part of the work was using advanced high-resolution imaging and modelling to unlock the secrets of how the bonding works.

They used atomic force microscopy to produce images of single particles on the surface to reveal the structure of layers and how they locked together.

Collaborative work with Professor Irene Yarovsky’s group at RMIT University in Melbourne predicted a strikingly similar structure using molecular dynamic simulations.

Project leader Associate Professor Michael Higgins said that rather than an ordered network of molecules across the surface, they found an unstable or moving layer of water. Micro-organisms like bacteria need food, water and a stable surface to grow.

Like the sands of the desert that are constantly shifting and preventing plants taking root, the hydration layer is active or constantly moving, making it much more difficult for micro-organisms to attach. 

“Knowing the mechanism is important for ensuring the effectiveness of the system, such as preserving the critical antifouling characteristics when combined with other materials and when creating surfaces,” Professor Higgins said.

“In future, we may also be able to design colloidal silica that mimics the antifouling mechanism to produce a wider range of systems adaptable to different situations or environments.

“By applying a holistic approach that combines experimental work with theoretical modelling, we were able to explain how the molecular-level interfacial structures lead to exceptional antifouling ability of these kinds of fouling-resistant systems.

“As a result, the development of antifouling materials for a multitude of applications, including the modification of surfaces to prevent infection associated with implantable medical devices, or the build-up of slime layers on ships/recreational boats, is significantly advanced.”

Media Contacts for this article

UOW Media Office

You may also be interested in

UOW PhD graduate receives prestigious gold medal from nuclear institute
UOW welcomes commitment to fund Energy Futures Skills Centre
How a childhood by the sea inspired Professor Richard Kenchington’s career
Services & Help
  • Current students
  • Library
  • Information technology
  • Accommodation
  • Security & safety
  • Pool, gym & retail
News, Media & Events
  • Media Centre
  • The Stand
  • Alumni Magazine
  • Research news
  • Events
  • Find an expert
Faculties
  • Arts, Social Sciences & Humanities
  • Business & Law
  • Engineering & Information Sciences
  • Science, Medicine & Health
Administration
  • Graduation
  • Environment
  • Policy directory
  • Learning and teaching
  • Financial Services
  • Access to information
  • Jobs
UOW Entities
  • Innovation Campus
  • UOW College Australia
  • UOW College Hong Kong
  • UOW in Dubai
  • UOW Global Enterprises
  • UOW Malaysia KDU
  • UOW Pulse
Connect with us
  • Facebook
  • Twitter
  • YouTube
  • Instagram
  • LinkedIn
  • Conversation
  • Contact us
  • Feedback
  • Give to UOW

Northfields Ave Wollongong,  NSW 2522  Australia 
Phone: 1300 367 869 
International: +61 2 4221 3218 
Switchboard: +61 2 4221 3555

  • NUW Alliance: Smarter Solutions for NSW
  • University Global Partnership Network (UGPN)
  • Reconciliation Australia

Aboriginal flag Torres Strait Islander flag

On the lands that we study, we walk, and we live, we acknowledge and respect the traditional custodians and cultural knowledge holders of these lands.

Copyright © 2022 University of Wollongong
CRICOS Provider No: 00102E | TEQSA Provider ID: PRV12062 | ABN: 61 060 567 686
Copyright & disclaimer | Privacy & cookie usage | Web accessibility

Close