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Abstract

A statistical framework we call CQUESST (Carbon Quantification and Uncertainty from
Evolutionary Soil STochastics), which models carbon sequestration and cycling in soils, is ap-
plied to a long-running agricultural experiment that controls for crop type, tillage, and season.
CQUESST embeds a dynamic stochastic model of soil carbon, motivated by the deterministic
RothC soil-carbon model, within a Bayesian hierarchical statistical model. CQUESST has a
coherent framework that acknowledges uncertainties in soil-carbon dynamics, in physical pa-
rameters, and in observations. The long-running experiment ran from 2000-2010 and is called
the Millenium Tillage Trial; here CQUESST is used to model soil-carbon in six pools, across
42 agricultural plots, and on a monthly time-step for a decade. It is implemented efficiently
in the probabilistic programming language Stan using its MapReduce parallelization. We in-
fer the effectiveness of different experimental treatments for soil-carbon sequestration; and we
show how CQUESST can be used for the analysis of designed experiments to draw statistically
defensible conclusions about the dependence of soil-carbon decay rates on crop rotations and
tillage treatments. These results take into account the uncertainties in the model, resulting in
inferences that could inform soil-carbon sequestration decisions and policies.

1 Introduction.

Soil contains the largest store of organic carbon in the terrestrial environment, accounting for more
than twice that found in vegetation [Scharlemann et al., 2014]. Agricultural soils comprise 37% of
Earth’s surface [Smith et al., 2008] and have been seen as potential sinks for sequestering atmospheric
carbon by altering agricultural management practices. Practices that conserve or increase the mass
of carbon stored in soil are important mitigation strategies to slow down climate change whilst also
enhancing agricultural productivity by improving soil fertility, resilience, and sustainability [Baldock
and Skjemstad, 1999, Lal, 2002, Smith et al., 2008, Lal, 2011, Baldock et al., 2012, Sommer and
Bossio, 2014, Georgiou et al., 2022].
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Treatment Legend PF: Permanent Fallow
PP: Permanent Pasture

N: No Spring Tillage
n: No Winter Tillage

I: Intensive Spring Tillage
i: Intensive Winter Tillage

0: No Winter Cover Crop
1: Winter Cover Crop

M: Minimum Spring Tillage
m: Minimum Winter Tillage

Figure S1.1: Aerial photograph of the Millenium Tillage Trial site in Lincoln New Zealand. Spring
tillage is coded using the capital letters “N” (no spring tillage), “M” (minimal spring tillage), and
“I” (intensive spring tillage). Autumn tillage was coded using the lower-case letters “n” (no autumn
tillage), “m” (minimal autumn tillage) and “i” (intensive autumn tillage), respectively. Tillage
treatments were replicated three times, as were two type of no-tillage, namely permanent pasture
(PP) and permanent fallow (PF). The position of the treatments within the replicate were allocated
randomly.

Long-term agricultural field trials are important sources of experimental data for studying the
responses of soil-carbon stocks to different agricultural management practices. Such studies also
help in the estimation of carbon-cycling parameters in models that are used for making predictions
about carbon stocks at continental scales. The Millennium Tillage Trial (MTT) that took place at
Lincoln, New Zealand from 2000 – 2010 was a highly strategic, decade-long field experiment, designed
to identify tillage and crop-cover practices for maintaining soil organic carbon (SOC) following the
conversion of long-term pasture to arable cropping.

Crops were sown in the spring and the autumn and the MTT applied different tillage treatments
and crop-rotation treatments across 42 field-plots, each with dimensions of 9m × 28m. At every
harvest, measurements were collected of three types of soil carbon (particulate organic carbon (POC),
resistant organic carbon (ROC), and total organic carbon (TOC)) over time along with the above-
ground plant biomass. The MTT design was factorial in form but not fully so (see Section 2.7).
Figure 1 shows the layout of the MTT, where each treatment is described by a three character
code, explained in Section 2.7. Each of the three-character treatment codes was replicated at three
field-plots, and the MTT also included six no-tillage field-plots. Further details of the trial design
and conduct can be found in Baldock et al. [2018].

Process-based deterministic models for describing SOC dynamics are ubiquitous in soil-science
research. To predict the potential outcomes of agricultural management practices on SOC stocks,
studies have employed deterministic models such as RothC [Jenkinson et al., 1990, Li et al., 2016],
CENTURY [Parton et al., 1993, Nicoloso et al., 2020], DAYCENT [Del Grosso et al., 2001, Lemma
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et al., 2021], APSIM [Luo et al., 2014, O’Leary et al., 2016, Mohanty et al., 2020], EPIC [Causarano
et al., 2008, Le et al., 2018], DNDC [Li et al., 1994, 2016] and ICBM [Andrén and Kätterer, 1997,
Bolinder et al., 2012], noting that there are others that have been developed for specific applications
in other domains (e.g., in forestry; Black et al. [2014], Mao et al. [2019]). It is widely acknowledged
that predictions from SOCmodels are most useful when accompanied by quantification of uncertainty
[Ogle et al., 2003, Refsgaard et al., 2007, Post et al., 2008, Juston et al., 2010, Clifford et al., 2014].
To tackle uncertainty in models and estimates, practitioners have on occasions adopted approaches
that are statistically questionable or that did not properly quantify the sources of uncertainty.
For example, Wang et al. [2005] and Juston et al. [2010] employed the non-statistical Generalized
Likelihood Uncertainty Estimation (GLUE) framework of Beven and Binley [1992] and Beven and
Freer [2001], an approach that has been criticized for producing “incoherent and inconsistent” results
[Christensen, 2004, Mantovan and Todini, 2006, Stedinger et al., 2008]. Other studies, like that of
Andrén and Kätterer [1997], Post et al. [2008], and Luo et al. [2014] employed sensitivity analyses
in which model parameters were sampled or perturbed in order to study the resulting variability in
model output. Sensitivity analyses can identify important parameters [O’Hagan, 2012], but they are
not easily adapted to quantifying uncertainties in predictions of latent (unobservable) processes.

In what is to follow, we present a statistical framework for conducting statistical of soil-carbon
data collected from field trials, based on a Bayesian hierarchical statistical model (BHM) that
allows prediction of the carbon fluxes (with uncertainties) cycling between various latent soil-carbon
pools. Further, it allows assesment of hypotheses about the pools. and their parameters, all in a
dynamical setting. We call our new framework CQUESST (Carbon Quantification and Uncertainty
from Evolutionary Soil STochastics), which embeds a stochastic, dynamical version of the popular
six-pool RothC model [Jenkinson et al., 1990] for soil-carbon dynamics, into a BHM.

Bayesian hierarchical modeling [e.g., Berliner, 1996, Wikle and Berliner, 2007] is a rigorous
statistical framework that has gained widespread traction for modeling complex spatio-temporal
phenomena in a variety of fields, including climate science [e.g., Kang et al., 2012, Katzfuss et al.,
2017, Zhang and Cressie, 2020, Zammit-Mangion et al., 2022], oceanography [e.g., Wikle et al., 2013,
Britten et al., 2021] and hydrology [e.g., Pagendam et al., 2014, Li et al., 2020], but its potential
in soil-carbon modeling has not been fully realized. At the core of a BHM is the partitioning
of a complex, joint-probability distribution into a product of conditional-probability distributions
that describe uncertainties in the observed data (via a data model), uncertainties in the underlying
scientific process (via a process model), and uncertainties in the parameters (via a parameter model).

In our case, the data model quantifies the measurement errors and the combination of the soil-
carbon pools that exist in field data; the process model is a science-driven, dynamical statistical
process model that describes the evolution of SOC in multiple latent soil-carbon pools through time;
and the parameter model (also known as the prior distribution) captures beliefs, probabilistically,
about the values and variability of the parameters in the data model and process model prior to
observing the data.

In this article, we demonstrate how the CQUESST framework that has a BHM at its core and
produces posterior distributions of all “unknowns”, allows one to make inferences on the unknown
soil processes and model parameters, in order to understand the soil-carbon cycle under tillage and
cropping. Our study includes a range of agronomic treatments that alter the balance between in-
puts and losses of organic carbon from soil. The trial produced seasonal measurements of plant
production, SOC stocks, and SOC composition, and we use this data to infer how decay rates (with
uncertainties) of SOC stocks vary as a consequence of the tillage-cropping treatments employed.
Furthermore, our study quantifies the carbon flux (with uncertainties) from the soil to the atmo-
sphere for each treatment over this long-running field trial, providing insights into which management
practices may have the greatest potential for mitigating climate change over long time-horizons.

In recent years, BHMs have been introduced to the soil-carbon-modeling community [e.g., Cable
et al., 2009, Clifford et al., 2014, Kim et al., 2014, Ogle et al., 2014, Li et al., 2015, Ogle and
Pendall, 2015, Davoudabadi et al., 2021, 2023]. Our earlier paper [Clifford et al., 2014] demonstrates
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its application on a simple, single-pool model of soil-carbon dynamics. In what is to follow, this
prototype is taken in new directions, particularly the embedding of a multi-pool model that is used
in analyzing the MTT referred to above.

In Section 2, we describe the BHM at the core of CQUESST and its component statistical models
used for studying the MTT. Section 3 gives a brief description of the Bayesian computational methods
used in CQUESST, which are then applied to the MTT data in Section 4. Our statistical analysis
compares carbon sequestration across the various treatments used in the MTT, as well as the soil-
carbon decay rates as a function of factors included in the designed experiment. Section 5 discusses
the results and the importance of the CQUESST framework for addressing the grand challenge of
slowing climate change induced by carbon-based greenhouse gases.

2 CQUESST: A Biophysical-Statistical Model of Soil-Carbon
Cycling.

This section develops the levels of the BHM that we apply to the Millennium Tillage Trial introduced
in Section 1 and analyzed in Section 4.

2.1 RothC v26.3.

In this subsection, we show how biophysical knowledge of soil-carbon cycling through multiple carbon
pools can be used to construct dynamical models. Many are deterministic in that identical input
gives identical output. However, the uncertainty in processes that govern the cycling should be
accounted for, and this we do through statistical models that build on extant biophysical knowledge.
Popular models for modeling soil carbon in agricultural systems include RothC [Jenkinson et al.,
1990], CENTURY [Parton et al., 1993], DAYCENT [Del Grosso et al., 2001], and APSIM [Luo
et al., 2014]. Of these models, RothC focuses solely on carbon, whereas CENTURY, DAYCENT,
and APSIM model carbon and nitrogen jointly. The RothC model forms the basis for the soil-carbon
component of FullCAM [Richards and Evans, 2004] that is used by the Australian government to
produce national greenhouse gas accounts.

RothC is a deterministic, multi-pool model of soil-carbon dynamics; in what follows we describe
the current version, v.26.3. Within the RothC model, the total mass of carbon in the soil is parti-
tioned into six ‘conceptual pools’ of carbon, representing substrate material that differ in chemical
composition and decomposability (four pools) and biological material in microbial pools (two pools).

Recall the MTT introduced in Section 1: we now introduce some notation for the analysis that
follows in this article. For month t within field-plot i, the addition of carbon to the soil from plant
matter is modeled through the time-varying forcing variable, Pi,t, and the masses of carbon within
the six pools are represented as a multivariate stochastic process through the time-varying process
vector,

Yi,t = (Di,t, Ri,t, Fi,t, Si,t, Hi,t, Ii,t)
⊤, (S1.1)

where Di,t is the carbon stock in decomposable plant material, Ri,t is the carbon stock in resistant
plant material, Fi,t is the carbon stock in fast-decomposing biomass, Si,t is the carbon stock in slow-
decomposing biomass, Hi,t is the carbon stock in humidified organic matter, and Ii,t is the carbon
stock in inert organic matter. We note that Si,t and Fi,t are distinct from the other pools because
these correspond to organic carbon contained in biological microbial material, and that field-plot i
will have a unique tillage-cropping treatment assigned to it (Figure S1.1).

The six carbon pools that appear as elements inYi,t cycle amongst each other and the atmosphere
and are referred to as ‘conceptual carbon pools’ [Skjemstad et al., 2004] or ‘modeled carbon pools’
[Poeplau et al., 2013] by soil scientists. In what is to follow, we call them respectively, the D pool,
R pool, F pool, S pool, H pool, and I pool. Soil chemists cannot directly measure the carbon
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content of these latent, conceptual carbon pools. Observations are made of “measurable fractions”,
subcomponents of the soil that can be separated mechanically (i.e., using sieves) and chemically [e.g.,
Baldock et al., 2013]. In the MTT, total organic carbon (TOC), particulate organic carbon (POC),
and resistant organic carbon (ROC) were measured. POC was measured as the organic carbon
associated with soil particles larger than 50 µm. ROC was measured as the organic carbon associated
with polyaromatic structures consistent with, but not necessarily limited to, carbon contained in
charcoal using 13C nuclear magnetic resonance. In terms of its six pools, RothC recognises them as
combinations of the pools:

TOCi,t = Di,t +Ri,t + Fi,t + Si,t +Hi,t + Ii,t

POCi,t = Ri,t +Di,t + Fi,t (S1.2)

ROCi,t = Ii,t.

Within RothC, there is no distinction made between the measurement and the process it is
measuring; that distinction is important, and it is modeled carefully in CQUESST framework. Also,
although measurements of POC have been equated solely with Ri,t [e.g., Skjemstad et al., 2004],
the actual measurable fraction that is classified as POC also includes decomposable plant matter,
Di,t, and the fast-decomposing biomass, Fi,t, which is attached to the plant-material substrate. The
rationale for excluding Fi,t and Di,t from POCi,t has been that these pools typically only represent
small proportions of the POC. However, immediately after the addition of plant matter to the soil,
Di,t can become elevated. Furthermore, despite the small contribution of Di,t and Fi,t to POC, one
should maintain mass-balance and link soil-carbon measurements to their respective carbon pools,
as is achieved in Equation (S1.2).

At each time step, some of the carbon within each of the pools (with the exception of Ii,t,
which is inert and hence remains unchanged over time) undergoes microbial decay and is either:
(i) transformed into carbon belonging to one of the pools (either the same or a different type); or
(ii) released into the atmosphere as carbon dioxide (CO2) by microbial respiration. It has been
estimated that microbial respiration within soils contributes the largest flux of CO2 from terrestrial
ecosystems to the atmosphere [Ogle and Pendall, 2015].

In RothC, the modeling of carbon cycling in soil is expressed mathematically according to the
following set of deterministic (i.e., non-stochastic) equations, where we adopt notation that ac-
commodates parameters varying from field-plot to field-plot (indexed by i) within the MTT. For
i = 1, . . . , 42,

Di,t+∆t = Di,te
−ri,t+∆t

KD
12 ∆t + pP→DPi,t + pM→DMi,t

Ri,t+∆t = Ri,te
−ri,t+∆t

KR
12 ∆t + (1− pP→D)Pi,t + pM→RMi,t (S1.3)

Fi,t+∆t = Fi,te
−ri,t+∆t

KF
12 ∆t + pU→FUi,t + pV→FVi,t + pM→FMi,t

Si,t+∆t = Si,te
−ri,t+∆t

KS
12 ∆t + pU→SUi,t + pV→SVi,t + pM→SMi,t

Hi,t+∆t = Hi,te
−ri,t+∆t

KH
12 ∆t + pU→HUi,t + pV→HVi,t + pM→HMi,t

Ii,t+∆t = Ii,t,

where

Ui,t ≡
∑

X∈{D,R,F,S}

Xi,t(1− e−ri,t+∆t
KX
12 ∆t)

Vi,t ≡ Hi,t(1− e−ri,t+∆t
KH
12 ∆t), (S1.4)

and where ∆t = 1 month; KD, KR, KF , KS , and KH are respectively the annual decay-rates for
carbon in the D, R, F , S, and H pools for field-plot i; ri,t is a decay-rate modifier that is applied to
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the decay-rates as a result of changes in climate and ground cover; Ui,t is the total carbon decayed
from Di,t, Ri,t, Fi,t, and Si,t pools in field-plot i, that remained in the soil from month t to t+1; and
Vi,t is the carbon decayed from Hi,t in field-plot i, that remained in the soil from month t to t+ 1.
The role of each of the dynamic-process model parameters is derived from soil-science considerations
expanded in Supplemental Material 1.

Equations (S1.3) and (S1.4) describe a dynamical system where mass-balance is preserved through
a pool of carbon released from the soil to the atmosphere in the form of the greenhouse gas CO2. In
Mg C ha−1 y−1, the atmospheric flux of carbon from the ith field-plot over the interval [0, T ] can
be written as

Ai =
12

T

∑
X∈{D,R,F,S,H,I}

(Xi,0 −Xi,T ), (S1.5)

where Xi,t represents the carbon stock in Mg C ha−1 for month t and pool X. Negative values of
Ai represent soil-carbon sequestration. Tillage-cropping treatment τ is applied to three field-plots;
suppose they are i(τ)1, i(τ)2, and i(τ)3. Then the flux of atmospheric carbon for treatment τ in the
MTT is simply computed as the area-weighted average of individual fluxes:

A(τ) =

∑3
j=1 ai(τ)jAi(τ)j∑3

j=1 ai(τ)j
, (S1.6)

where ai is the area of field-plot i. Thus, the best tillage-cropping practices should minimize A(τ);
results for the MTT are given in Section 4.2.

2.2 A Dynamical Stochastic Model Based on RothC.

Rather than adopting the deterministic RothC model as an error-free, biophysical representation of
soil-carbon dynamics, we developed a dynamical stochastic model based on RothC that recognizes
scientific uncertainty. Stochasticity is introduced into each of the transition equations outlined in
(S1.3), in the form of additive Gaussian noise on the logarithmic scale [Clifford et al., 2014]. The
stochastic equations, analogous to (S1.3), for the multi-pool model considered here have multiplica-
tive errors on the natural scale and are:

Di,t+∆t = exp{log(Di,te
−ri,t+∆t

KD
12

∆t + pP→DPi,t + pM→DMi,t) + ηD,i,t}

Ri,t+∆t = exp{log(Ri,te
−ri,t+∆t

KR
12

∆t + (1− pP→D)Pi,t + pM→RMi,t) + ηR,i,t}

Fi,t+∆t = exp{log(Fi,te
−ri,t+∆t

KF
12

∆t + pU→FUi,t + pV →FVi,t + pM→FMi,t) + ηF,i,t} (S1.7)

Si,t+∆t = exp{log(Si,te
−ri,t+∆t

KS
12

∆t + pU→SUi,t + pV →SVi,t) + pM→SMi,t + ηS,i,t}

Hi,t+∆t = exp{log(Hi,te
−ri,t+∆t

KH
12

∆t + pU→HUi,t + pV →HVi,t + pM→HMi,t) + ηH,i,t}
Ii,t+∆t = Ii,t,

where

Ui,t =
∑

X∈{D,R,F,S}

Xi,t(1− e−ri,t+∆t
KX
12 ∆t),

Vi,t = Hi,t(1− e−ri,t+∆t
KH
12 ∆t),

and where ∆t = 1 month, ηD,i,t ∼ N(−σ2
D

2 , σ2
D); ηR,i,t ∼ N(−σ2

R

2 , σ2
R); ηF,i,t ∼ N(−σ2

F

2 , σ2
F );

ηS,i,t ∼ N(−σ2
S

2 , σ2
S); and ηH,i,t ∼ N(−σ2

H

2 , σ2
H) are independent, normally (i.e., Gaussian) dis-

tributed random errors. Here, N(µ, σ2) denotes a normal distribution with mean µ and variance σ2,
and its exponential is a lognormal distribution with mean, exp{µ+σ2/2}. Hence the exponential of
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N(−σ2/2, σ2) has a mean of 1, and consequently the means of the state equations in (S1.7) agree
with the deterministic equations in (S1.3). To diagnose the assumption of independence between
field-plots shown in Figure S1.1, we performed a geostatistical analysis of the MTT data. Our anal-
ysis is given in Supplemental Material 2 and shows no evidence of spatial dependence at the scale
of the MTT site.

2.3 Measurement Errors in Observed Soil-Carbon Measurable Fractions.

Over the course of the MTT, laboratory measurements of three types of organic carbon were made:
particulate organic carbon (POC), resistant organic carbon (ROC), and total organic carbon (TOC).
The relationships between these soil-carbon measurable fractions and the latent soil-carbon pools is
detailed in (S1.2). Each of these measurements is subject to measurement error, which we modeled
in the following way:

ZPOC,i,t|Yi,t, σ
2
POC ∼ LN(log[Di,t +Ri,t + Fi,t]−

σ2
POC
2

, σ2
POC)

ZROC,i,t|Yi,t, σ
2
ROC ∼ LN(log[Ii,t]−

σ2
ROC
2

, σ2
ROC) (S1.8)

ZTOC,i,t|Yi,t, σ
2
TOC ∼ LN(log[Di,t +Ri,t + Fi,t + Si,t +Hi,t + Ii,t]−

σ2
TOC
2

, σ2
TOC),

where ZPOC,i,t, ZROC,i,t, and ZTOC,i,t are the observations of POC, ROC, and TOC in field-plot
i and month t; recall Yi,t ≡ (Di,t, Ri,t, Fi,t, Si,t, Hi,t, Ii,t)

⊤; and the notation LN(µ, σ2) refers to
a lognormal distribution with parameters µ and σ2. Here the (measurement) errors are again
multiplicative.

As outlined in detail in Section 2.6 below, we formulated priors on measurement-error variance
parameters, σ2

POC, σ
2
ROC, and σ2

TOC based on laboratory measurements of soil carbon across the
field-plots, taken just before the commencement of the MTT (see Table S3.3).

2.4 Soil-Carbon Models as State-Space Models.

The process model and data model detailed in equations (S1.7) and (S1.8), respectively, specify a
general class of models known as state-space models (e.g., Cressie and Wikle [2011], Ch. 7). A
generic linear latent process is:

Yt+1 = MtYt + gt + η⋆
t ,

where Mt is a matrix whose elements are dictated by parameters that govern the temporal evolution
of the system, gt is an additive linear term that often corresponds to an external “forcing” of the
process (e.g., the addition of carbon from plant material to the soil), and η⋆

t is a random vector with
zero mean and diagonal covariance matrix that makes the process stochastic. For example, the ith
element η⋆t,i ∼ N(0, σ2

η,i), independently of the other elements. A state-space model also requires
the specification of a data model that links observed quantities to the latent-process dynamics. A
generic data model is:

Zt = HtYt + ϵ⋆t ,

where Zt is a vector of observed quantities, Ht is a given matrix that links each observed quantity
to some linear combination of the state variables in Yt, and ϵ⋆t is a random vector with zero mean
and diagonal covariance matrix that represents measurement error. For example, the ith element
ϵ⋆t,i ∼ N(0, σ2

ϵ,i), independently of the other elements.
However, our component models of the BHM in CQUESST are not linear. The framework has at

its core a difference equation that leads to a non-linear state-space model different from the generic
one just described. Define the propagator matrix, Mt ≡ [M1,t,M2,t], where
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M1,t =


e−KD∆t 0 0

0 e−KR∆t 0
pU→F (1− e−KD∆t) pU→F (1− e−KR∆t) e−KF∆t + pU→F (1− e−KF∆t)
pU→S(1− e−KD∆t) pU→S(1− e−KR∆t) pU→S(1− e−KF∆t)
pU→H(1− e−KD∆t) pU→H(1− e−KR∆t) pU→H(1− e−KF∆t)

0 0 0



M2,t =


0 0 0
0 0 0

pU→F (1− e−KS∆t) 0 0
e−KS∆t + pU→S(1− e−KS∆t) pU→S(1− e−KH∆t) 0

pU→H(1− e−KS∆t) e−KH∆t + pU→H(1− e−KH∆t) 0
0 0 1

 ;

define the vector of carbon inputs to the system as,

gt ≡


pP→DPt + pM→DMt

pP→RPt + pM→RMt

0
0
0
0

 ;

and corresponding to the data collected, define the observation matrix as,

Ht =

 1 1 1 0 0 0
0 0 0 0 0 1
1 1 1 1 1 1

 .

The process model and data model together specify a hierarchical statistical model, with which
we could employ Bayesian or empirical Bayesian statistical methods for inference on parameters and
prediction of latent-process dynamics. From Section 1, a BHM, has a third level of the hierarchy
given by the parameter model (or prior) for parameter vector θ; see Section 2.6. Rather than
estimating θ from the data and “plugging” it into the prediction equations, CQUESST has a BHM
at its core, and all inferences come from the posterior distribution of the “unknowns” given the data.

2.5 CQUESST as a State-Space Model.

On the natural scale of fluxes, the stochastic soil-carbon model specified in (S1.7) can be considered
“almost” linear, but with multiplicative errors. That is,

Yt+1 = (MtYt + gt)⊙ ηt,

where ηt is a random vector with kth element, ηt,k ∼ LN(−σ2
η,k

2 , σ2
η,k), and ⊙ is the Hadamard

(elementwise) product of two vectors. Equivalently, this process model can be written as evolving
nonlinearly on the log-scale, with additive Gaussian-process noise:

log(Yt+1) = log(MtYt + gt) + η⋆
t ,

where η⋆
t is a random vector with kth element, ηt,k ∼ N(−σ2

η,k

2 , σ2
η,k), independently of the other

elements. Similarly, the data model specified in (S1.8) is “almost” linear, but with multiplicative
measurement error:

Zt = (HtYt)⊙ ϵt,
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where ϵt is a random vector with kth element, ϵt,k ∼ LN(−σ2
ϵ,k

2 , σ2
ϵ,k). Again, this can be written

on the logarithmic-scale as a non-linear model with additive Gaussian measurement error:

log(Zt) = log(HtYt) + ϵ⋆t ,

where ϵ⋆t is a random vector with kth element, ηt,k ∼ N(−σ2
ϵ,k

2 , σ2
ϵ,k), independently of the other

elements.
These models are not of a standard form, that would yield to maximum likelihood and Kalman

Filtering and their closed-form solutions. Rather than developing approximate solutions with un-
known inaccuracies, the soil-carbon state-space model in CQUESST is embedded into a BHM by
providing a parameter model (or prior). Doing so has three substantial benefits: (i) specifying prior
distributions on the parameters in θ allows one to draw upon all sources of information available
(including expert opinion and past studies; see Section 2.6); (ii) no linear approximations to the pro-
cess dynamics are needed; and (iii) inference on parameters and state variables can be undertaken
simultaneously from the posterior distribution, here through Markov Chain Monte Carlo (MCMC),
as in Section 3.

2.6 Priors on Model Parameters and Initial Conditions.

Prior distributions were placed on the initial values in the carbon pools (at month t = 0) and on
all of the parameters in the model outlined in (S1.7). For simplicity, we denote the complete vector
of parameters as θ, which includes all of the scalar parameters listed in Tables S3.1, S3.2, and S3.3
of Supplemental Material 3. It is also necessary to specify prior distributions for the initial states
of the latent state variables (soil-carbon pools in each of the field-plots), and these are listed in
Table S3.4 of Supplemental Material 3. The prior distributions listed in these tables summarize our
beliefs about the likely values for each parameter before observing the MTT data, and they could
be broadly classified as either informative or weakly informative.

2.7 Analyzing a Designed Experiment with CQUESST: The Millennium
Tillage Trial.

As outlined in Section 1, the Millennium Tillage Trial (MTT) was a long-running agricultural trial
that examined the effects on soil-carbon sequestration, of spring and autumn tillage treatments and
the presence or absence of winter cover crops. Specifically, the MTT used three levels of a spring
tillage treatment, listed in increasing order of intensity: no spring tillage (denoted “N”), minimal
spring tillage (“M”), and intensive spring tillage (“I”). The same three levels of tillage were also
applied in autumn and denoted by the lower-case letters “n”, “m”, and “i”, respectively. In addition
to the spring and autumn tillages, a third treatment was used in the MTT, namely whether or not
a cover crop was grown over winter; the presence or absence of the winter cover crop, was coded
as a binary variable, taking the values “1” and “0”, respectively. Figure S1.1 shows the layout of
the MTT, where each experimental treatment is described by a three character code: for example,
the two field-plots in the bottom right corner would be “Mm1” and “Mm0”. The MTT did not
employ a full factorial design; instead it was constrained so that the autumn tillage was at the
same or lower intensity as that applied in the spring (e.g., there are no codes with “M” and “i”).
This reduced the number of possible treatments from 18 down to 12. Each of the three-character
treatment codes was replicated at three field-plots, resulting in a total of 36 field-plots with these
types of treatments. In addition, the MTT also included six no-tillage field-plots: these comprised
three plots of a permanent pasture (PP) treatment, and three plots of a permanent fallow (PF)
treatment that applied herbicide to keep the plots plant-free. In all, the MTT had a total of 42
field-plots.
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The CQUESST framework can be used to infer model parameters and soil-carbon trajectories
for the MTT, where uncertainty in data, process, and parameters are coherently accounted for. An
important scientific question surrounding this dataset is: Do tillage-cropping treatments affect the
decay-rate of soil carbon? Soil scientists are aware that crop types and tillage treatments affect the
amount of plant material that enters the soil (the main route for soil-carbon sequestration), but they
may also affect soil microbial communities responsible for its decomposition. They may also influence
the chemical composition and bioavailability of organic carbon cycling through the D, R, F, and S
pools, and thus the rate at which decomposition occurs. We have particular interest in determining
whether the tillage-cropping practices induced differences in the decay rates of the D, R, and H pools,
a question that can be studied by allowing the decomposition rates to be functions of the treatments.
We generalize the process model so that the rate parameters in (S1.7), {KX : X = D,R, F, S,H},
depend on the tillage-cropping treatment, τ , through its assignment to field plot i, which we have
denoted i(τ). We write

KX,i(τ) = κXατ , (S1.9)

where in (S1.7), i is replaced with i(τ) andKX is replaced withKX,i(τ) for carbonX ∈ {D,R, F, S,H}
and treatments, τ ∈ T = {PP,PF,Nn0, . . . , Ii1}. In (S1.9), κX is the marginal decay-rate for pool
X, and ατ ∈ (0,∞) is the treatment-specific modifier applied to decay rates for treatment τ . Within
each treatment, the decay rates, KX,τ , have the desirable property that the scientifically justified
ordering of decay rates for the pools is retained.

3 Bayesian Inference and Computation within the CQUESST
Framework.

Here we demonstrate how CQUESST can be used to model soil-carbon data from long-term field
trials and to improve our understanding of important latent biogeochemical processes that drive
carbon cycling. This is demonstrated in three ways: (i) CQUESST is fitted to the data from the MTT
to demonstrate its ability to infer model parameters, latent-process dynamics, and carbon fluxes
under different experimental treatments; (ii) uncertainties are captured around these quantities;
and (iii) the parameterization of the model can be augmented to see whether carbon-cycling varies
under different treatments. In (iii), we specifically evaluate the hypothesis that soil-carbon decay
rates are not homogeneous across treatments and should vary depending on the type of production
used (e.g., single cropping versus double cropping).

3.1 Assembling the CQUESST Framework.

The BHM which is at the core of CQUESST, uses conditional probability distributions to simplify the
complex joint probability distributions encountered in spatio-temporal modeling. In what follows,
we denote the series of observations taken at various times in field-plot i ∈ {1, 2, . . . , 42} as the
vectors ZPOC,i, ZROC,i, and ZTOC,i, which we then concatenate for field-plot i into the vector
Zi ≡ (Z⊤

POC,i,Z
⊤
ROC,i, Z

⊤
TOC,i)

⊤. From the MTT data, we wish to obtain estimates of the latent
process and parameters, which in the CQUESST framework comes from the posterior distribution
obtained through an application of Bayes’ Rule. The posterior density function is:

p(Y,θ|Z) = p(Y,θ,Z)

p(Z)
=

p(Z|Y,θ)p(Y|θ)p(θ)
p(Z)

, (S1.10)

where Y ≡ (Y⊤
0,1, . . . ,Y

⊤
T,1, . . . ,Y

⊤
0,42, . . . ,Y

⊤
T,42)

⊤ is a vector containing all six of the state vari-
ables across all 108 months between October 2000 and September 2009, and all 42 field-plots;
Z ≡ (Z⊤

1 , . . . ,Z
⊤
42)

⊤ is the vector containing all of the soil-carbon observations across all field-plots
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and observation times; and θ is the vector of all model parameters outlined in Tables S3.1, S3.2,
and S3.3. In (S1.10), p(Y,θ,Z) is the joint probability density function of the latent soil-carbon
processes, the parameters, and the data. In the BHM, this can be written as the product of three con-
ditional probability density functions, introduced earlier in this paper as the data model, the process
model, and the parameter model. The data model is defined by (S1.8), the process model is defined
by (S1.7), and the parameter model is given by Tables S3.1 - S3.3, with statistical independence
between parameters assumed.

The right-hand side of (S1.10) has a normalizing constant p(Z), which is the marginal probabil-
ity density function of Z and is generally intractable. Instead, we use Markov Chain Monte Carlo
(MCMC) algorithms to sample from p(Y,θ|Z). Specifically, we use an extension of Hamiltonian
Monte Carlo (HMC), called the No-U-Turn Sampler (NUTS) [Gelman and Hoffman, 2014], which
is implemented as an auto-tuning, ‘turnkey’ sampling algorithm in Stan. Further, MapReduce func-
tionality is available in Stan for parallelizing computation of p(Y,θ|Z) over numerous CPUs on
a high-performance computing cluster. In the present application, the HMC in CQUESST, par-
allelizes the posterior calculation of individual field-plots. The Stan code employing MapReduce is
available at https://github.com/dpagendam/CQUESST. When performing Bayesian inference with
an MCMC algorithm, it is important to verify that the Markov chain provides a representative set
of samples from the posterior distribution p(Y,θ|Z), and details of the methods used are provided
in Supplemental Material 4.

4 The Millennium Tillage Trial: Inference of Key Compo-
nents.

We now use the CQUESST framework to analyze the MTT soil-carbon data and demonstrate how
it can be used to: (i) fit science-driven dynamics to observed data despite the fact that each carbon
pool is latent and cannot be measured directly; (ii) incorporate prior knowledge around parameters
of the model and the evolution of the soil-carbon trajectories through time; and (iii) put uncertainty
bounds on the “unknowns” in (i) and (ii).

4.1 Posterior Inference for Model Parameters.

Figures S5.1, S5.2, and S5.3 in Supplemental Material 5 show prior and posterior densities for
parameters in CQUESST. Detailed discussion of the Bayesian learning seen with these parameters
is given there. Prior distributions (in gray) and posterior distributions (in purple) that are near to
each other indicate that the observed MTT data did not contain information that greatly changed
the prior belief about a parameter. When there is a substantial difference between the (gray) prior
and (purple) posterior distributions, or when the prior distribution is so far from the posterior
distribution that the prior does not appear in the figure, information in the MTT dataset has
drastically changed our prior belief about the plausible values of that parameter.

In some of the cases, the posterior distributions have shifted substantially away from the prior
(e.g., κD and κR). Parameters where there were less-substantial differences between prior and pos-
terior distributions include the decay-rate parameters κF , κS , and κH , whilst there was no apparent
learning for many of the parameters in Figure S5.3 that govern the proportions of decomposed car-
bon that are routed to other pools. We show that the posterior distribution for κD favors slightly
lower values than the prior distribution, κR favours larger values in the posterior distribution com-
pared to the prior distribution, and κF , κS and κH show little change. In the case of κF and κS

this is unsurprising, since the observations, which relate to the sum of multiple pools would not be
expected to offer much information about the dynamics of the relatively small (in terms of carbon
stock) F and S pools.
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From Figure S5.2, it is clear that posterior distributions for variance parameters (process noise
and measurement errors) shifted to lower ranges of values than the priors. This indicated that
measurement errors were lower than we initially expected and that the process dynamics exhibited
more determinism than we had initially expected. The latter may have been due to our use of ατ

to obtain a more ‘tailored’ model fit to each treatment in the MTT than if we had used a global set
of decay rates across all treatments.

4.2 Soil-Carbon Dynamics.

Sampled trajectories of soil-carbon pools from the posterior distribution were used to construct
Figures S1.2 and S1.3. Figure S1.2 shows how CQUESST is able to make inferences on the latent
soil-carbon pools given in (S1.7), even though the observations were on aggregated subsets of these
given in (S1.8). In Figure S1.2, we see that the D pool rises and falls each time a crop is sown
as plant material enters the soil and is rapidly decomposed. Similarly, we observe small peaks in
the R pool over time that correspond to resistant plant material entering the soil and decomposing
more slowly. The F and S pools start at low masses at the beginning of the MTT and rise over
its duration because of the continual input of substrate for the microorganisms that comprise these
pools. Overall, the F and S pools only represent a small amount of the total carbon stock. We
observe that the H pool varies slowly over time, since this pool has a slow decay rate and remains
relatively stable. Finally, the I pool remains completely stable over time, since this pool represents
inert carbon in the soil.

From Figure S1.3, we see that the observed data agree well with the aggregated pools to which
the observations correspond. POC and TOC measurements include material that is in the D and
R pools and can therefore exhibit peaks associated with the annual addition of plant material from
crops into the soil. In contrast, the measurements of ROC are more stable, since these are solely
measurements of the inert I pool. Note that the trajectory for TOC is the sum of all trajectories in
Figure S1.2. This can be used to make inferences about how much carbon was accumulated (negative
flux) or lost to the atmosphere (positive flux) over the course of the MTT. Plots of the posterior
distribution of the total soil-carbon flux, A(τ), for each of the 14 tillage-cropping treatments in the
MTT are shown in Figure S1.4, which is discussed in more detail below.

4.3 Answering Scientific Questions with CQUESST: Do the decay rates
of conceptual carbon pools vary as functions of cropping and tillage?

Posterior distributions for multiplicative treatment effects, ατ , defined in (S1.9), are shown in Figure
S1.5. We note that there is substantial variability between the treatments, indicating that soil-
carbon decay-rates are not uniform under all tillage-cropping management practices. This is in
contrast to how soil-carbon dynamics are typically modeled in practice and indeed are modeled in the
deterministic RothC discussed in Section 1. Of particular note in our results are the no-tillage PF and
PP treatments, which are both at the lower range of values for ατ , indicating that decay rates under
these two treatments are low. Figure S1.4 shows that this multiplicative effect does not necessarily
dictate the carbon-sequestration potential of a treatment, since sequestration also depends upon the
amount of plant material cultivated, with root material (and potentially stubble) entering the soil.
We observe that for the permanent pasture (PP) treatment, there is a high probability of negative
carbon flux (i.e., low probability of losing soil carbon to the atmosphere). In contrast, permanent
fallow (PF) which is a chemical fallow with no addition of plant material to the soil, showed very
strong evidence of positive carbon flux to the atmosphere (i.e., poor carbon-sequestration). Of the
other MTT treatments, the spring intensive-tillage treatments, In0, In1, and Im0, showed the next
highest probabilities of soil-carbon sequestration; and consistently, no-tillage (Nn0 and Nn1) and
minimum-tillage (Mm0 and Mm1) treatments showed low probability of sequestration. Figure S1.4
suggests that active tillage treatments that employ a rotation of intensive tillage in the spring, have
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Figure S1.2: Sampled trajectories of latent soil-carbon pools in the second field-plot with tillage
treatment Mn0. Central blue lines show the posterior median, dark blue ribbons span the 50%
posterior two-sided intervals, and light blue ribbons span the 90% posterior two-sided intervals. The
six soil-carbon pools are: decomposable plant matter (D), resistant plant matter (R), fast (F) and
slow (S) decomposers, humus (H), and inert (I) material.
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Figure S1.3: Sampled trajectories for the combined, latent soil-carbon pools for each observation
type (see equation (S1.2)) in the second field-plot with tillage treatment Mn0. Black circles show
observations, central purple lines show the posterior median of the combined latent pools, dark
purple ribbons span the 50% posterior two-sided intervals of the combined latent pools, and light
purple ribbons span the 90% posterior two-sided intervals of the combined latent pools. Dashed lines
show the 90% posterior two-sided intervals for the observations with the presence of measurement
error taken into account.
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Figure S1.4: Posterior distribution of fluxes of soil-carbon between the start and end of the Millen-
nium Tillage Trial, averaged over three field-plots for each treatment (see equation (S1.6)). Negative
values indicate carbon sequestration. Darker rectangles span the 50% posterior two-sided interval,
and horizontal lines show the posterior median. Lighter coloured rectangles span the 90% posterior
two-sided interval. Numbers above rectangles give the posterior probability that the atmospheric
carbon flux for each treatment was less than zero (i.e., soil-carbon sequestration). Three character
codes for treatments are outlined in Figure S1.1.

greater soil-carbon sequestration potential than those that employ no-tillage or minimum tillage in
the spring.

5 Discussion.

The Bayesian hierarchical statistical model that we have implemented through the CQUESST frame-
work provides a powerful tool to better understand a phenomenon of global importance, namely the
cycling of carbon stocks in agricultural soils. CQUESST provides soil scientists with a tool that can
be used for combining data, expert knowledge, and biogeochemical-process dynamics in a statisti-
cally rigorous way. In addition, we have shown how CQUESST can also harness all of these sources
of information when analyzing designed experiments such as the MTT. An important attribute of
using Bayesian hierarchical statistical modelling is that it allows these inferences to be carried out, in
the presence of uncertainty in observed data, in our understanding of the process dynamics, and in
the model’s parameters. These uncertainties are critical to acknowledge in order to draw statistically
rigorous scientific conclusions.

Analysis of the MTT using CQUESST involved a high-dimensional state-space model whose
state vector was of length 252 (42 fields, each with 6 pools) and where dynamics evolved over 108
time steps (months). Our implementation of CQUESST harnesses the computational power of Stan,
and it is noteworthy that the inclusion of the MapReduce functionality in Stan made much of our
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Figure S1.5: Posterior distributions for the multiplicative decay-rate modifier (ατ ) for each treatment
in the Millennium Tillage Trial. Darker rectangles span the 50% posterior two-sided interval, and
horizontal lines show the posterior median. Lighter coloured rectangles span the 90% posterior two-
sided interval.

statistical analysis parallelizable and hence very efficient. Stan is a key enabler of analyses of the
type presented here, where data have been collected at many independent sites but share some
underlying parameters governing process dynamics, which would allow detailed analyses of carbon
stocks to be made at broad geographical scales (e.g., national soil carbon accounting).

The inferences we made about soil-carbon cycling from the MTT dataset using CQUESST pro-
vide valuable insights about soil-organic-carbon stocks and how agricultural practices can affect
them. Of particular note were the large carbon fluxes to the atmosphere using PF compared to
other treatments, which is consistent with the results previously reported by Curtin et al. [2022].
This lends strength to the observations made by other researchers [e.g., Halvorson et al., 2002] that
the use of crop-fallow rotations may lead to net carbon losses from the soil. Furthermore, we observed
that PP (i.e., permanent-pasture, no tillage) had a continual integration of plant organic carbon into
the soil with large negative carbon fluxes (i.e., maximum sequestration of carbon). Apart from PP
and PF, we observed the highest posterior probabilities of soil carbon sequestration for treatments
In0, In1 and Im0 that employed one round of intensive tillage per year. Related to this, the work
of Cai et al. [2022] suggests that over time scales less than about 14 years, no tillage agricultural
treatments may show lower carbon stocks compared to those that employ conventional tillage, but
that differences diminish beyond 14 years. Therefore, it is possible that had the MTT run for longer,
it would have shown less difference in the carbon flux between these treatments.

Our use of CQUESST to perform the analysis of a designed experiment (the MTT), allowed
us to model and examine cropping-specific decay rates in the different carbon pools. Our results
indicate that the decay rates of carbon pools vary as a function of management practices (i.e., tillage
intensity and winter-cover-crop use), rather than being static parameters consistent over all farms.
This is an important finding that we hope will guide how soil carbon is modeled in the future.
Despite treatment effects suggesting that decay rates were higher in treatments without cover crops,
we noted higher probabilities of negative carbon flux when comparing each treatment without cover
crop to that with cover crop. This may suggests the presence of additional process dynamics that
are not yet present in the deterministic mechanisms of RothC, but that are captured through the
stochastic analogue of RothC employed in CQUESST. Further experimental work is required to
better understand the specifics of such mechanisms.

Understanding the complex biogeochemical cycles that take place in agricultural soils is critical
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to finding strategies to sequester carbon on the 37% of Earth’s surface that is used for agricultural
production. This will be advantageous in mitigating climate change as well as improving the produc-
tivity of agricultural soils. CQUESST provides a framework with Bayesian hierarchical modeling at
its core to model complex soil-carbon dynamics in agricultural systems. We envisage that this will
enable scientists to extract important information, with uncertainties quantified, from agricultural
experiments to help nations take steps towards net-zero carbon emissions.
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Supplemental Material 1: Dynamical Process Model

Parameters

The models defined in (3) and (7) of the main paper share two main classes of parameters: (i)
decay rates, denoted by KX (X ∈ {D,R, F, S,H}); and (ii) proportions of carbon routed between
pools. These are the deterministic parameters used in the deterministic model RothC. For the former
class, we generalize the decay rates (see (9)) such that they are modeled as the product of κX and
ατ , and the parameter model used for these is provided in Table S3.1. For the parameters in the
latter class, pP→D describes the proportion of plant matter entering the D pool with the remainder
entering the R pool; pU→F , pU→S , and pU→H describe the proportions of decayed carbon Ui,t that
move into the F , S, and H pools respectively; and pV→F , pV→S , and pV→H describe the proportions
of decayed carbon Vi,t that moves into the F , S, and H pools respectively. The parameter model
for this latter class is also given in Table S3.1.

Several other parameters in (3) and (7) of the main paper are in fact derived parameters from
a smaller set of primary parameters. In particular, pX→F , pH→S , pclay, πM→Y , and rDPM/RPM

are primary parameters governing respectively, the proportion of solid soil-carbon that enters pool
F from pool X ∈ {D,R, F, S}, the proportion of solid soil-carbon that enters pool S from pool H,
the proportion of clay in the soil, the proportion of manure entering pool Y ∈ {D,R, F, S,H}, and
the ratio of DPM to RPM in plant matter that enters the soil. From these primary parameters, one
obtains [Jenkinson and Rayner, 1977]:

pP→D =
rDPM/RPM

1 + rDPM/RPM

rCO2/Solid = 1.67(1.85 + 1.6e−7.86pclay ) (S1.1)

pU→F =
pX→F

1 + rCO2/Solid

pU→S = 0.0

pU→H =
(1− pX→F )

1 + rCO2/Solid

pV→F = 0.0

pV→S =
pH→S

1 + rCO2/Solid

pV→H =
1− pH→S

1 + rCO2/Solid

pM→Y =
πM→Y∑

Q∈{D,R,F,S,H} πM→Q
.

In equation (S1.1) above, rCO2/Solid is the mass of CO2 lost to the atmosphere for every unit
of carbon mass that decomposes from a pool. Decomposed carbon that is not lost from the soil
as carbon dioxide is cycled to other carbon pools. We note that rCO2/Solid contains a number of
empirically derived constants that model this parameter as a function of a parameter pclay, where
the latter parameter is the proportion of the soil mass that can be considered clay material. For

1



the MTT site, pclay was estimated to be 0.16. All of the parameters denoted as p·→· are assumed
to be identical across all field-plots and constant in time for the duration of the MTT. To simplify
dynamics, the parameters pU→S and pV→F are both put equal to zero in RothC v26.3, as do we in
(7); these two biological pools are typically only very small relative to the total soil carbon.

References

D. S. Jenkinson and J. Rayner. The turnover of soil organic matter in some of the Rothamsted
classical experiments. Soil Science, 123(5):298–305, 1977.

2



Supplemental Material 2: Geostatistical

Diagnostics

1 Geostatistical Exploratory Data Analysis

Here we explore whether the data from the Millennium Tillage Trial (MTT),
soil-carbon measurements of POC, ROC and TOC exhibit spatial dependence.
Consider the spatial statistical model,

log(Zm(s)) = µm(s) + δm(s),

where s is the spatial coordinate for a sample of measurement m ∈ {POC,
ROC,TOC}, µm(·) is a deterministic process representing the large-scale varia-
tion as a function of space, and δm(·) is a stochastic process representing small-
scale variation. Since the MTT site was arranged as a matrix of plots, each
sample location was defined as s = (x, y)⊤, where (0, 0)⊤ is the center of the
plot in the (1, 1) entry of the matrix, x is the distance to the plot center in the
row-wise direction, and y is the distance to the plot centre in the column-wise
direction. The deterministic, large-scale variation was modeled via spatial trend
as follows:

µm(s) = βm,0 + βm,rx+ βm,cy + βm,rcxy,

where βm,0, βm,r, βm,c and βm,rc are regression parameters specific to measure-
ment m. To establish whether there was evidence of spatial covariance in the
fine-scale stochastic process δm(·), we first used ordinary least squares to esti-
mate regression parameters, from which we defined an estimate of the (possibly
spatially dependent) small-scale variation:

δ̂m(s) = log(Zm(s))− β̂m,0 + β̂m,rx+ β̂m,cy + β̂m,rcxy,

where Zm(s) is the measurement of type m, and β̂m,0, β̂m,r, β̂m,c and β̂m,rc

are the estimated regression parameters. For each unique pair of locations si,
sj that index the spatial dataset, Dm = {δ̂m(s1), . . . , δ̂m(sn)}, we computed

(δ̂m(si) − δ̂m(sj)) and the Euclidean distance di,j = ||si − sj ||2. Exploratory

plots of (δ̂m(si) − δ̂m(sj))
2 against di,j and |δ̂m(si) − δ̂m(sj)|1/2 (see Cressie

[1993], Section 2.4) were used to seek evidence of spatially structured dependence
in the small-scale stochastic process δm(·). Those plots are given in Figure
S2.1, from which we saw no evidence of spatial structure. Hence, we proceeded

1



Table S2.1: Parameter model: prior probability distributions on terms in the
Bayesian linear regression model for log(Zm(s)).

Parameter Description Probability Distribution Type

βm,0 Regression intercept parameter βm,0 ∼ N(0, 1E6) Uniformative
βm,r Regression slope parameter across

field-plot rows
βm,r ∼ N(0, 1E6) Uniformative

βm,c Regression slope parameter across
field-plot columns

βm,c ∼ N(0, 1E6) Uniformative

βm,rc Regression interaction parameter
across field-plot rows and columns

βm,rc ∼ N(0, 1E6) Uniformative

σ2
m Residual error variance σ2

m ∼ Inv.-Gam.(0.001, 0.001) Uniformative

with the assumption that that cov(δm(si)δm(sj)) = 0, (si ̸= sj), for all three
measurement types.

2 Estimation of Measurement Errors in Observed
Soil-Carbon Measurable Fractions

With no evidence of spatial structure in the small scale stochastic process, we
fitted the model,

log(Zm(s)) = µm(s) + δm(s) (δm(s) ∼ N(0, σ2
m)),

as a Bayesian linear model with independent normal and inverse-gamma conju-
gate prior distributions, respectively on the parameter vector θ = (βm,0, βm,r, βm,c, βm,rc, σ

2
m)⊤.

These prior distributions are provided in Table S2.1. The estimate of σ2
m ob-

tained for each measurement type, served as an informative prior distribution
when using the CQUESST framework to analyze the MTT data.
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Figure S2.1: Diagnostic plots to explore how the small-scale variation δ̂m(s)
varies as a function of distance for measurements of TOC, POC, and ROC.
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Supplemental Material 3: Parameter Model

Here we outline the parameter model used in applying CQUESST to the Millennium Tillage
Trial. Prior distributions over the parameters of the model are provided in Tables S3.1, S3.2, S3.3
and S3.4. Specifically, Table S3.1 gives the priors for the soil-carbon-cycling parameters in (7);
Table S3.2 gives the priors for process-error variance parameters; Table S3.3 gives the priors on
error variances for measured carbon fractions in (8); and Table S3.4 gives prior distributions for
initial conditions of the soil-carbon pools defined in (7).

In these tables, TN b
a denotes a truncated normal distribution that has been truncated on the

left at a and on the right at b. We use truncated normal priors because all of the parameters in our
model are bounded either from below or are within the interval [0, 1], and because they provide a
convenient and easily interpretable way to incorporate prior information. Other choices for priors on
scale parameters in hierarchical models have been advocated [e.g., Gelman, 2006, Polson and Scott,
2012].

Finally, σ2
D, σ2

R, σ2
F , σ2

S , and σ2
H are not parameters that exist in the deterministic RothC

model, and they are not biophysical parameters that have been estimated in past studies. Priors on
these parameters were specified using inverse-Gamma distributions with shape and scale parameters
chosen so that Pr(eηX < 0.6) ≈ 0.01 and Pr(eηX > 1.4) ≈ 0.01, where for X ∈ {D,R, F, S,H}, ηX
represents the process error distributed as ηX ∼ N(−σ2

X

2 , σ2
X). This results in the inverse-Gamma’s

shape parameter being set at 403.4 and its scale parameter at 0.318 (see Table S3.2). Since ηX is
additive on the log-scale, eηX represents the corresponding multiplicative process error on the natural
scale where the soil carbon is cycling. The values 0.6 and 1.4 were chosen so that the majority of the
prior probability mass for σ2

X generated dynamics within ±40% of RothC’s deterministic evolution
of the soil carbon.

References

A. Gelman. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis,
1(3):515–533, 2006.

N. G. Polson and J. G. Scott. On the half-Cauchy prior for a global scale parameter. Bayesian Anal-
ysis, 7(4):887 – 902, 2012. doi: 10.1214/12-BA730. URL https://doi.org/10.1214/12-BA730.

1



Table S3.1: Parameter model: prior probability distributions on soil-carbon-cycling parameters in
(7) and primary parameters.

Parameter Description Probability Distribution Type

κD Decomposition rate constant (y−1) for
D (decomposable plant material).

κD ∼ TN20.0
5.0 (10.0, (1.0)2) Informative

κR Decomposition rate constant (y−1) for
R (resistant plant material).

κR ∼ TN5.0
0.05(0.07, (0.007)

2) Informative

κF Decomposition rate constant (y−1) for
F (fast microbial biomass).

κF ∼ TN1.0
0.3 (0.66, 0.066

2) Informative

κS Decomposition rate constant (y−1) for
S (slow microbial biomass).

κS ∼ TN1.0
0.3 (0.66, 0.066

2) Informative

κH Decomposition rate constant (y−1) for
H (humus).

κH ∼ TN0.05
0.005(0.02, (0.002)

2) Informative

ατ (τ ∈ T ) Multiplicative tillage-cropping treat-
ment effect applied to decomposition
rates.

log(ατ ) ∼ TN5
−5(0.0, 1.0) Weakly Infor-

mative

πM→D Proportion of manure to D pool πM→D ∼ TN1
0 (0.49, (0.01)

2) Informative
πM→R Proportion of manure to R pool πM→R ∼ TN1

0 (0.49, (0.01)
2) Informative

πM→F Proportion of manure to F pool πM→F ∼ TN1
0 (0.0, (0.01)

2) Informative
πM→S Proportion of manure to S pool πM→S ∼ TN1

0 (0.0, (0.01)
2) Informative

πM→H Proportion of manure to H pool πM→H ∼ TN1
0 (0.02, (0.01)

2) Informative
pX→F Proportion of soil-carbon from X ∈

{D,R, F, S} to F .
TN1

0 (0.46, (0.01)
2) Informative

pH→S Proportion of soil-carbon from H to S. pH→S ∼ TN1
0 (0.46, (0.01)

2) Informative
pclay Proportion of the soil that is clay pclay ∼ TN1

0 (0.16, (0.02)
2) Informative

rDPM/RPM Ratio of decomposable to resistant car-
bon in plant material.

rDPM/RPM ∼ TN∞
0 (1.44, (0.5)2) Informative

Table S3.2: Parameter model: prior probability distributions on process-error variance parameters
in (7).

Parameter Description Probability Distribution Type

σ2
D Variance of additive process noise of D

pool.
Inv.-Gam.(403.4, 0.318) Informative

σ2
R Variance of additive process noise of R

pool.
Inv.-Gam.(403.4, 0.318) Informative

σ2
F Variance of additive process noise of F

pool.
Inv.-Gam.(403.4, 0.318) Informative

σ2
S Variance of additive process noise of S

pool.
Inv.-Gam.(403.4, 0.318) Informative

σ2
H Variance of additive process noise of H

pool.
Inv.-Gam.(403.4, 0.318) Informative

Table S3.3: Parameter model: prior probability distributions on error variances for measured carbon
fractions.

Parameter Description Probability Distribution Type

σ2
POC Measurement error variance for

log(POC).
Inv.-Gam.( 21

2
, 0.039) Informative

σ2
ROC Measurement error variance for

log(ROC).
Inv.-Gam.( 21

2
, 0.290) Informative

σ2
TOC Measurement error variance for

log(TOC).
Inv.-Gam.( 21

2
, 0.053) Informative

2



Table S3.4: Parameter model: prior probability distributions on initial conditions of the soil-carbon
pools defined in (7).

Initial Con-
dition

Description Probability Distribution Type

Di,0 The initial state of D in field-plot i
(Mg/ha).

TN∞
0 (0.0, (0.1)2) Informative

Ri,0 The initial state of R in field-plot i
(Mg/ha).

TN∞
0 (0.0, (100.0)2) Uninformative

Fi,0 The initial state of F in field-plot i
(Mg/ha).

TN∞
0 (0.0, (0.01)2) Informative

Si,0 The initial state of S in field-plot i
(Mg/ha).

TN∞
0 (0.0, (0.01)2) Informative

Hi,0 The initial state of H in field-plot i
(Mg/ha).

TN∞
0 (0.0, (100.0)2) Uninformative

Ii,0 The initial state of D in field-plot i
(Mg/ha).

TN∞
0 (0.0, (10.0)2) Uninformative
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Supplemental Material 4: MCMC Diagnostics

When performing Bayesian inference with an MCMC algorithm, it is impor-
tant to verify that the Markov chain provides a representative set of samples
from the posterior distribution p(Y,θ|Z). A common metric used to assess
convergence is the R̂ statistic [Gelman et al., 2013]. This metric assesses the
convergence of each element γk in the vector of all sampled random variables,
γ = (θ⊤,Y⊤)⊤, using m independent Markov chains, each containing n sam-
ples. For each γk, the statistic is calculated from the ratio of two variance
estimators, namely:

R̂γk
=

√
V̂ar

+
(γk|Z)
W

,

where γi,j,k denotes the ith sample from one of j = 1, . . . ,m Markov chains,
each consisting of n samples.

V̂ar
+
(γk|Z) =

n− 1

n
W +

1

n
B,

B =
n

m− 1

m∑
j=1

(γ̄·jk − γ̄··k)
2, γ̄·jk =

1

n

n∑
i=1

γijk, γ̄··k =
1

nm

n∑
i=1

m∑
j=1

γijk,

W =
1

m

m∑
j=1

s2jk, s2jk =
1

n− 1

n∑
i=1

(γ̄ijk − γ̄·jk)
2.

When R̂ < 1.01 for every γk ∈ γ, the aggregated set of samples from the m
chains is considered to provide a set of samples from which reliable posterior
inferences can be made. All inferences presented herein were performed using
m = 6 independent Markov chains, each consisting of 100,000 samples, thinned
by taking every 100th sample, so that each chain yielded n = 1, 000 iterations
(following 5,000 “warmup” iterations). For all γk, we computed R̂ and assessed
that posteriors were reliable.
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Supplemental Material 5: Posterior Inference

The CQUESST Bayesian hierarchical model was run in Stan, from which we obtained posterior
samples from six independent chains of the MCMC algorithm. The samples from the three chains
were aggregated into a larger set of samples and kernel density estimates were plotted alongside
the prior distributions used in the parameter model. These plots are provided in Figures S5.1,
S5.2, and S5.3. In some cases, the prior has deviated away from the prior (known as Bayesian
learning), indicating that the data has updated our beliefs about the distribution of the parameters.
In some other cases, the prior and posterior are very similar, indicating that the data has provided
little additional information about the probability distribution of the parameter beyond what was
contained in the prior.
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Figure S5.1: Prior (gray) and posterior (purple) distributions for decay-rate parameters of
CQUESST. Plots give priority to the posterior distribution; when a prior is not visible, it indi-
cates that it was very far from the posterior.
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Figure S5.2: Prior (gray) and posterior (purple) distributions for variance parameters of CQUESST.
Plots give priority to the posterior distribution; when a prior is not visible, it indicates that it was
very far from the posterior.
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Figure S5.3: Prior (gray) and posterior (purple) distributions for a subset of the parameters of
CQUESST. Plots give priority to the posterior distribution; when a prior is not visible, it indicates
that it was very far from the posterior.
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