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Abstract 

One of the first serious attempts to quantify how two categorical variables of a contingency 
table are associated was undertaken in the meteorological literature during the mid-1880’s; 15-
20 years prior to the significant contributions of Sir Francis Galton and Karl Pearson. Such 
work was motivated by the four-tornado data sets that Seargent John Park Finley collected and 
published in 1884; these data sets were analysed in the same fashion we analyse 2 × 2 
contingency tables today. These data sets proved to be controversial, but it was the index he 
developed which drew most of the attention, an index designed to help verify the accuracy of 
the tornado predictions he made. Immediately following Finley’s work, emendations of his 
index were proposed all of which involve ideas and concepts that pre-date the development of 
the analysis of contingency tables whose origins are universally credited to Galton, Pearson 
and others. Therefore, this paper provides an overview of Finley’s data and the indices 
developed to give historical context to their place in the origin story of contingency table 
analysis.  
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1 Introduction 

1.1 Practitioners of the Contingency Table: Pre-1900 

The contingency table remains one of the most ubiquitous ways of displaying data, especially 
data of a categorical nature; these categories may exist as “natural” distinctions of traits or arise 
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by converting numerical data to interval data. Stigler (2002) provides an excellent historical 
account of the contingency table starting with Sir Francis Galton (1822 – 1911) but does point 
out that the 2 × 2 contingency table has links to logic and probability dating back to the time 
of Aristotle. He then notes the early contributions of Karl Pearson (1857 – 1936), George Udny 
Yule (1871 – 1951) and Maurice Bartlett (1910 – 2002). Agresti (2013, Chapter 17) also 
provides a historical tour of categorical data analysis with its origins being Pearson, Yule and 
then Sir Ronald A. Fisher (1890 – 1962). While such contributions date back to the early 20th 
century, the contingency table has been used extensively for (at least) the past 400 years in a 
variety of economic, sociological and health contexts. Some of the more well-known 
consumers of the contingency table during this time include the following: 

• The father of demography, John Graunt (1620 – 1674) published a book in 1662 titled 
Natural and Political Observations, Mentioned in a following Index, and made upon the 
Bills of Mortality. On pages 71 to 76 (inclusive) of this book, Graunt presents a series of 
contingency tables formed from cross-classifying, often by gender, the number of 
christened, married or buried (not deaths) recorded across the parishes of London with the 
year in which these occurred (ranging from 1569 to 1661, depending on the data) 

• In 1797, Sir Frederick Eden (1766 – 1809) wrote a three-volume set of books spanning more 
than 1700 pages titled The State of the Poor that presented a wide range of details and counts 
across the England. Volume 2 gave parish-specific information on a range of social and 
financial issues that were tabulated in the form of a contingency table. For example, Eden 
(1797, Vol 2, p. 25) gives a table that cross-classifies the number of baptisms, burials and 
marriages (as well as records of household finances) by year during the period 1680 – 1795. 
Eden (1802, p. 45) also tabulated the local and foreign tonnage arriving and leaving the ports 
of England and Wales between 1770 and 1782. 

• Belgium statistician and sociologist, Adolphe Quetelet (1796 – 1874) used contingency 
tables for better understanding the “social physics” of Holland (a term that would be 
replaced with “sociology”). For example, Quetelet (1835, p. 8) presented in French a 
contingency table that summarised the number of deaths in France between 1826 and 1831 
(inclusive) due to a range of causes (including murder, guns, pistols, swords, knives, 
strangulations, drownings, kicks and blows, fire and unknown); this data would also appear 
on page 6 of his 1842 book (in English). An interesting discussion of Quetelet’s place in 
statistics can be found in Hankins (1908, Chapter 2) with his remaining chapters discussing 
other interesting aspects of Quetelet. 

• Someone for whom Quetelet was very influential was Florence Nightingale (1820 – 1910), 
the “Lady with the Lamp” of England. Jahoda (2015) discusses that Nightingale certainly 
knew of Quetelet and his work. The pair met each other in person only once, at the 1860 
International Statistical Congress (Diamond & Stone, 1981, p. 66) that was held at King’s 
College, London on the 16th of July. Nightingale’s education was “above the normal for a 
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young woman in the nineteenth century England” having been surrounded by “many of the 
young lions of British science” (Diamond & Stone, 1981, p. 67) with Nightingale drawn 
towards mathematics. As such, Nightingale’s analytical and numeracy skills aided her 
greatly and helped to forge her path and she used contingency tables extensively. For 
example, Nightingale (1858a, p. 15) cross-classified the years of experience of soldiers who 
took part in the Crimean War by the units they belonged too, including the number of 
soldiers that were made invalid in each unit. She also cross-classified the age of the soldiers 
in the British Army with how many in each division had died at home (Nightingale, 1858b, 
p. 9). 

This, of course, is only a very short list of examples of how contingency tables have been used 
during the 17th, 18th and 19th centuries. More detail on these and other examples of early 
contingency tables can be found in, for example, Stigler (2002) and Beh & Lombardo (2014, 
pp. 54 – 61). 

Briefly, the origin story of contingency table analysis often begins with Galton (1892). He 
analysed the fingerprint data from 105 pairs of twin brothers and is important not just because 
of the impact it had on contingency table analysis (which we talk more on in Section 4.4) but 
that it also was aided by his earlier description of correlation (Galton, 1888). Although it is the 
development of Pearson’s (1904) chi-squared statistic that is the methodological beginning of 
contingency table analysis. In his 1904 paper, Pearson discusses the idea of two random 
variables from an underlying normal distribution being categorised and cross-classified to form 
what we now know to be a two-way contingency table. Pearson demonstrated with immense 
technical skill and rigour the derivation of what we know to be his chi-squared statistic and its 
links with Galton’s (1888) description of correlation; in the broadest terms, Pearson (1900) 
derived the chi-squared statistic for univariate data while Pearson (1904) derived the statistic 
for bivariate data in the form of a two-way contingency table. Further discussions on the pre-
history of Pearson’s chi-squared statistic, including a detailed account of some of its 
predecessors, can be found in Lancaster (1966). One that should not be neglected from any 
discussion on the early period of contingency table analysis is George Udny Yule. He was very 
much interested in examining the technical and practical implications of correlation, 
association, and its relationship to contingency tables; see, for example Yule (1900, 1903) with 
much of his work during the mid-1890’s furthering the discussion of correlation that Galton 
and Pearson had made. A very interesting account of the life and career of George Udny Yule 
and his links to Pearson and his work on correlation and association was given in by Kendall 
(1952).  

It is the work of Galton, Pearson and Yule that would spark a whole new world of statistical 
theory and application including for the analysis of the contingency table. Although, one may 
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find that the seeds of some of their ideas were planted half a world away and at least a decade 
earlier and it is these seeds that we shall focus our discussion on. 

1.2 Predecessors of Galton and Pearson: Finley, Gilbert, Peirce and Doolittle 

While the legacy left by Galton and his successors to contingency table analysis (and, more 
generally, to categorical data analysis) are deservingly still being felt amongst the statistical 
and her allied communities, there is an argument to be made for far more attention to be given 
to those whose efforts are still overlooked in favour of these early pioneers. We speak 
specifically here of the efforts of a group of four American meteorologists/scientists in the mid-
1880’s who developed a range of indices to help verify the accuracy of tornado predictions in 
central USA. The first of these indices was published by Seargent John Park Finley (1854 – 
1943) in 1884 who, while working for the US Army Signal Service, gave a set of four data sets 
that is a cross-classification of the number of successful and unsuccessful predictions of 
tornadoes he made with the number tornadoes that occurred and did not occur. Accompanying 
his data, Finley (1884b) also proposed an index for verifying the accuracy of his predictions. 
We say at the outset that this index is fundamentally flawed (something we discuss at length 
below) however its importance stems from the attention that quickly followed; attention that 
focused on the development of improved indices and the initiation of statistical concepts that 
lie at the heart of contingency table analysis today. The contributors of these developments are 
very rarely, if ever, given full recognition outside of the meteorology communities. Even within 
these communities it is their meteorological contributions that is the focus of much of their 
attention and not their statistical contributions. Therefore, this paper will discuss Finley’s 
tornado data, given by Figure 1, the index he developed for studying this data and the flurry of 
activity that quickly followed in 1884 and 1885. We shall be reviewing the indices proposed 
and discussed by Finley (1884b) and three of his successors – Gilbert (1884), Peirce (1884) 
and Doolittle (1885) – and the place they hold in origin story of contingency table analysis 
prior to the contributions of Galton, Pearson, Yule and others. This review will span the 
following eight sections. We start with a brief overview of the development of tornado 
observations (Section 2). Section 3 discusses the data Finley (1884b) collected and its 
presentation as a 2 × 2 contingency table formed from the cross-classification of the variables 
Predicted and Occurrence, these being the number of tornadoes Finley predicted (or not) and 
the number of tornadoes that occurred (or not). Section 3 will also describe the index Finley 
proposed for assessing the accuracy of his predictions. We shall start with the index of Gilbert 
(1884) in Section 4 and his proposal of 𝑒𝑒, a quantity that is equivalent to the expected frequency 
of the (1,1)th cell under complete independence (between Predictions and Occurrence). 
Following Gilbert’s (1884) index is the index proposed by Peirce (1884) and the index of 
Doolittle (1885); these will be described in Section 5 and Section 6, respectively. Additional 
discussions on the relevance of this early work to the foundations of contingency table analysis 
established by Galton, Pearson and others will be made throughout Sections 3 to 6 (inclusive) 
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as well as how these indices and their contributions fit within the analysis of contingency tables 
today. Section 7 will provide an in-depth assessment of the features of each index by 
determining their bounds, linkages, and behaviour for changes in the cell frequencies. Section 
8 provides further practical matters outlined by Curtis (1887) concerning the analysis of 
Finley’s tornado data and the development of the various indices. Some final remarks will be 
made in Section 9.  

1.3 50 years of Contingency Table Analysis 

While the focus of this paper is to look back at its pre-history in the mid-1880’s it is also 
interesting to view the progress that has been made to contingency table analysis. So, this 
section provides a brief overview of the last 50 years of its development. 

While the use of contingency tables in the description of social, economic and health conditions 
over the past few centuries is quite extensive, the development of tools and techniques for 
analysing them is quite poor prior to the 20th century. Before the 1900’s the early attempts at 
quantification for contingency tables were largely confined to discussing raw counts, 
proportions or ratios. It was the work of Galton, and especially Pearson, Yule and other 
successors that would generate new ways of analysing contingency tables. The contributions 
made in the first half of the 20th century now means that the number of methodologies with a 
focus on contingency table analysis and, more generally, categorical data analysis, is, for lack 
of a better word, extensive. For example, at the risk of omitting entries, the following is a non-
exhaustive list of 42 books published over the past 50 years that delve into the analysis of 
categorical data and/or contingency tables; Plackett (1974), Gokhale & Kullback (1978), 
Haberman (1978, 1979), Wrigley (1985), Wickens (1989), Andersen (1994, 1997), Blasius & 
Greenacre (1998), Everitt (1992), van de Geer (1993a, 1993b), Clogg & Shihadeh (1994), Le 
(1998, 2009), Lloyd (1999), Friendly (2000), Leonard (2000), Rayner & Best (2001), Simonoff 
(2003), Stokes, Davis & Koch (2003), van der Ark, Croon & Sijtsma (2005), Congdon (2005), 
Agresti (2007, 2010, 2013), Fienberg (2007), Powers & Xie (2008), Tutz (2011), Tang, He & 
Tu (2012), Kateri (2014), Sutradhar (2014), Bilder & Loughlin (2015), Friendly & Meyer 
(2018), Fagerland, Lydersen & Laake (2017), Upton (2017), Rudas (1998, 2018) and Azen & 
Walker (2021). One can also include in this list the collection of published works by L. A. 
Goodman; see Goodman & Kruskal (1979) and Goodman (1978, 1984)1. For some excellent 
discussions on the history of the contingency table and its pioneers the interested reader is 
directed to Killion and Zahn (1976), Stigler (1986, 2002), Richardson (1994) and Agresti 
(2013, Chapter 17).  

 
1 To refrain from including too big a list of books aligned with the analysis of contingency tables, this list excludes 
books whose topics are primarily concerned with specific techniques that are often applied to analyse them 
including, but limited to, log-linear and association models, measures of association, quantification theory, 
correspondence analysis and ecological inference. 
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The 42 books just mentioned cover a very broad range of topics including the development of 
correlation, the chi-squared statistic, and other measures of association. Their development was 
dominated by those from the UK in the first half of the 20th century with notable contributions 
by Sir Francis Galton (1822 – 1911), Karl Pearson (1857 – 1936), George Udny Yule (1871 – 
1951), Sir Ronald. A. Fisher (1890 – 1962), John B. S. Haldane (1892 – 1964), Maurice S. 
Bartlett (1910 – 2002) and Robin L. Plackett (1920 – 2009) while the second half of the century 
saw those from the USA making key developments including Leo A. Goodman (1928 – 2020), 
Stephen E. Fienberg (1942 – 2016), Shelby J. Haberman and Alan Agresti. More recently, the 
visualisation of the association that exists between categorical variables has gained widespread 
attention. This is especially so in the correspondence analysis literature where historical and 
bibliographical contributions can be found in de Leeuw (1983), Friendly (2002, 2006), Beh 
(2004), Armatte (2008), Beh & Lombardo (2012, 2014, 2019) and Cuadras & Greenacre 
(2022). Friendly (2006) and Meyer, Zeileis & Hornik (2008) also provide further reviews of 
the history of data visualisation and its use for analysing contingency tables. 

2 A Brief Overview of Tornado Predictions 

Tornado research has been an ongoing area of interest in the meteorological disciplines for over 
a century and the observation of tornadoes has been made for much longer. Bradford (1999) 
points out that tornadoes have been described in the Bible, Aristotle’s Meterologica and Pliny 
the Elder’s Naturalis Historia. Bradford (1999) also says that it is likely that the first recorded 
tornado in the newly established American colonies was reported by the John Winthrop, former 
Governor of Massachusetts (1630 – 1634). In a diary entry on July 5, 1643, Winthrop includes 
a description of a violent wind gust that blew down trees and “lifted up their meeting house at 
Newbury, people being in it”. While tornadoes do blow down trees and lift buildings, it has not 
been confirmed that this wind gust was a result of a tornado.  

 

FIGURE 1. Finley’s (1884b, p. 86) data cross-classifying the number of tornadoes observed with the 
number of tornadoes predicted in the 18 US districts. March – May, 1884. 
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More formal and accurate records of storm activity were being taken after the public demanded 
the US government investigate their occurrence. Galway (1992) describes that with the 
invention of the telegraph in 1833 and its availability to the public in April 1845, this allowed 
for the development of a quick and reliable communication system for weather services in the 
US and across the world. The Smithsonian Institute formed a system of observations in 1847 
which saw volunteers’ man 150 stations that took part in the first year of weather observation. 
This grew to about 500 stations by 1860. However, the US Civil War reduced those numbers 
but in 1873 the Director of the Smithsonian petitioned the chief signal officer of the US Army 
and head of the Signal Service to resume funding the stations. So, on New Years Day of 1874 
the Signal Service was responsible for the activities of the stations although “little effort was 
made to compile a data bank for research purposes” (Galway, 1992, p. 565). Although, by 1882, 
tornado investigations began in the US with about 800 observers put in charge of reporting 
when tornadoes and other meteorological events occurred. It was in that year that Seargent 
John Park Finley (1854 – 1943) was put in charge of a project to study tornadoes (Galway, 
1992, p. 565). Not long after his appointment, Finley (1884a, p. 767) stated in the June 20 issue 
of Science that: 

“In the study of tornadoes it has become necessary to undertake something more 
than a simple record of their occurrence, or an occasional investigation of those that 
are attended with unusual destruction to life and property. A practical knowledge of 
the nature of these destructive storms is a matter of the utmost importance to the 
inhabitants of certain sections of the country; and not least among the objects at by 
the chief signal-officer, in directing the continuance of tornado investigation, is to 
allay any needless anxiety or fear on the part of those people living in the regions 
most frequented by these storms.” 

He then described a review of seven points that outline his observations on the 
characteristics of tornadoes. Although it would be in the following month that Finley 
would gain acclaim and criticism. It was in July of 1884 that Finley published an article 
in the American Meteorological Journal that included a summary of his prediction of 
tornadoes and their observation across 18 districts of the US (Finley, 1884b). These 
observations and predictions are given here as Figure 1. So it is with this article that our 
discussion starts as we describe the feedback that it received during 1884 and 1885. In 
particular, we shall be discussing the responses made by Gilbert (1884), Peirce (1884) 
and Doolittle (1885) who each commented on Finley’s data and his index by putting 
forward alternative indices; such a discussion has been aptly referred to as the “Finley 
affair” by Murphy (1996). These discussions involve data that is best summarised in the 
form of a 2 × 2 contingency table and the development of their indices can be regarded 
as the pre-history of some of the key moments in the development of categorical data 
analysis that were made by pioneers including Sir Francis Galton (1822 – 1911), Karl 
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Pearson (1857 – 1936) and G. Udny Yule (1871 – 1951). The responses to Finley’s 
(1884b) paper made by Grobe Karl Gilbert (1843 – 1918), Charles Sanders Peirce (1839 
– 1914) and Myrick Hascell Doolittle (1830 – 1913) adopt a standard set of notation (for 
1884 and 1885) although we shall be using the notation in Table 1 to describe the key 
features that came from these discussions.  

We do point out that Armistead (2016) also discussed the contributions of Finley, Gilbert, 
Peirce, and Doolittle but did so by describing the pre-history of a probability measure that 
“mirrored” Bayes’ theorem. However, this paper gives context of the contributions of 
Finley, Gilbert, Peirce and Doolittle in relation to the contributions of the early pioneers 
of contingency table analysis. We also recognise that Goodman & Kruskal (1959, Section 
3.1) gave an interesting account of the contributions made by Finley, Gilbert and others 
and who viewed their contributions through the lens of one who is analysing a 2 × 2 
contingency table. We shall provide further historical notes and comments and discuss 
properties of each of the indices that were not previously discussed. 

Table 1. Notation of a 2 × 2 contingency table 

 Occurrence  

Prediction Tornado Not Tornado Total 
Tornado n11 n12 n1• 

Not Tornado n21 n22 n2• 

Total n•1 n•2 n 

 

3 Finley’s Tornado Predictions 

3.1 Finley’s Data 

In Section 2 we discussed Finley’s concern that studies of tornadoes should involve more than 
just a “simple record of their occurrence”. There is plenty of meteorology literature that details 
Finley’s life and contributions to tornado research and their prediction; see, for example 
Galway (1985, 1992), Murphy (1996), Bradford (1999), Grice et al. (1999) and Hogan et al. 
(2009). We shall leave it to the reader to pursue these accounts at their leisure and restrict our 
introduction of Finley to the nature of his data and his index of verification, an index he 
proposed for assessing the accuracy of his tornado predictions.  

Finley’s observations and predictions of his data are given in Figure 1. His first data set comes 
from the predictions he made of a tornado occurring (or not) and the observations recorded on 
March 10, 1884, across 18 districts of the US. Finley’s data are based on the observations and 
predictions he made that lie east of 105o longitude with “tornado alley” being on the western 
limit of this region. He started his predictions of whether a tornado would occur or not during 
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the eight-hour period that day starting at 7am (Washington time). A second set of predictions 
was then made at 3pm for the eight-hour period until 11pm. Further predictions of whether a 
tornado would be observed were made in April and twice in May. The data from Finley’s 
observations and predictions in April 1884 appear as a 2 × 2 contingency table in Table 2 where 
934 predictions were made. This data was also examined by Goodman & Kruskal (1959, p. 
128).  

Table 2. Finley’s tornado data of April 1884. 

 Occurrence  

Prediction Tornado Not Tornado Total 
Tornado 11 14 25 

Not Tornado 3 906 909 

Total 14 920 934 

 

3.2 Finley’s Index 

Finley’s April results suggest that he correctly predicted 11 tornadoes occurring and 906 
tornadoes not occurring during the 8-hour period. He therefore calculated his index of 
verification, being the probability of successfully predicting whether a tornado would be 
observed or not as: 

𝑖𝑖F =
11 + 906

934
= 0.9818 . 

This index2 suggests that 98.18% of the forecasts that Finley made were correct, an 
impressively high percentage. Finley did not perform any of his calculations using any form of 
notation although, given the notation of Table 1, his index takes the form: 

𝑖𝑖𝐹𝐹 =
n11 + n22

n
 . 

Repeating the calculation of his April index for the observations/predictions he recorded in 
March, May (8-hour observation) and May (10-hour observation) produces an 𝑖𝑖F index of 
0.9429, 0.9857 and 0.9519, respectively. By aggregating each of the cell frequencies of the four 
2 × 2 contingency tables from the data given in Figure 1, the overall probability of Finley 
(1884b) successfully predicting whether a tornado would be observed or not is 0.9661. 

 

 
2 Note that the subscript “F” has been added to the index to distinguish it from measures proposed by others. The 
first initial surname letter of the contributing author has been subscripted for the indices that will follow. 
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4 Gilbert’s Analysis 

4.1 Re-examining Finley’s Analysis 

Immediately following Finley (1884b) came the first of several studies that would, in less than 
two years, spark a great deal of discussion on the legitimacy of his index, 𝑖𝑖𝐹𝐹, and propose 
significant improvements. The first of these was made by Gilbert (1884) two months after the 
publication of Finley’s data, in the September issue of The American Meteorological Journal.   

Finley’s skill in being able to predict tornadoes in April 1884 with more than 98% accuracy 
appears astounding. However, his index was very much under the influence of the (2, 2)th cell 
frequency which, as Table 2 shows, accounts for 100 × 906 934⁄ = 97% of the sample size 
(n = 934). This was a point of contention raised by “G” in a Letter to the Editor of Science 
that appeared a month after Finley published his data and index. G pointed out that: 

“. . . this remarkably high percentage of verification is largely made up, not of 
successful predictions of tornadoes, but of successful predictions of no tornadoes” 
(G, 1884, p. 126) 

then colourfully adding that (for Finley’s analysis of the March results): 

“An ignoramus in tornado studies can predict no tornadoes for a whole season, and 
obtain an average of fully ninety-five percent. The value of the expert work must, 
therefore, be measured by the excess which is obtained over the man who knows 
nothing of the subject.” (p. 126) 

The question then is how does one verify the prediction of tornadoes NOT occurring? 
especially when n22 ≫ n11. Adding to G’s (1884) comments, Gilbert (1884) also pointed out 
the fallacious nature of Finley’s results. Despite his concerns of Finley’s analysis, Gilbert 
(1884) still admired Finley’s attempt saying at the start of his discussion: 

“The account of tornado predictions given by Sergeant Finley . . . is of great interest 
to those who are sanguine of the ultimate successful forecasting of these destructive 
storms. In my judgment it shows encouraging progress, and if I take the occasion 
to point out a fallacy in his discussion, the reader must not understand that I 
undervalue the general results of his investigations.” (p. 166) 

Unlike G (1884), Gilbert (1884) then discusses an alternative index to 𝑖𝑖F as we shall now 
describe. 

4.2 Gilbert’s Index 

Gilbert (1884) argued that predicting the number of tornadoes to occur should be based not just 
on the “favourable” predictions but also on the “unfavourable” predictions – since the final 
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prediction should be determined by how successful a prediction is (like Finley, 1884b, did) 
AND how unsuccessful the prediction is. So, Gilbert defined: 

• the number of “favourable” predictions to be those that occurred and those that did not occur, 
being is n11 and (n1• − n11) respectively. Therefore, the total number of favourable 
predictions is n11 + (n1• − n11) = n1•. 

• the number of “unfavourable” predictions to be the number of tornadoes that occurred but 
were not predicted, this quantity being n•1 − n11.  

Therefore, Gilbert’s (1884, eq. (1)) probability of successfully predicting whether a tornado 
would be observed or not is: 

𝑣𝑣 =
n11

n1• + (n•1 − n11) 

and he referred to it as the ratio of verification. Gilbert’s index can also be expressed 
alternatively, and equivalently, by: 

𝑣𝑣 =
n11

n − n22
=

n11
n11 + n12 + n21

 . 

Gilbert’s original definition of his index is still being used in the meteorological community 
and is referred to as the Critical Success Index (CSI) or Threat Score; see, for example, 
Schaeffer (1986, 1990) and Hogan et al. (2009). It should be noted that after Gilbert (1884) 
derived his index, 𝑣𝑣, it was later independently derived across a range of other disciplines. For 
example, it is equivalent to the similarity coefficient discussed by Sneath (1957, p. 13) who 
was concerned with bacterial classification. It is also equivalent to the coefficient discussed by 
Jaccard (1912) who studied the distribution of flora along the French/Swiss Alpine region.  

Interestingly, unlike Finley’s index, Gilbert’s index does not include n22. When describing the 
various indices that can be obtained from a 2 × 2 contingency table (at least for ecological 
purposes), Janson & Vegelius (1981) suggest that all indices should be independent of  n22, the 
number of “negative matches”, noting that if n22 is not ignored it: 

“. . . would tend to give a high value [of the index], indicating a high degree of 
coexistence between very rare species, even if they are seldom found together” (p. 
371).  

This is certainly the case for Finley’s results and resonates with G’s (1884) comments. Gilbert 
was also aware of this saying of Finley’s observations: 

“The occurrence of tornadoes in any given one of the districts indicated by him, is 
highly exceptional; their non-occurrence is the rule; and this consideration is 
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overlooked when the predictions of occurrence and non-occurrence are classed 
together as of equal difficulty.” (p. 166) 

Therefore, calculating Gilbert’s (1884) ratio of verification for Table 2, the probability of 
successfully predicting whether a tornado will occur or not is: 

𝑣𝑣 =
11

14 + 25 − 11
= 0.3929 

which certainly appears far more reasonable than what Finely’s index of 0.9818 would suggest. 
Similarly, the value of 𝑣𝑣 for the March, May (8-hours) and May (10-hours) observations are 
0.1200, 0.5000 and 0.1034, respectively. Aggregating the four 2 × 2 tables gives an overall 
ratio of verification of 0.2276. Without knowing the more about the behaviour of 𝑣𝑣 for each 
data set its value cannot clearly interpreted. Therefore, we shall discuss how reasonable each 
of the indices, described in this paper are, including 𝑖𝑖𝐹𝐹 and 𝑣𝑣, in Section 7. 

4.3 Gilbert’s Revised Index and “e” 

Gilbert (1884) was not completely satisfied with his 𝑣𝑣. He realised that one aspect of his 
analysis that was missing was how good the predictions were compared to whether a prediction 
had been made “fortuitously”. Gilbert provided a clear explanation of the ratio of what is 
observed to what is expected to occur by “coincidence” saying: 

“It is to be observed, however, that the ratio of verification falls far short of a just 
measure of success in scientific forecasting, for with the same skill in inference this 
ratio may be larger or smaller according as the phenomena foretold are normally 
frequent or rare.” (p. 168) 

Therefore, he adjusted his 𝑣𝑣 by first noting that (keeping to his original spelling and using the 
notation of Table 2): 

“If the forcaster were to make his n1• predictions at random it is probable that a 
certain number, 𝑒𝑒, of predictions would fortuitously coincide with occurrences. 
Making his predictions by the aid of inference, the number of coincidences is n11. 
n11 − 𝑒𝑒 coincidences are thus the product of his skill in inference, and n11 − 𝑒𝑒 may 
be regarded as a measure of his success in inference, in precisely the same sense in 
which n11 has been regarded above as a measure of verification.” (p. 168) 

In fact, such a comment reflects perfectly with G’s (1884, p. 126) statement given in Section 
4.1: 

“. . . The value of the expert work must, therefore, be measured by the excess which 
is obtained over the man who knows nothing of the subject.” 
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It seems then that this excess is exactly what 𝑒𝑒 assesses and so it may be conjectured that “G” 
is in fact “Gilbert”, although there appears nothing in the literature to substantiate this claim.  

Gilbert (1884) then defined a second equation, 𝑖𝑖, which he referred to as the ratio of success 
inference. His ratio 𝑖𝑖, expressed as equation (2) in his paper, is defined using the notation of 
Table 2 as: 

𝑖𝑖𝐺𝐺 =
n11 −

n1•n•1
n

(n•1 + n1• − n11) − n1•n•1
n

  

where his 𝑒𝑒 coincides with n1•n•1 n⁄ . This index is, in principle, the same as 𝑣𝑣 but the number 
of tornadoes occurring by “coincidence” has been deducted from the numerator and the 
denominator of 𝑣𝑣. Therefore, the probability of correctly predicting whether a tornado will 
occur, or not, taking into consideration any that occur by chance, is revised from 0.3929 to: 

𝑖𝑖𝐺𝐺 =
11 − 25 ∙ 14

934
(14 + 25 − 11) − 25 ∙ 14

934
= 0.3846 . 

Note that Gilbert (1884, p. 168) referred to n11 − n1•n•1 n⁄  as the measure of success in 
inference which would later be termed a contingency by Pearson (1904, p. 5); a term that serves 
as the etymology of contingency table. Although, Pearson (1904) twice used the phrase pure 
contingency table rather than contingency table, the first time on page 33 when he describes a 
table of counts formed from the cross-classification of the occupation of 775 pairs of fathers 
and sons (Pearson, 1904, p. 33) and the second time on the page 34 where he discusses the 
“theoretical importance” of the “general conception of contingency”. Gilbert (1884, p. 169) 
describes further his justification for subtracting the quantity n1•n•1 n⁄  from the numerator and 
denominator of 𝑣𝑣 as follows: 

“. . . in case of random prognostication, the ratio of the fortuitous coincidence (𝑒𝑒) 
to the number of predictions [n•1] is equal to the ratio of the occurrences [n1•] to 
the total of cases – occurrences and non-occurrences [n] 

𝑒𝑒
n1•

=
n•1

n
      or      𝑒𝑒 =

n•1n1•

n
. ” 

What should be immediately clear here is that while Gilbert’s interpretation of 𝑒𝑒 is that it is the 
number of correctly predicted tornadoes if the predictions were made by “chance” or 
“coincidence”, it is therefore the expected frequency of the (1,1)’th cell of a contingency table 
if the null hypothesis is that there is no association between the two categorical variables. 
Goodman & Kruskal (1959, p. 129) note that Gilbert’s 𝑖𝑖𝐺𝐺 is zero when the observed proportion 
of cell counts in the (1, 1)th cell is equivalent to what is expected if the variables are not 
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associated but they make no further comment on the origins e. Since the numerator of 𝑖𝑖𝐺𝐺 is just 
the “contingency” of the (1, 1)th cell under independence then 𝑖𝑖𝐺𝐺 = 0 and this is consistent 
with most measures of associations used today. It isn’t obvious yet whether 𝑖𝑖𝐺𝐺 = 0 differs 
practically or not to the observed value of 𝑖𝑖𝐺𝐺 = 0.3846 however we shall be assessing this 
difference by determining the various features of 𝑖𝑖𝐺𝐺 in Section 7.6. 

4.4 Galton and the Expected Cell Count 

In 1892 Galton published a book titled Finger Prints that is considered to be the genesis of 
finger print analysis performed today; see, for example, the discussions made by Stigler (1995) 
and Gillham (2001). Stigler (2002) also commences his discussion of the pre-history of the 
I × J contingency table (where I, J > 2) by referring to Galton’s 1892 book.  

By studying a sample of 105 sets of twin brothers, or couplets, Galton was interested in 
determining the expected number of pairs with distinct fingerprint characteristics (those being 
arches, whorls and loops) in their right forefinger; Figure 2 gives the data Galton analysed, 
appearing as a 3 × 3 contingency table. On page 174 of his book, Galton set one set of twin 
brothers totals to A and the other twin brothers to B and said: 

“The question, then, was how far calculations from the above data [Figure 2] would 
correspond to the [the observed random couplets]. The answer is that is does so 
admirably. Multiply each of the . . . A totals into each of the . . . B totals, and after 
dividing each result by [n]” 

Galton (1892, pp. 175 – 176) goes on to say of Table 2: 

“The squares that run diagonally from the top at the left, to the bottom at the right, 
contain the double events, and it is with these that we are now concerned. Are 
entries in those squares larger or not than the randoms . . . The values of 10x19, 
68x61, 27x25, all divided by 105?” 

Galton referred to his expected cell frequencies as calculated random couplets but their 
calculation now commonly appears in its simplest form as: 

Expected cell frequency =
row total ×  column total

sample size
 . 

Therefore, Galton’s expected value of a cell frequency is just Gilbert’s (1884) 𝑒𝑒. While Galton 
was interested in a general expression for this expected value he was only interested in 
comparing the observed cell counts with their expected value along the diagonal of his 3x3 
table. Note that Gilbert (1884) was only concerned with the (1, 1)th cell of a 2 × 2 contingency 
table because he was interested only in verifying the prediction of tornadoes and not in 
verifying that tornadoes did not occur. If he had, then Gilbert’s analysis of Finley’s data (when 
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viewed as a 2 × 2 contingency table) is identical in nature to Galton’s interest in his fingerprint 
data.  

It therefore seems fair to assign some credit for the derivation and justification of an expected 
cell frequency of a contingency table to Gilbert (1884). Although, some may argue against this 
since Finley, and Gilbert, did not present or even analyse the data in Figure 1 as a 2 × 2 
contingency table. It is also recognised that Galton’s impact on Pearson’s work is profound and 
is well documented; see, for example, Yule & Filon (1936), Haldane (1957) and Gillham 
(2001). One can therefore understand why, during the emergence of statistical thinking that 
was taking place in England at the turn of the 20th century, that Gilbert’s (1884) contribution to 
𝑒𝑒 would be overshadowed by Galton’s (1892) contribution. In fact, prior to Pearson (1904), 
Galton’s expression of the expected cell frequency was also described for a 2 × 2 contingency 
table by Yule (1900, §16; 1903 eq. (7)). More will be said on the apparent lack of 
acknowledgement of Finley’s and Gilbert’s (and others) work by Galton, Pearson and their 
successors in Section 9.2. 

 

FIGURE 2. Galton’s (1892, p. 175) original data cross-classifying fingerprint types between two 
male fraternal twins, or couplets 

5 Peirce’s Analysis 

Following on from Gilbert’s (1884) analysis of Finley’s data (Figure 1) is the contribution of 
Charles Sanders Peirce. After defining notation that is very similar in form to the notation used 
by Yule (1900, 1903) for a 2 × 2 contingency table, Peirce (1884) says: 

“Then the problem is . . . to assign a numerical measure to the success or science of 
the method by which the answers have been produced. Mr G.K. Gilbert . . . has 
recently proposed a formula for this purpose and I desire to offer another.” 

Peirce’s description of his index starts colourfully by discussing his interest in studying the 
difference between the observations of an “infallible witness” and the observations of “an 
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utterly ignorant person” – the latter can be more diplomatically described as observations that 
would arise purely by chance. Peirce (1884) would propose his amendment of Gilbert’s, and 
Finley’s, index by also denoting it also by 𝑖𝑖 and defining it as the: 

“. . . proportion of questions put to the infallible witness” (p.453) 

It is implied here that the questions put to this “witness” are correctly answered, although his 
derivation of his index shows a slightly different interpretation. Framing Peirce’s (1884) 
description in terms of Finley’s (1884b) data, Peirce’s wanted to determine the difference 
between correctly and incorrectly predicting that a tornado will occur. Using such terms, his 𝑖𝑖 
(we shall denote it as 𝑖𝑖𝑃𝑃) is therefore the proportion of tornadoes correctly predicted and he 
referred to it as the measure of the science of the method. He also defined 𝑗𝑗 (here, 𝑗𝑗𝑃𝑃) to be the 

“. . . proportion of questions which the ignorant witness answers in the first way” 
(p. 453) 

Here, “first way” refers to the witness incorrectly observing the occurrence (or not) of a 
tornado. Peirce goes on to determine 𝑖𝑖𝑃𝑃 and 𝑗𝑗𝑃𝑃 by solving the following four equations: 

n11 = 𝑖𝑖𝑃𝑃n•1 + (1 − 𝑖𝑖𝑃𝑃)𝑗𝑗𝑃𝑃n•1 

n12 = (1 − 𝑖𝑖𝑃𝑃)𝑗𝑗𝑃𝑃n•2 

n21 = (1 − 𝑖𝑖𝑃𝑃)(1 − 𝑗𝑗𝑃𝑃)n•1 

n22 = 𝑖𝑖𝑃𝑃n•2 + (1 − 𝑖𝑖𝑃𝑃)(1− 𝑗𝑗𝑃𝑃)n•2 . 

The first two of these equations can be expressed as the relative cell frequencies of the first 
row (ie the prediction of a tornado) such that: 

n11
n•1

= 𝑖𝑖𝑃𝑃 + (1 − 𝑖𝑖𝑃𝑃)𝑗𝑗𝑃𝑃 

n12
n•2

= (1 − 𝑖𝑖𝑃𝑃)𝑗𝑗𝑃𝑃 

and yields the solution to his index: 

𝑖𝑖𝑃𝑃 =
n11
n•1

−
n12
n•2

 . 

This is the first solution Peirce (1884) gave to his index and is the difference between the 
proportion of observed tornadoes that were predicted and the proportion of tornadoes that were 
not observed but were predicted. Armistead (2016) describes 𝑖𝑖𝑃𝑃 as being the difference between 
the “true positive fraction” (that is, correctly identifying the occurrence of a tornado) and the 
“false positive fraction” (that is, incorrectly predicting the occurrence of a tornado). Thus, while 



17 
 

we have shown in Section 4.3 that Gilbert’s index for Table 2 is 𝑖𝑖𝐺𝐺 = 0.3846, Peirce’s (1884) 
measure of the science of the method of this data is: 

𝑖𝑖𝑃𝑃 =
11
14

−
14

920
= 0.7705 . 

Therefore, Peirce’s index appears to show a stronger positive “link” between the prediction of 
tornadoes and what was observed when compared with Gilbert’s index.  

While Peirce did not give a statement for 𝑗𝑗𝑃𝑃, the second of his four equations yield: 

𝑗𝑗𝑃𝑃 =
n12 n•2⁄

n21 n•1⁄ + n12 n•2⁄  

so that it is the probability of a predicted tornado not occurring given that the predictions made 
were all incorrect.  

The last two of Peirce’s four equations can be expressed as relative cell frequencies of the 
second row (ie the prediction of a tornado not occurring) so that: 

n21
n•1

= (1 − 𝑖𝑖𝑃𝑃)(1 − 𝑗𝑗𝑃𝑃) 

n22
n•2

= 𝑖𝑖𝑃𝑃 + (1 − 𝑖𝑖𝑃𝑃)(1 − 𝑗𝑗𝑃𝑃) . 

Hence, while Peirce did not show this, 𝑖𝑖𝑃𝑃 can also be defined as: 

𝑖𝑖𝑃𝑃 =
n22
n•2

−
n21
n•1

 

which is the difference between the proportion of tornadoes that did not occur but were 
(correctly) not predicted and the proportion of tornadoes that were observed but were not 
predicted. This definition of the index also gives 𝑖𝑖𝑃𝑃 = 0.7705 for Table 2. 

Solving all four equations yields the solution: 

𝑖𝑖𝑃𝑃 =
n11n22 − n12n21

n•1n•2
 

which is identical Youden’s (1950, p. 33) J-index. Youden’s motivation for deriving his index 
was the same as Peirce’s but their contexts were very different; Peirce was concerned with 
correctly identifying that a predicted tornado occurred while Youden was concerned with 
correctly identifying that someone was diagnosed to have a disease. This definition of the index 
also gives 𝑖𝑖𝑃𝑃 = 0.7705 for Table 2. 

Peirce (1884) goes on to compare his index with Gilbert’s which he shows to be equivalent to: 



18 
 

𝑖𝑖𝐺𝐺 = 2
n11n22 − n12n21

n2 − n112 + n122 + n212 − n222
 

so that, for Table 2: 

𝑖𝑖𝐺𝐺 = 2
11 ∙ 920 − 14 ∙ 3

9342 − 112 + 142 + 32 − 9062
= 0.3846 

confirming the calculation of Gilbert’s index in Section 4.3. Peirce then says that he has also 
derived extensions of this index for categorical data consisting of more than two categories: 

“If the questions should present more than two alternatives, it would be necessary 
to assign relative values or measures to the different kinds of mistakes that might 
be made. I have a solution for this case” (p. 454) 

although he does not present his solution, nor, unfortunately, does he direct the reader to where 
such a solution can be found. 

Rovine & Anderson (2004) also provide a derivation of Peirce’s (1884) 𝑖𝑖𝑃𝑃 and notes that it has 
the hallmarks of a coefficient of association described by Yule (1900). These being that 𝑖𝑖𝑃𝑃 = 0 
when the two variables are independent – since n11n22 = n12n21; a feature of independence 
described by Yule (1900, §19). Also, 𝑖𝑖𝑃𝑃 = 1 when there is perfect positive association and 𝑖𝑖𝑃𝑃 =
−1 when there is perfect negative association; we shall discuss these features further in Section 
7.7. In fact, in the case where n1• = n•1 and n2• = n•2 then Peirce’s index is equivalent to the 
square root of Pearson’s (1904, eq. (xxviii)) mean square contingency and so is also a 
correlation coefficient. 

6 Doolittle’s (1885) Analysis 

6.1 Deriving his Index 

Following on from Finley’s (1884b) study of his tornado data and Gilbert’s (1884) response to 
Finley’s work, further emendations were undertaken by Doolittle (1885). Doolittle was an 
excellent mathematician and famous for the contributions he made to matrix algebra, especially 
for being the first to propose a more efficient method of performing Gaussian elimination 
(Doolittle, 1878); see, for example, Dwyer (1941) and Grcar (2011). He also demonstrated his 
talents a few years after this when, in 1884, he turned his attention to studying Finley’s data 
and amending Gilbert’s index. Doolittle adopted the same notation used by Gilbert (1884) and 
introduced his paper by saying: 

“Mr G. K. Gilbert has published . . . a method of estimating the ratio of skill in 
predictions of occurrences and non-occurrences of a simple event.” (p. 122) 

While Doolittle refers to “a simple event” he does explain his development of his index in 
general terms before analysing Finley’s tornado data. Doolittle (1885, p. 123) then notes that 
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the probability of “success is proportional” to  n11 n1•⁄  and n11 n•1⁄ ; here he is talking about 
the proportion of successfully predicted tornadoes to occur AND, based on the predictions that 
are made, the proportion of tornadoes that occurred, respectively. Therefore, Doolittle (1885) 
defined the index as: 

𝑠𝑠𝐷𝐷 =
n11
n•1

∙
n11
n1•

  

which he refers to as the proportion of “successful” predictions. Therefore, for Table 2, this 
index is equal to: 

𝑠𝑠𝐷𝐷 =
11
14

∙
11
25

= 0.3457 . 

Doolittle was aware that 𝑠𝑠𝐷𝐷 does not accommodate for the possibility of observations 
happening by “chance” but does say that: 

“The fraction [n•1 n⁄ ] represents the ratio of random success and therefore 
[n•1n1• n⁄ ] verifications out of [n1•] predictions are to be ascribed to chance and 
must be subtracted throughout.” (p. 123) 

There are two things to note here. Firstly, he notes that of the n1• predicted tornadoes, there are 
n•1n1• n⁄  of them that occur by “chance”. This is precisely Gilbert’s 𝑒𝑒 and is the expected 
number of correctly predicted tornadoes to be observed if the predicted number of tornadoes 
and the observed number of tornadoes was completely independent; that is, the predictions 
were no different to “chance”. Secondly, by saying “throughout” Doolittle is referring to each 
of the terms on the numerator and denominator of his index, 𝑖𝑖𝐷𝐷 – something he does not 
immediately do. Rather, Doolittle first describes n•1(1 − n1• n⁄ ) and n1•(1 − n•1 n⁄ ) to be: 

“. . . fields which chance leaves for science to conquer” 

and is now known to be the variance of the number of tornadoes to be observed, and predicted, 
respectively, when n11 is assumed to follow a binomial distribution where the 2 × 2 table has 
fixed and known marginal frequencies. Peirce also says of n11 − n1•n•1 n⁄  that it is: 

“. . . the portion of each which science does conquer”.  

It is on the next line of his discussion that Doolittle subtracted n•1n1• n⁄  “throughout” and in 
doing so follows the same tact that Gilbert used when he derived his index, 𝑖𝑖G. That is, Doolittle 
amended his original index so that it is of the form: 

𝑖𝑖D =
n11 −

n1•n•1
n

n•1 −
n1•n•1

n
∙

n11 −
n1•n•1

n
n1• −

n1•n•1
n
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which he referred to as the degree of logical connection between the observed number of 
tornadoes and the predicted number of tornadoes. It is at which point that he also gives an 
alternative form of this revised index showing that 𝑖𝑖D is also equivalent to: 

𝑖𝑖D =
(nn11 − n1•n•1)2

n1•n•1(n − n1•)(n − n•1)  

which can also be written as: 

𝑖𝑖D = n2
�n11 −

n1•n•1
n �

2

n1•n•1n2•n•2
 . 

Therefore, Doolittle’s revision of Gilbert’s index for Table 2 gives an index value that is 
comparable to his own 𝑠𝑠𝐷𝐷 = 0.3457 and Gilbert’s index (of 𝑖𝑖𝐺𝐺 = 0.3929) where: 

𝑖𝑖D =
(934 ∙ 11 − 25 ∙ 14)2

25 ∙ 14 ∙ (934 − 25)(934 − 14) = 0.3365  

but differs substantially to Peirce’s index of 𝑖𝑖𝑃𝑃 = 0.7705. 

Doolittle then proceeds to derive this same index a second way. This time noting that (keeping 
to his original spelling): 

“Since the skillful predictions are mingled indistinguishably with all unskilled ones, 
and are vitiated accordingly, the value of the vitiated probability of the skillfil 
prediction of any single occurrence may be represented by the product  

𝑖𝑖D = �
n11
n•1

−
n1• − n11
n − n•1

� �
n11
n1•

−
n•1 − n11
n − n1•

� =
(nn11 − n1•n•1)2

n1•n•1(n − n1•)(n − n•1) . " 

By saying vitiated Doolittle concedes that determining the probability of making a successful 
prediction is “spoiled” by any randomness that may exist in the process of calculating a 
successful outcome. Therefore, he deals with this “spoiled” prediction by removing it from the 
observed number of successful predictions, just as Gilbert did. This can be seen by rewriting 
𝑖𝑖D in a slightly different, but equivalent, way:  

𝑖𝑖D = �
n11
n•1

−
n12
n•2

� �
n11
n1•

−
n21
n2•

� . 

We can see here that this index removes from the two probabilities of “success” of predictions 
and observations their associated probabilities of “failure”. 

6.2 Doolittle and the Concept of “Contingency” 

Recall in Section 6.1 that Doolittle’s derivation of his index 𝑖𝑖D involved calculating the 
difference n11 − n1•n•1 n⁄ . This measure is often attributed to Pearson (1904) who considers a 



21 
 

more general difference, nuv − nu•n•v n⁄ , it being for the (u, v)th cell of a s × t contingency 
table where s > 2 and t > 2. Thus, while Doolittle (1885), like Finley (1884b) and Gilbert 
(1884) before him, were concerned with the how to verify tornado predictions summarised in 
the form of a 2 × 2 contingency table, Pearson (1904) was concerned with larger sized tables. 
Pearson (1904, p. 5) states that his difference  nuv − nu•n•v n⁄  is the: 

“. . . the deviation from independent probability in the occurrence of the groups 
Au, Bv”. 

Here Pearson defined Au and Bv to be the u’th row and v’th column of his contingency table. 
On the line following this definition, Pearson (1904, p. 5) goes on to say of the difference: 

“I term any measure of the total deviation of the classification from independent 
probability a measure of its contingency. Clearly the greater the contingency, the 
greater must be the amount of association or of correlation between the two 
[categories], for such association or correlation is solely a measure from another 
standpoint of the degree of deviation from independence of occurrence”. 

While Doolittle (1885) did not discuss his index in terms of “association” or “correlation” 
(terms that would not come into the statistics vernacular for at least a decade after Doolittle’s 
paper), his use of “chance” in his description of 𝑒𝑒 and the phrase “science does conquer” 
characterise these two terms and so they can both be seen to view the difference in very similar 
ways. For historical perspective, David (1995) notes that “correlation” was used by Galton 
(1888) in his description of the relationship between the length of one’s arm and their leg, while 
David (1998) notes that the (statistical) use of “association” was first used by Yule (1900) in 
his discussion of categorical data. However, in December 1888, Galton published a paper in 
the Proceedings of the Royal Society of London where the first sentence describes that the 
origins of “correlation” can be traced back, at least conceptually if not quantitatively, to early 
work in biology: 

“ ‘Co-relation or correlation of structure’ is a phrase much used in biology, and not 
least that branch of it which refers to heredity, and the idea is even more frequently 
present than the phrase; but I am not aware of any previous attempt to define it 
clearly, to trace its mode of action in detail, or to show how to measure its degree”. 
(Galton, 1888, p. 135) 

The reader is invited to read Stigler (1989) who gave an interesting discussion of Galton’s 
account of the conception of correlation. Interestingly, Doolittle followed up his 1885 paper in 
1888 where he presented a range of quantities for a 2 × 2 contingency table. This paper, which 
Doolittle presented to members of the Philosophical Society of Washington (Mathematical 
Section) on February 16, 1887, describes each quantity as being the “extent of association” for 
the cell of the table, or for the table itself. While Doolittle did not provide an extensive 
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discussion on the philosophical meaning and interpretation of “association” like that espoused 
by Galton, Pearson and Yule, his usage of the term is very much consistent with their 
interpretation. The interested reader is invited to read this paper which is simple titled 
“Association Ratios”. 

6.3 Doolittle and the Mean Square Contingency 

One may note that Peirce’s 𝑠𝑠𝐷𝐷 is equivalent to the (1, 1)th element of the partition of Pearson’s 
(1904, eq. (xxviii)) mean square contingency of the 2 × 2 table: 

ϕ2 =
X2

n
= ���

nij
ni•

∙
nij
n•j
�

2

i=1

2

j=1

− 1 . 

where X2 is Pearson’s chi-squared statistic. Therefore, there is a thread of commonality as well 
as substantial differences with the way Doolittle viewed his measure of “success” and how 
Pearson derives his mean square contingency for a contingency table. Doolittle was only 
interested in the (1, 1)’th element of a 2 × 2 contingency table while Pearson was concerned 
with all elements of a larger sized contingency table. This difference comes about by the nature 
of how Doolittle and Pearson viewed their analysis of the contingency table. Like Gilbert, 
Doolittle was only concerned with the verification of the tornadoes that were predicted to occur 
and so confined his attention to the (1, 1)th cell frequency. On the other hand, Pearson was 
more interested in general measures of association and so was concerned with all ALL 
frequencies. If Doolittle had considered determining his index for all four elements, then 
perhaps he would have simply summed his terms (being the simplest of operations) resulting 
in an emended version of 𝑠𝑠𝐷𝐷: 

�̃�𝑠𝐷𝐷 = ���
nij
ni•

∙
nij
n•j
�

2

i=1

2

j=1

 

which is equivalent to ϕ2 + 1 for a 2 × 2 contingency table. Therefore, predicting a tornado 
purely by “chance” would mean that, �̃�𝑠𝐷𝐷 = 1 so that any deviation away from 1 would show 
that there was some merit in the prediction process.  

We can establish that Doolittle’s index 𝑖𝑖D is far more closely aligned to Pearson’s mean square 
contingency than �̃�𝑠𝐷𝐷. If we examine 𝑖𝑖D more carefully, we note that it can also be written as: 

𝑖𝑖D =
(n11n22 − n12n21)2

n1•n•1n2•n•2
 

which is Pearson’s (1904, eq. (xxviii)) mean square contingency! That is 𝑖𝑖D = 𝜙𝜙2. Thus, it 
certainly appears that Doolittle proposed the famous mean square contingency nearly 20 years 
prior to Pearson’s derivation of the statistic, although the nature of its derivation differs. 
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Perhaps if Doolittle was concerned with not just the vitiated proportion of success but also 
considered the vitiated number of successful predictions he would have been apportioned some 
credit to the early development of the chi-squared statistic, at least for a 2 × 2 contingency 
table. However, a key difference between their analysis of the contingency table is that, unlike 
Pearson, Doolittle made no attempt to gain an understanding of the distributional properties of 
his index. 

What should also be apparent is that the link between Peirce’s index, 𝑖𝑖P, and Doolittle’s index, 
𝑖𝑖D, is that: 

𝑖𝑖D = 𝑖𝑖𝑃𝑃2 �
n•1n•2

n1•n2•
� 

so that the square of Peirce’s index is proportional to Pearson’s chi-squared statistic of a 2 × 2 
contingency table since: 

X2 = n𝑖𝑖D = n �
n•1n•2

n1•n2•
� 𝑖𝑖𝑃𝑃2 . 

That is, Peirce’s index, 𝑖𝑖D, is identical to Pearson’s mean square contingency! When analysing 
Finley’s data sets in Figure 1 (except for May (8-hours)), n•1 ≈ 2n•1 and n2• ≈ n•2 so that 
X2 = n𝑖𝑖D ≈ 0.5n𝑖𝑖𝑃𝑃2. This can be verified by noting that, for Table 2, X2 = 314.3 (without 
Yate’s continuity correction), n𝑖𝑖D = 934 ∙ 0.3365 = 314.3 and 0.5n𝑖𝑖𝑃𝑃2 = 0.5 ∙ 934 ∙
0.77052 = 277.2; since (n•1n•2) (n1•n2•)⁄ = (14 ∙ 920) (25 ∙ 909)⁄ = 0.5668, and not 0.5, 
then n((n•1n•2) (n1•n2•)⁄ )𝑖𝑖𝑃𝑃2 = 314.3, as expected. 

6.4 Doolittle and Multiple Dichotomous Variables 

Doolittle ended his 1885 discussion of the problem of the suitability of indices designed for 
verifying tornado predictions by saying: 

“It has been proposed to extend the problem so as to include more classes of events 
of which one must happen and only one can happen in any case.” (p. 126) 

Although he seems to have his doubts immediately saying: 

“It seems clear to me that no single numerical expression can be a proper solution 
to such a problem” (p. 126) 

His doubts arise from the idea that the categories of one variable are well discriminated but at 
least one of the remaining variables consist of categories where such discrimination remains 
unclear. Thus, his concerns appear to be centred on the idea that the more variables that one 
considers in their analysis the more likely it is that discriminating between one option and the 
other remains in doubt ending his paper with: 
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“No single numerical expression can properly comprehend these heterogenous 
results” (p. 127). 

Doolittle’s concerns are certainly an issue for all analysts although the passage of time has 
brought with it a variety of techniques for contingency table analysis that help to address this 
issue by assigning quantities to the categories of a variable. Many of these techniques have 
their genesis in the psychology, psychometric and ecology literature. They have more recently 
entered the statistical and allied literature under various names including reciprocal averaging 
(Hill, 1973, 1974) and dual scaling (Nishisato, 1980, 1994, 2007). Comprehending 
heterogeneous categories in this way dovetails nicely into visualisation techniques such as 
correspondence analysis; see, for example, Greenacre (1984, 2017) and Beh and Lombardo 
(2014, 2021).  

7 Further Evaluations of the Indices 

7.1 Some Preliminary Features of Table 2 

With the various indices now derived and described, we turn our attention to delving a little 
deeper into some of their features. To do this we shall not just consider the magnitude of the 
indices at the observed (1, 1)th cell frequency, like Finley, Gilbert, Peirce and Doolittle did, but 
instead evaluate the indices across the full range of values that n11 can take. This will be done 
by assuming that the marginal frequencies of the 2 × 2 contingency table are known and fixed 
so that n11 is bounded by the Fréchet (1951) bounds: 

L = max(0, n•1 − n2•) < n11 < min(n1•, n•1) = U . 

For Table 2 n11 ∈ [0, 14]. Since the expected value of the (1, 1)’th cell under independence 
(that is, Gilbert’s 𝑒𝑒) plays an important role in the definition of some of the indices, we shall 
also make use of: 

𝑒𝑒 =
25 ∙ 14

934
= 0.3747 

which is very small in comparison to the (1, 1)th cell frequency of 11. This suggests that there 
are more tornadoes correctly predicted than what would be expected if the predictions were, 
using the terms of Gilbert, Peirce and Doolittle, made “fortuitously”, by “chance” or 
“coincidence”. However, the large sample size (relative to n11 = 14) is accounted for by the 
very large (2, 2)th value and helps to undervalue 𝑒𝑒 thereby exacerbating the points raised by G 
(1884, p. 126) and Gilbert (1884, p. 166); see Section 4.1. For the March, May (8-hour 
observation) and May (10-hour observation) data sets, 𝑒𝑒 is extremely small compared to its n11 
and sample size, being 0.7250, 0.2509 and 0.4007, respectively. Aggregating the four data 
sets produces 𝑒𝑒 = 1.8195. 
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Confirmation of the statistical significance of the Prediction and Occurrence variables in Table 
2 can be made by performing a chi-squared test of independence and will be done without using 
Yate’s (1934) continuity correction. To do so, Pearson’s chi-squared statistic can be expressed 
in terms of only n11 and the marginal frequencies by: 

X2(n11) = n �
n11 − n1•n•1

n1•n2•
�
2
�

n1•n2•

n•1n•2
� 

and is a quadratic function of n11. Thus, Pearson’s chi-squared statistic of Table 2 is: 

X2(11) = 934 �
934 ∙ 11 − 25 ∙ 14

25 ∙ 909
�
2

�
25 ∙ 909
14 ∙ 920

� = 314.268 

so that its a p-value that is less than 0.0001. Therefore, there is a statistically significant 
association between the prediction of tornadoes and the observed tornadoes. However, since 
X2(n11) is linearly related to n, the large sample size (again, relative to n11) helps to inflate the 
value of the chi-squared statistic. To accommodate this feature, many, including Mosteller 
(1968) and Mirkin (2001), proposed dividing the statistic by its sample size giving Pearson’s 
(1904) mean square contingency or, equivalently in the case of a 2 × 2 contingency table, 
Doolittle’s (1885) 𝑖𝑖D. Such a measure is also used throughout the correspondence analysis 
literature and is referred to as the total inertia. 

 
FIGURE 3. Relationship between n11 and X2(n11) for Table 2; shaded region is where a statistically 

significant association exists between the Prediction and Occurrence variables (α = 0.05) 

With n11 ∈ [0, 14], Figure 3 shows the relationship between n11 and X2(n11) for Table 2 where 
the shaded region identifies where a statistically significant association exists between the 
variables of Table 2. This shaded region is based, in part, on the interval: 
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Lα = max�0,
n1•n•1

n
−

n1•n2•

n
�
χα2

n
n1•n2•

n•1n•2
� < n11 <                     

                          min�n1•,
n1•n•1

n
+

n1•n2•

n
�
χα2

n
n1•n2•

n•1n•2
� = Uα 

where χα2  is the 1 − α percentile of the chi-squared distribution with 1 degree of freedom. This 
is the interval of n11 where no statistically significant association exists and is an adaptation of 
the interval derived by Beh (2010) for P1 = n11 n1•⁄ . When testing the association between the 
Predictions and Occurrence variables of Table 2 at the α = 0.05 level of significance, a 
statistically significant association exists for n11 lying within the interval [1.549, 14] which 
covers much of the interval n11 ∈ [0, 14]. The dominance of the (2, 2)th cell frequency plays 
a pivotal role in the calculation of this interval. 

A comparison of the six indices plus two more (weighted versions of  𝑖𝑖𝐹𝐹; see Sections 7.3 and 
7.4) is given in Figure 4 for Table 2 where n11 ∈ [0, 14]. We shall now discuss some of the key 
features of these indices and discuss their behaviour in terms of n11. The value of each index, 
its bounds, and the value of index under the assumption are summarised in Table 3 for the four 
data sets in Figure 1. 

7.2 Features of Finley’s 𝑖𝑖𝐹𝐹 

Suppose we consider Finley’s index 𝑖𝑖𝐹𝐹. A little bit of algebra shows that it can be alternatively, 
and equivalently, expressed as: 

𝑖𝑖𝐹𝐹 = 2
n11
n

+
n2• − n•1

n
 

so that 𝑖𝑖𝐹𝐹 is a linear function of n11. This alternative expression tells us that, when analysing 
Finley’s data, since n2• is very large in comparison to n1• and any value that n11 can take then 
𝑖𝑖𝐹𝐹 ≈ n2• n⁄ ≲ 1, where “≲” is used to mean “less than but approximately equal”. For Table 2: 

𝑖𝑖𝐹𝐹 = 0.002n11 + 0.9582 ≲ 1 . 

Using the Fréchet bounds of n11, the bounds of 𝑖𝑖𝐹𝐹 are: 

L𝐹𝐹 =
n2• − n1•

n
< 𝑖𝑖𝐹𝐹 < 1 + min�0,

2(n•1 − n1•)
n

� = U𝐹𝐹 . 

For Finley’s data n2• ≫ n1•, n2• ≲ n and n1• ≈ n•1; see Figure 1. Therefore,  

L𝐹𝐹 ≲ 𝑖𝑖𝐹𝐹 ≲ U𝐹𝐹 ≲ 1. 



27 
 

Since the marginal frequencies of Table 2 are assumed fixed and known, 𝑖𝑖𝐹𝐹 is bounded by 
[0.9582, 0.9882] and this can be seen by the solid black line in Figure 3. So, the observed 
value of 𝑖𝑖F = 0.9818 lies close to the upper bound suggesting that the predictions made by 
Finley are vastly better than if the predictions were made by chance. Such a conclusion would 
also be valid for ANY value that n11 can take in the interval [0, 14]. Therefore, since the lower 
and upper bound of  𝑖𝑖𝐹𝐹 are both close to 1, irrespective of how many tornadoes that were 
predicted and observed, an analysis of Finley’s April 1884 data using his index will mean that 
his predictions will ALWAYS be extremely accurate. In fact, if none of his predictions occurred, 
so that  n11 = 0,  then 𝑖𝑖𝐹𝐹 = 0.9582; a value that is wholly dominated by n22. If 𝑖𝑖𝐹𝐹 is viewed 
in the same context as a typical measure of association with a maximum of 1, it may be 
interpreted as a very high value, especially when the minimum of zero is possible for a generic 
2 × 2 contingency table. However, this is not the case. Clearly, the very large values that 
Finley’s index take across  n11 ∈ [0, 14] shows how poor a quantity it is. This behaviour in the 
index is also observed for the March, May (8-hour observation) and May (10-hour observation) 
predictions and observations Finley made; the bounds of his index for these data sets are very 
similar to the bounds of his April records and are 𝑖𝑖𝐹𝐹 ∈ [0.9274,   0.9611], 𝑖𝑖𝐹𝐹 ∈
[0.9570, 0.9928] and 𝑖𝑖𝐹𝐹 ∈ [0.9407,   0.9778], respectively. Aggregating the cell frequencies 
of the four tables in Figure 1 yields the global bounds for Finley’s index 𝑖𝑖𝐹𝐹 ∈
[0.9461,   0.9825]. 

If we were to consider Finley’s index under complete independence, then: 

𝑖𝑖𝐹𝐹|𝐼𝐼 = 2
𝑒𝑒
n

+
n2• − n•1

n
 

       = 2
n1•n•1

n2
+

n2• − n•1

n
 

where the addition of “|𝐼𝐼” in the subscript indicates the index is calculated assuming there is 
independence between the variables of the 2 × 2 table. Therefore, for Table 2, the index would 
be: 

𝑖𝑖𝐹𝐹|𝐼𝐼 = 2
25 ∙ 14
9342

+
909 − 14

934
= 0.9590 

which lies near the lower bound of the interval [0.9582, 0.9882] as does 𝑒𝑒 = 0.3747 when 
compared with the range of values n11 can take for Table 2. 

7.3 A Weighted Finley Index (Version 1) 

Gilbert (1884, p. 166) remarked on the flaw induced by the large value of n22 when calculating 
Finley’s index, 𝑖𝑖𝐹𝐹: 
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“This fallacy consists in the assumption that verification of the predictions of a rare 
event may be classed with verifications of the predictions of frequent events, 
without any system of weighting.” 

Gilbert did not propose a weighted version of 𝑖𝑖𝐹𝐹 but we shall provide two simple adaptations 
of Finley’s index and examine whether there is any advantage in doing so. We concede that 
there may well be various other ways in which a weighted Finley index can be defined but the 
first one we discuss is: 

𝑖𝑖𝐹𝐹(𝑤𝑤) =
𝑤𝑤n11 + (1 −𝑤𝑤)n22

n
 

for a given weight 𝑤𝑤 ∈ [0, 1]. This index allows one to weight the predictions of a rare event 
(tornadoes occurring) and a frequent event (tornado not occurring) differently. It is immediately 
clear that if n11 and n22 were given equal weighting so that 𝑤𝑤 = 0.5 then 𝑖𝑖𝐹𝐹(0.5) = 0.5𝑖𝑖𝐹𝐹. 
However, regardless of the choice of 𝑤𝑤, 𝑖𝑖𝐹𝐹 > 𝑖𝑖𝐹𝐹(𝑤𝑤) and this seems, on the surface, to be an 
acceptable property since 𝑖𝑖𝐹𝐹 > 0.95 for all possible values of n11 given the marginal totals of 
Table 2. This weighted version of Finley’s index can be alternatively expressed as a linear 
function of 𝑤𝑤 by: 

𝑖𝑖𝐹𝐹(𝑤𝑤) = 𝑤𝑤 �
n11 − n22

n
� +

n22
n

 

            = −𝑤𝑤 �
n2• − n•1

n
� + �

n11 + n2• − n•1

n
� . 

Since n11 ≪ n22 or, alternatively, because n•1 ≪ n2•, this relationship shows that the 
coefficient of 𝑤𝑤 is, approximately, −1 with an intercept of, approximately, +1 so that: 

𝑖𝑖𝐹𝐹(𝑤𝑤) ≈ −𝑤𝑤 + 1 

and the magnitude of 𝑖𝑖𝐹𝐹(𝑤𝑤) is dominated far more by the choice of 𝑤𝑤 than the cell frequencies 
of the 2 × 2 contingency table. For example, the relationship between 𝑖𝑖𝐹𝐹(𝑤𝑤) and 𝑤𝑤 for Table 
2 is: 

𝑖𝑖𝐹𝐹(𝑤𝑤) = −0.9582𝑤𝑤 + 0.9700 

Thus, unsurprisingly, 𝑖𝑖𝐹𝐹(0.5) = 0.4909 for Table 2; exactly half its 𝑖𝑖𝐹𝐹 = 0.9818 value. This 
weighted Finley index can also be written as a linear function of n11 by: 

𝑖𝑖𝐹𝐹(n11|𝑤𝑤) =
n11
n

+ (1 − 𝑤𝑤) �
n2• − n•1

n
�. 

However, this relationship shows that the change in the index with respect to n11 is very small 
– only 1 n⁄  since the sample size for each of Finley’s data sets is quite large; corroborating the 
property that the impact of the cell frequencies on the index is negligible. This expression of 
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the weighted Finley index also shows that it is under the influence more by the intercept than 
the slope, an intercept which is dependent only on the marginal frequencies and the choice of 
𝑤𝑤. In fact, since n2• ≫ n•1 for Finley’s data the intercept will be a little less than 1 −𝑤𝑤 so that: 

𝑖𝑖𝐹𝐹(𝑤𝑤) ≲ −𝑤𝑤 + 1 

for all values of n11. This again shows that the magnitude of the index will be influenced more 
by the choice of 𝑤𝑤 than by any of the elements of the 2 × 2 contingency table. For Table 2, this 
relationship is: 

𝑖𝑖𝐹𝐹(n11|𝑤𝑤) = 0.0011n11 + 0.9582(1 − 𝑤𝑤) ≈ −𝑤𝑤 + 1. 

For example, 

𝑖𝑖𝐹𝐹(n11|0.6) = 0.0011n11 + 0.5749 

Which is depicted by the red dashed line in Figure 3. Therefore, by weighting the (1,1)th and 
(2,2)th cell frequencies of Finley’s data like we have, this shows that 𝑖𝑖𝐹𝐹(𝑤𝑤) has no additional 
benefit when compared with 𝑖𝑖𝐹𝐹 other than to reduce the scale of the index by about −𝑤𝑤 + 1. 
To further assess whether  𝑖𝑖𝐹𝐹(𝑤𝑤) is of greater utility than Finley’s index, 𝑖𝑖𝐹𝐹(𝑤𝑤) is bounded by: 

                       0 ≤ L𝐹𝐹|𝑤𝑤 =
(1 − 𝑤𝑤)(n2• − n•1)

n
< 𝑖𝑖𝐹𝐹(𝑤𝑤) < 

                                                                   
min(n1•, n•1)

n
+

(1 − w)(n2• − n•1)
n

= U𝐹𝐹|𝑤𝑤 < 1 

Since  (n2• − n•1) n⁄ ≈ 1 and with n ≥ n1• and n ≥ n•1 for Finley’s data then L𝐹𝐹|𝑤𝑤 and U𝐹𝐹|𝑤𝑤 
will both be approximately −𝑤𝑤 + 1. This result can also be obtained from 𝑖𝑖𝐹𝐹(n11|𝑤𝑤) by also 
noting that 0 ≲ n11 n⁄  for Finley’s data.  

If the advice of Janson & Vegelius (1981) is followed so that n22 is ignored from the calculation 
of the bounds of 𝑖𝑖𝐹𝐹(𝑤𝑤) then 𝑤𝑤 = 1 and: 

L𝐹𝐹|1 = 0 < 𝑖𝑖𝐹𝐹(1) =
n11
n

<
min(n1•, n•1)

n
= U𝐹𝐹|1 

which coincides with the Fréchet bounds of n11 when analysing Finley’s data. However, if 
equal weights are given to n11 and n22 so that 𝑤𝑤 = 0.5 then for Table 2: 

L𝐹𝐹|0.5 = 0.4732 < 𝑖𝑖𝐹𝐹(0.5) < 0.4945 = U𝐹𝐹|0.5 

which, like 𝑖𝑖𝐹𝐹 ∈ [0.92,   0.97], is a very narrow interval with 𝑖𝑖𝐹𝐹(0.5) = 0.4909 lying very 
close to its upper bound. When 𝑤𝑤 = 0.6 then 𝑖𝑖𝐹𝐹(0.6) is bounded by 

L𝐹𝐹|0.6 = 0.3833 < 𝑖𝑖𝐹𝐹(0.6) < 0.3987 = U𝐹𝐹|0.6 . 
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These results suggest that weighting n11 and n22 differently does not have any practical impact 
on the magnitude of 𝑖𝑖𝐹𝐹(𝑤𝑤) and the cell frequencies have very little bearing on it either. 
Therefore, irrespective of the choice of 𝑤𝑤, there seems to be little advantage in using 𝑖𝑖𝐹𝐹(𝑤𝑤) as 
an alternative to 𝑖𝑖𝐹𝐹. 

7.4 A Weighted Finley Index (Version 2) 

The second simple version of 𝑖𝑖𝐹𝐹 that allows for the incorrect predictions that Finley made to 
be included is to define it so that: 

𝑗𝑗𝐹𝐹(𝑤𝑤) =
𝑤𝑤(n11 + n22) + (1 − 𝑤𝑤)(n12 + n21)

n
. 

for 𝑤𝑤 ∈ [0, 1]. When 𝑤𝑤 = 1 then 𝑗𝑗𝐹𝐹(1) = 𝑖𝑖𝐹𝐹 while 𝑤𝑤 = 0.5 gives  𝑗𝑗𝐹𝐹(0.5) = 0.5. Otherwise, 
this index means that n12 and n21 are allowed to influence the magnitude of the index. This is 
a potential benefit since it means that less emphasis can be placed on n22 than when calculating 
𝑖𝑖𝐹𝐹. However, this is at the cost of also placing less emphasis on n11. 

The index 𝑗𝑗𝐹𝐹(𝑤𝑤) can be expressed as a function of 𝑤𝑤, so that: 

𝑗𝑗𝐹𝐹(𝑤𝑤) = 𝑤𝑤 �1 −
2(n1• + n•1 − 2n11)

n
� +

n1• + n•1 − 2n11
n

 . 

Since (n1• + n•1 − 2n11) n⁄ ≈ 0 for all four of Finley’s data sets, an approximation of this 
function is: 

𝑗𝑗𝐹𝐹(𝑤𝑤) ≈ 𝑤𝑤 

irrespective of the value of any of the cells of the contingency table . This version of the 
weighted Finley index can also be expressed as a function of n11 by 

𝑗𝑗𝐹𝐹(n11|𝑤𝑤) = −
2(1 − 2𝑤𝑤)

n
n11 + �𝑤𝑤 +

(1 − 2𝑤𝑤)(n1• + n•1)
n

� . 

Again, since n is large, then −2(1 − 2𝑤𝑤) n⁄ ≲ 0 so that the slope of this function is 
approximately zero. If 𝑤𝑤 < 0.5 then −2(1 − 2𝑤𝑤) n⁄ ≲ 0 while − 2(1 − 2𝑤𝑤) n⁄ ≳ 0 when 
𝑤𝑤 > 0.5. Since (n1• + n•1) n⁄ ≲ 1 for Finley’s data, this function has an intercept of, 
approximately, 𝑤𝑤. Thus, 𝑗𝑗𝐹𝐹(𝑤𝑤) ≲ 𝑤𝑤 when  𝑤𝑤 > 0.5 and 𝑗𝑗𝐹𝐹(𝑤𝑤) ≳ 𝑤𝑤 when 𝑤𝑤 < 0.5. For 
example, analysing Table 2 when 𝑤𝑤 = 0.3 gives the function: 

𝑗𝑗𝐹𝐹(0.3) = −0.0009n11 + 0.3167 ≳ 0.3 

so that 𝑗𝑗𝐹𝐹(0.3) ∈ [0.3047, 0.3167], while 

𝑗𝑗𝐹𝐹(0.6) = 0.0004n11 + 0.5916 ≲ 0.6 
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so that 𝑗𝑗𝐹𝐹(0.6) ∈ [0.5916, 0.5972]; a plot of n11 versus 𝑗𝑗𝐹𝐹(0.6) is depicted by the green dashed 
line in Figure 4.  In fact, for 𝑤𝑤 ∈ [0, 1], the range of values for the slope of 𝑗𝑗𝐹𝐹(n11|𝑤𝑤) when 
analysing Table 2 is  [−0.00214, 0.00214] and is exactly zero at 𝑤𝑤 = 0.5, while the range of 
its intercept values is [0.0418, 0.9582] and whose values correspond, approximately, to the 
choice of 𝑤𝑤 ∈ [0, 1]. Therefore, like 𝑖𝑖𝐹𝐹(𝑤𝑤), there seems to be little advantage in using 𝑗𝑗𝐹𝐹(𝑤𝑤) 
as an alternative to 𝑖𝑖𝐹𝐹. 

7.5 Features of Gilbert’s 𝑣𝑣 

As we discussed in Section 4.2, Gilbert (1884, p. 166) was concerned that the prediction of a 
tornado occurring or not was “classed together as of equal difficulty”. In proposing his index, 
𝑣𝑣, Gilbert was also cognisant of the range of values it could take stating: 

“If [n11, n1• and n•1] are numerically identical, it is evident that the ratio of 
verifications will be unity. If [n11] = 0, the ratio of verification is also 0. Between 
these limits fall all practical cases” 

Unlike Finley, Gilbert was thus aware of the bounds of his 𝑣𝑣 even for the extreme cases when 
n11 = n1• = n•1 and n11 = 0. A more general set of bounds for 𝑣𝑣 can be obtained using the 
bounds of n11 ∈ [L, U] and are: 

L𝑣𝑣 =
max(0, n•1 − n2•)

n1• + min(n1•, n2•) < 𝑣𝑣 <
min(n1•, n•1)
max(n1•, n•1) = U𝑣𝑣 . 

However, since min(n1•, n2•) = n1• and  n•1 ≪ n2• for Finley’s data, the lower limit of 𝑣𝑣 
simplifies to L𝑣𝑣 = 0 while U𝑣𝑣 = 1 if and only if n1• = n•1, otherwise U𝑣𝑣 < 1. Therefore, for 
Table 2, 𝑣𝑣 is bounded by [0, 0.5600]. Since 𝑣𝑣 = 0.3929 for this data, it suggests that the ratio 
of verification is quite high, even keeping in mind that the maximum possible value it can take 
is 0.56 and not 1. For the March, May (8-hour) and May (10-hours) observations, 𝑣𝑣 ∈
[0, 0.3023], 𝑣𝑣 ∈ [0, 0.7143] and 𝑣𝑣 ∈ [0, 0.4545], respectively. 

Since n11 ∈ [0, 14] for Table 2, Gilbert’s 𝑣𝑣 can be expressed as a function of n11 so that: 

𝑣𝑣( n11) =
n11

39 − n11
 

which is depicted by dark blue dashed line in Figure 4. Under independence, Gilbert’s 𝑣𝑣 is: 

𝑣𝑣|𝐼𝐼 =
n1•n•1

n(n1• + n•1) − n1•n•1
 

so that: 

𝑣𝑣|𝐼𝐼 =
25 ∙ 14

934 ∙ (25 + 14) − 25 ∙ 14
= 0.0097 
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for Table 2. Comparing this small value with its observed value highlights that Gilbert’s index 
appears to be more appropriate index on which to assess the verification of the occurrence of a 
tornado than Finley’s index or its two weighted versions described in Sections 7.3 and 7.4. The 
shape of Gilbert’s ratio of verification is certainly more aligned to the shape of Pearson’s chi-
squared statistic (Figure 3) that the Finley based indices. 

7.6 Features of Gilbert’s 𝑖𝑖𝐺𝐺 

Since Gilbert amended his ratio of verification, 𝑣𝑣, by subtracting 𝑒𝑒 from its numerator and 
denominator, its bounds are an emendation of [L𝑣𝑣, U𝑣𝑣] and are: 

L𝐺𝐺 =
max(0, n•1 − n2•) − 𝑒𝑒

n1• + min(n•1, n2•) − 𝑒𝑒
< 𝑖𝑖𝐺𝐺 <

min(n1•, n•1) − 𝑒𝑒
max(n1•, n•1) − 𝑒𝑒

= U𝐺𝐺 . 

Since n•1 ≪ n2• for Finley’s data, these bounds simplify to: 

0 < L𝐺𝐺 = −
n1•n•1

n2 − n2•n•2
< 𝑖𝑖𝐺𝐺 < min �

n1•n•2

n2•n•1
,
n2•n•1

n1•n•2
� = U𝐺𝐺 ≤ 1 

so that the minimum bound is always negative. Thus, 𝑖𝑖𝐺𝐺 ∈ [−0.0097, 0.5533] for Table 2 so 
that there is very little difference between this interval and the bounds of 𝑣𝑣 ∈ [0, 0.5600]. Thus, 
subtracting 𝑒𝑒 from the numerator and denominator does not greatly impact the bounds of 𝑖𝑖𝐺𝐺 
when compared with the bounds of 𝑣𝑣. We can also obtain the bounds of 𝑖𝑖𝐺𝐺 for the March, May 
(8-hours) and May (10-hours) observations; they are 𝑖𝑖𝐺𝐺 ∈ [−0.0131,   0.2904], 𝑖𝑖𝐺𝐺 ∈
[−0.0106,   0.7091] and 𝑖𝑖𝐺𝐺 ∈ [−0.0129,   0.4443], respectively. Therefore, removing what he 
described as the “fortuitous coincidences” (𝑒𝑒)  from the numerator and denominator of 𝑣𝑣 has 
not greatly impacted the magnitude of 𝑖𝑖𝐺𝐺 for the March and April observations but it has 
affected the values that 𝑖𝑖𝐺𝐺 can take for the two May data sets. Despite this, since independence 
between the variables results in 𝑖𝑖𝐺𝐺 = 0, we posit that the observed value of 𝑖𝑖𝐺𝐺 = 0.3846, being 
more similar to its upper bound than its value at independence, provides sufficient evidence to 
declare that Gilbert’s index is a more suitable index for tornado prediction purposes than 
Finley’s index.  

Since Gilbert proposed a revision of his 𝑣𝑣 index resulting in 𝑖𝑖𝐺𝐺, it is then of interest to compare 
the two indices across the range of n11 ∈ [L, U] values. While the lower bound of 𝑣𝑣, L𝑣𝑣, is 
always zero, L𝐺𝐺 ≲ 0. Also, since n2• ≈ n•2 for all four of Finley’s data sets then U𝐺𝐺 ≈ U𝑣𝑣 = 1; 
we have commented in the previous paragraph that the two bounds are near identical for Table 
2. The general shape of the two indices can be compared by observing that the first derivative 
of 𝑣𝑣 and 𝑖𝑖𝐺𝐺 with respect to n11 is: 

d
dn11

𝑣𝑣 =
n12 + n21

(n1• + n•1 − n11)2 

and 
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d
dn11

𝑖𝑖𝐺𝐺 =
n12 + n21

(n1• + n•1 − n11 − 𝑒𝑒)2 , 

respectively. Since 𝑒𝑒 is very small for Table 2 (𝑒𝑒 = 0.3747) – and also for the other three of 
Finley’s data sets – then it has a negligible effect on the derivative of 𝑖𝑖𝐺𝐺. Thus, the behaviour 
of 𝑖𝑖𝐺𝐺 and 𝑣𝑣 are virtually identical for analysing Finley’s data. This can also be seen by observing 
how close the two blue lines of Figure 4, representing the two indices, lie to each other. While 
there are practical benefits in removing 𝑒𝑒 from the numerator and denominator of 𝑣𝑣 doing so 
has virtually no impact on the value of the two indices for Table 2. 

7.7 Features of Peirce’s 𝑖𝑖𝑃𝑃 

Suppose we now turn our attention to the features of Peirce’s index and assess its suitability 
for assessing tornado predictions. Peirce’s index can be alternatively expressed as: 

𝑖𝑖𝑃𝑃(n11) = n11 �
1

n•1
+

1
n•2

� −
n1•

n•2
 

so that, like Finley’s index, 𝑖𝑖𝑃𝑃is linear function of n11. For example, for Table 2 

𝑖𝑖𝑃𝑃(n11) = 0.0725n11 − 0.02717 

which is depicted dashed grey line in Figure 4. Peirce’s index is bounded by: 

L𝐺𝐺 = max�0,
(n•1 − n2•)(n•2 + n1•)

n1•n2•
� −

n1•

n•2
< 𝑖𝑖𝑃𝑃 < min �

n1•

n•1
, 1 +

n•1 − n1•

n•2
� = U𝐺𝐺 . 

Since n•1 − n2• < 0 when studying Finley’s data and n•1 − n1• is very small relative to the 
very large n•2, then the bounds can be simplified giving: 

L𝐺𝐺 = −
n1•

n•2
< 𝑖𝑖𝑃𝑃 < min �

n1•

n•1
, 1� ≈ U𝐺𝐺  

so that the exact lower bound of 𝑖𝑖𝑃𝑃 is always negative. A further approximation of these bounds 
can be made by noting that, when compared with the four sample sizes of Finley’s data n•2 ≫
n1• and (for Table 2) n1• ≈ n•1. Thus, like Gilbert’s index: 

L𝑃𝑃 ≈ 0 < 𝑖𝑖𝑃𝑃 < 1 ≈ U𝐺𝐺 . 

For example, the bounds of 𝑖𝑖𝑃𝑃 for Table 2 are 𝑖𝑖𝑃𝑃 ∈ [−0.0272, 0.9880] ≈ [0, 1] as expected; 
see also Figure 4. For the March, May (10-hours) observations/predictions the bounds of 𝑖𝑖𝑃𝑃 all 
approximately [0, 1]; [−0.0567, 0.9604] and [−0.0415, 0.9774] respectively. Although this 
approximation of the bounds is not always satisfied since 𝑖𝑖𝑃𝑃 ∈ [−0.0184, 0.7143] for the May 
(8-hours) data set. 
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Suppose we now assess Peirce’s index under the assumption that the row and column variables 
of a 2 × 2 contingency table are independent. Then: 

𝑖𝑖𝑃𝑃|𝐼𝐼 =
n1•n•1

n
�

1
n•1

+
1

n•2
� −

n1•

n•2
 

which, after further simplification, is equal to zero.  

7.8 Features of Doolittle’s 𝑠𝑠𝐷𝐷 

To investigate the features of Doolittle’s 𝑠𝑠𝐷𝐷 we can see that the parabolic relationship it has 
with n11 yields a function that has positive concavity. For Table 2 this relationship is 

𝑠𝑠𝐷𝐷(n11) = 0.0029n112 . 

and this is depicted by the dashed pink line in Figure 4. More generally, the first derivative of 
𝑠𝑠𝐷𝐷 with respect to n11 is: 

d
dn11

𝑠𝑠𝐷𝐷 =
2n11

n•1n1•
 

so that its turning point exists at n11 = 0 which is also the minimum value that n11 can take 
for the four data sets of Finley’s data in Figure 1. The concavity of 𝑠𝑠𝐷𝐷 is: 

d2

dn112
𝑠𝑠𝐷𝐷 =

2
n•1n1•

> 0 

so that the turning point of 𝑠𝑠𝐷𝐷 coincides with its minimum value of zero at n11 = 0. This second 
derivative also shows that the shape of this relationship is only dependent on n•1 and n1• so 
that the sample size and the large (2, 2)th value have no bearing on its shape. The quadratic 
relationship also suggests that there are two local maxima, although since the minimum exists 
at the lower bound the global maximum lies at the upper bound of the interval: 

L𝑠𝑠 = 0 < 𝑠𝑠𝐷𝐷 < min �
n1•

n•1
,
n•1

n1•
� = U𝑠𝑠 

where the index will have a maximum of 1 only when n1• = n•1, otherwise, 𝑠𝑠𝐷𝐷 < 1. For Table 
2, the range of values that 𝑠𝑠𝐷𝐷 can take is: 

L𝑠𝑠 = 0 < 𝑠𝑠𝐷𝐷 < 0.5600 = U𝑠𝑠 . 
If predicting the number of tornadoes happens completely by chance, then Doolittle’s index 
simplifies to: 

𝑠𝑠𝐷𝐷|𝐼𝐼 =
n1•n•1

n2
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and is the expected value of the proportion of successfully predicted tornadoes, p11 = n11 n⁄ , 
when the rows and columns of the 2 × 2 table are completely independent. Therefore, under 
independence Doolittle’s index for Table 2 is: 

𝑠𝑠𝐷𝐷|𝐼𝐼 =
25 ∙ 14
9342

= 0.0004 

which lies very close to the smallest value of n11 assuming the marginal frequencies of Table 
2 are known. 

7.9 Features of Doolittle’s 𝑖𝑖𝐷𝐷 

Like 𝑠𝑠𝐷𝐷, Doolittle’s 𝑖𝑖𝐷𝐷 is a quadratic function of n11 with positive concavity. For Table 2, this 
function is: 

𝑖𝑖D(n11) = 0.00298(n11 − 0.3747)2 

which, upon expansion, is (for all practical purposes) identical to 𝑠𝑠𝐷𝐷(n11). This (near) 
equivalency can be seen by observing that the solid yellow line depicting 𝑖𝑖D(n11) in Figure 4 
lies (with the slightest of deviations) on top of the line depicting 𝑠𝑠D(n11). In fact, since 
X2(n11) ∝ 𝑖𝑖D(n11), the yellow solid line in Figure 4 is identical in shape to the curve depicted 
in Figure 3. 

In more general terms, the first and second derivative of 𝑖𝑖D with respect to n11 is: 

d
dn11

𝑖𝑖𝐷𝐷 =
2n2

n1•n•1n2•n•2
�n11 −

n1•n•1

n
� 

and 

d2

dn112
𝑖𝑖𝐷𝐷 =

2n2

n1•n•1n2•n•2
 

respectively. Therefore, the minimum value that 𝑖𝑖𝐷𝐷 can take is when there is independence 
between the row and column variables of the 2 × 2 table; that is, when n11 = 𝑒𝑒 = 0.3750 for 
Table 2 (this feature is shared with 𝑠𝑠D). Thus, there are two local maxima which lie at the 
bounds: 

L𝐷𝐷 =
{min(n1•n•1, n2•n•2)}2

n1•n•1n2•n•2
< 𝑖𝑖𝐷𝐷 <

{min(n1•n•2, n2•n•1)}2

n1•n•1n2•n•2
= U𝐷𝐷 . 

These bounds can be simplified further to: 

0 ≲ L𝐷𝐷 = min �
n1•n•1

n2•n•2
,
n2•n•2

n1•n•1
� < 𝑖𝑖𝐷𝐷 < min �

n1•n•2

n2•n•1
,
n2•n•1

n1•n•2
� = U𝐷𝐷 < 1.  

Since n1• ≪ n2• and n1• ≪ n2• for Finley’s data then: 
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0 ≲ L𝐷𝐷 =
n1•n•1

n2•n•2
< 𝑖𝑖𝐷𝐷 < min �

n1•n•2

n2•n•1
,
n2•n•1

n1•n•2
� = U𝐷𝐷 < 1 . 

so that the global maximum of 𝑖𝑖𝐷𝐷 lies at the upper bound of this interval. Note that the upper 
bound of  𝑖𝑖𝐷𝐷 is identical to the upper bound of 𝑖𝑖𝐺𝐺 for all 2 × 2 contingency tables and not just 
for Finley’s data. For Table 2: 

L𝐷𝐷 = 0.0004 < 𝑖𝑖𝐷𝐷 < 0.5533 = U𝐷𝐷 

where the (minimum) turning point coincides with independence that lies near close to the 
lower bound.  

Suppose we now compare the features of 𝑖𝑖𝐷𝐷 and 𝑠𝑠𝐷𝐷. We first note that the bounds of both 
indices are approximately the same; L𝑠𝑠 ≲ L𝐷𝐷 since n1•n•1 ≪ n2•n•2 while U𝑠𝑠 ≈ U𝐷𝐷 when 
n2• ≈ n•2 which is certainly the case for Finley’s data. A comparison of the concavity of 𝑖𝑖𝐷𝐷 and 
𝑠𝑠𝐷𝐷 can be made by observing that: 

d2

dn112
𝑖𝑖𝐷𝐷 = �

d2

dn112
𝑠𝑠𝐷𝐷� �

n
n2•

∙
n

n•2
� . 

Since n2• ≲ n and n•2 ≲ n then: 

d2

dn112
𝑠𝑠𝐷𝐷 ≲

d2

dn112
𝑖𝑖𝐷𝐷 

and are equivalent when all of the sample is allocated into the second row and second column 
categories (which was not observed in Finley’s predictions/observations and is not assumed to 
be a legitimate allocation of marginal frequencies). For Table 2, d2𝑖𝑖𝐷𝐷 dn112⁄ = 0.00596 and 
d2𝑠𝑠𝐷𝐷 dn112⁄ = 0.00571 and so, since the bounds, and shape of Doolittle’s two indices are near 
equivalent, their behaviour across the interval of n11 values is approximately the same. This 
suggests that, while Doolittle felt compelled to obtain his “vitiated probability”, there was no 
practical reason for doing so. Figure 4 shows that the behaviour of 𝑠𝑠𝐷𝐷 and 𝑖𝑖𝐷𝐷 across the interval 
n11 ∈ [0, 14] are near equivalent. 

7.10 Which Index? 

An obvious and reasonable question that one may ask at this point is which index should be 
most preferred? 

If Pearson’s mean square contingency is the benchmark on which any evaluation is based, then 
it should now be clear that Doolittle’s 𝑖𝑖𝐷𝐷 is the index of choice for analysing ANY 2 × 2 
contingency tables since 𝑖𝑖𝐷𝐷 = ϕ2. However, if we were to restrict ourselves to the analysis of 
Finley's data then Doolittle’s 𝑠𝑠𝐷𝐷 works equally well since 𝑒𝑒 ≈ 0. Another advantage of using 
Doolittle’s 𝑖𝑖𝐷𝐷 is that it is equivalent to Cohen’s kappa (Cohen, 1960); see Armistead (2016) for 
more of a discussion of this equivalency. 
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FIGURE 4. Plot of the n11 versus 𝑖𝑖𝐹𝐹, 𝑖𝑖𝐹𝐹(0.6), 𝑗𝑗𝐹𝐹(0.6), 𝑣𝑣, 𝑖𝑖𝐺𝐺, 𝑠𝑠𝐺𝐺, 𝑖𝑖𝐷𝐷 and 𝑖𝑖𝑃𝑃 for  

Finley’s April predictions and observations (Table 2) 
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Table 3. Value of each observed index, its value under independence and the interval of possible 
values it takes for the four data sets and their aggregation in Figure 1 

Index/Month Index Independence Bounds 

𝑖𝑖𝐹𝐹    

March 0.9429 0.9292 [0.9274, 0.9611] 
April 0.9818 0.9590 [0.9582, 0.9882] 

May (8 hours) 0.9857 0.9579 [0.9570, 0.9928] 
May (10 hours) 0.9519 0.9422 [0.9407, 0.9778] 

Aggregate 0.9661 0.9474 [0.9461, 0.9825] 
𝑖𝑖𝐹𝐹(0.6)    

March 0.3787 0.3719 [0.3709, 0.3878] 
April 0.3951 0.3837 [0.3833, 0.3983] 

May (8 hours) 0.3971 0.3832 [0.3828, 0.4007] 
May (10 hours) 0.3819 0.3771 [0.3763, 0.3948] 

Aggregate 0.3884 0.3791 [0.3785, 0.3966] 
𝑗𝑗𝐹𝐹(0.6)    

March 0.5886 0.5858 [0.5855, 0.5922] 
April 0.5964 0.5918 [0.5916, 0.5976] 

May (8 hours) 0.5971 0.5916 [0.5914, 0.5986] 
May (10 hours) 0.5904 0.5884 [0.5881, 0.5956] 

Aggregate 0.5932 0.5895 [0.5892, 0.5965] 
𝑣𝑣    

March 0.1200 0.0131 [0, 0.3023] 
April 0.3929 0.0097 [0, 0.5600] 

May (8 hours) 0.5000 0.0106 [0, 0.7143] 
May (10 hours) 0.1034 0.0129 [0, 0.4545] 

Aggregate 0.2276 0.0122 [0, 0.5100] 
𝑖𝑖𝐺𝐺     

March 0.1071 0 [-0.0131, 0.2904] 
April 0.3846 0 [-0.0097, 0.5533] 

May (8 hours) 0.4920 0 [-0.0106, 0.7091] 
May (10 hours) 0.0907 0 [-0.0129, 0.4443] 

Aggregate 0.2160 0 [-0.0122, 0.5009] 
𝑖𝑖𝑃𝑃    

March 0.4127 0 [-0.0567, 0.9604] 
April 0.7705 0 [-0.0272, 0.9880] 

May (8 hours) 0.5678 0 [-0.0184, 0.7143] 
May (10 hours) 0.2642 0 [-0.0415, 0.9774] 

Aggregate 0.5229 0 [-0.0363, 0.9822] 
𝑠𝑠D    

March 0.0644 0.0009 [0, 0.3023] 
April 0.3457 0.0004 [0, 0.5600] 

May (8 hours) 0.4571 0.0004 [0, 0.7143] 
May (10 hours) 0.0409 0.0008 [0, 0.4545] 

Aggregate 0.1537 0.0006 [0, 0.5100] 
𝑖𝑖D    

March 0.0536 0 [0.0001, 0.2904] 
April 0.3365 0 [0.0004, 0.5533] 

May (8 hours) 0.4480 0 [0.0005, 0.7091] 
May (10 hours) 0.0325 0 [0.0008, 0.4443] 

Aggregate 0.1420 0 [0, 0.5009] 
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Gilbert’s 𝑣𝑣 and 𝑖𝑖𝐺𝐺 work well for Finley’s data with the latter of these two being preferable in 
general since it incorporates any deviation n11 has from what is expected under independence 
(e). Recall that, like Doolittle’s two indices, both of Gilbert’s indices behave in a very similar 
way since 𝑒𝑒 ≈ 0 for Table 2.  

Peirce’s index performs admirably for gaining a broad understanding of the association and has 
the features that Yule espoused for assessing association. However, given the four options just 
discussed, there are better indices available. Although Baker and Kramer (2007) do point out 
that the maximum of 𝑖𝑖𝑃𝑃 coincides with the optimal point on a receiver operating characteristic 
curve and so has utility in that context. 

Despite the energy that followed the publication of Finley’s data and his index, and the 
excellent emendations that were made, it should be clear that his index is to be avoided. While 
this paper has made a point of ensuring that there may be options other than those presented in 
Sections 7.3 and 7.4 for better weighting the cells of a 2 × 2 contingency table, the weighted 
versions, 𝑖𝑖𝐹𝐹(𝑤𝑤) and 𝑗𝑗𝐹𝐹(𝑤𝑤), are also to be avoided. 

8 Curtis (1887) and His Concerns 

Before ending our discussion, we provide some brief context on some concerns raised by 
George E. Curtis (1887), a member of the US Signal Service before working at Washburn 
College, Kansas, USA (Frazier & Heckler, 1972, p. 8). While we showed in Section 7.6 that 
subtracting 𝑒𝑒 from the numerator and denominator of  𝑣𝑣, as Gilbert (1884) did (resulting in  𝑖𝑖𝐺𝐺), 
is not of practical use when analysing Finley’s data, Curtis (1887) agreed it was generally wise 
to do so saying: 

“To obtain a measure of the skill in prediction, the portion of the total success that 
is due to probable accidental coincidences must be eliminated, for only by doing so 
can the success of predictions of different phenomena be rendered comparable.” 

However, Curtis (1887) was critical of the assumption Finley and Gilbert implicitly made that 
tornadoes would occur uniformly across all districts adding: 

“To obtain 𝑒𝑒 when the predictions are made for more than one district, the formula 
requires an extension due to the fact that the occurrences are not distributed 
uniformly over the several districts, but have a relative frequency now fairly well 
determined . . . The relative frequency being known, the predictions might be given 
the same distribution by a sunspot prediction or mere guess. The value of 𝑒𝑒, 
therefore, must be computed for each district separately”.  

Curtis (1887, p. 70) then suggests that the overall expected number of correct tornado 
predictions across all d, say, districts should be calculated by: 
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where n1•k is the number of tornadoes predicted to have occurred in the kth district and n•1k is 
the number of tornadoes that occur in that district. Note here that Curtis (1887) calculates the 
expected number of correctly predicted tornadoes for each district separately BUT does so by 
dividing by sample size of all districts rather than the sample size of each district. If he had 
done so, the expectation would be defined by: 

𝑒𝑒 = �
n1•kn•1k

nk

d

k=1

 

where nk is the sample size of the kth district and this version of the global expected value can 
be seen in the Mantel-Haenzel statistic (Mantel & Haenszel, 1959, p. 736).  

Not only did Curtis (1887) question the appropriateness of Gilbert’s calculation of 𝑒𝑒 but he also 
thought that: 

“. . . the predictions of tornadoes for fixed districts is uneconomical” (p. 71) 

So, Curtis proposed that there should be an aggregation/pooling of some districts since: 

“. . . not only are the districts too small, but the whole system of fixed districts is 
inappropriate for making advantageous predictions” (p. 72). 

This was despite Finley’s (1884b, p. 86) recommendation that: 

“Tornadoes being remarkably local disturbances, the area for which predictions are 
made on any one day should be as limited as possible”. 

Curtis (1887) then proposes to aggregate some of the districts and suggested that such 
aggregations should be of a certain shape and size. He recommended that the shape of any 
district designed for tornado prediction and verification should either be rectangular where its 
length is 1.5 times its breadth or be elliptical where the semi-major and semi-minor axis lengths 
are of the same dimension. Regarding the size of the districts, they should be of dimension 
400x600 miles, or about 645x966 kilometres.  

Some of the statistical implications of spatial aggregation were raised much later by Gehlke & 
Biehl (1934) while Holt, Steel, Tranmer & Wrigley (1996) provide an excellent discussion of 
the history and some of the key issues. Entwined in spatial aggregation is the aggregation of 
data. The problems encountered with this type of aggregation, especially when it concerns 
stratified 2 × 2 contingency tables, is an ongoing issue in ecological inference (EI). EI is an 
area of contingency table analysis that is concerned with estimating the cell-counts (or some 
function of them) in stratified 2 × 2 contingency tables when all that is available for analysis 
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is the row and column margins of each stratum, or in Finley’s case, districts. Generally, the 
methods developed for performing EI have relied extensively on Bayesian techniques and one 
may refer to Goodman (1953), King (1997, 2004), Chambers & Steel (2001), Kousser (2001),  
King, Rosen & Tanner (2004), Wakefield (2004), Lau, Moore & Kellerman (2007), Hudson, 
Moore, Beh & Steel (2010),  Imai, Lu & Strauss (2011) and Knudson, Schoenbach & Becker 
(2021), and as excellent examples of the history, issues, solutions and computer packages 
available for performing EI. If one does not wish to make assumptions about the underlying 
nature of the data, or features of these techniques, the association structure of the variables of 
a 2 × 2 contingency table can be assessed using the aggregate association index; see, for 
example, Beh (2010), Beh, Tran & Hudson (2013, 2024) and Lombardo & Beh (2016). 

9 Discussion 

9.1 A Recap on the Contributions 

This paper has given some historical perspective to, and an evaluation of, the contributions of 
Finley and three of his successors to the analysis of contingency table. The timing is important 
since they occurred a decade or two prior to the work of Galton, Pearson and Yule – justifiably 
important figures in the origins of categorical data analysis and, more generally, statistical 
practice. Summing up much of the discussion made in the earlier sections of this paper, the 
statistical contributions of Finley, Gilbert, Peirce and Doolittle include: 

• Their analysis of the 2 × 2 contingency table, and the derivation of the indices in (largely) 
general terms but with a practical flavour on the data in Figure 1, 

• The awareness of Peirce (1884) that the indices described could be generalised to tables of 
size bigger than 2 × 2, even though such generalisations were not presented, 

• Gilbert’s (1884) quantification and rationalisation of 𝑒𝑒, the expected value of the (1, 1)th 
cell of the contingency table under the assumption of independence between the row and 
column variables, 

• Gilbert’s (1884) conception, interpretation, and usage of a difference measure Pearson 
(1904) would refer to as the “contingency” of a cell, and 

• Doolittle’s (1885) degree of logical connection, 𝑖𝑖D, that is equivalent to Pearson’s (1904) 
mean square contingency. 

The impact made by our quartet (and others not included in this discussion) was especially 
profound with Dowsell, Weiss & Johns (1993) pointing out that their influence was so 
pervasive during the period spanning the 1890’s to the early 20th century that it was regarded 
as the “dark age” of tornado prediction. This is because the tools that were becoming available 
to forecast tornados, or to verify how well these tools worked, were felt to be more harmful 
than helpful to the general public (Grice et al. 1999, p. 1345). Bradford (1999, p. 489) points 
out that in 1905 the US Weather Bureau Stations Regulations contained the statement 
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“Forecasts of tornadoes are prohibited” and this ban would be in place until 1938. Bradford 
(1999, p. 490) also added that  

“In spite of 4151 tornado deaths from 1920 to 1939, including 794 in 1925 alone, 
the Weather Bureau did nothing to try to reduce the loss of life from these natural 
disasters . . . the state of tornado forecasting and warnings was nonexistent in 1940 
as it had been in 1870.” 

9.2 On the Lack of Attention Received from those in the UK 

If these contributions to the meteorological literature had such importance in the evolving 
statistical literature an obvious question to ask is “why aren’t these early pioneers included 
more than they are in discussions on the early history of contingency table analysis?”. There 
are certainly exceptions including Goodman and Kruskal (1959, Section 3.1), Rovine & 
Anderson (2004), Baker & Kraner (2007) and Armistead (2016) who discussed some aspects 
of the work of Finley, Gilbert, Peirce and Doolittle. However, the works described in this paper 
by our quartet are worthy of more consideration than they are given. There is no doubt a 
multitude of intermingled answers to this question, but a brief account is given of two rather 
broad possible reasons, especially given the state global scientific research at the time: 

• Use of Vernacular: Throughout our discussion we have noted that much of the language 
used by Finley, Gilbert, Peirce and Doolittle to describe random events was dominated by 
terms such as “chance”, “coincidence” and “fortuitous”. Their use, like the work of Galton, 
Pearson and Yule, shows that Finley, Gilbert, Peirce and Doolittle were not concerned with 
causal links between variables but were very much interested in what we now understand to 
be “association”. This may be simply because of the nature of the variables they studied –
Predicted and Occurrence – do not permit a natural causal link to be investigated. Although 
this appears contrary to Pearson (1930, p. 1) who wrote: 

“Up to 1889 men of science had thought only in terms of causation, in future they 
were to admit another working category, that of correlation . . .”. 

when writing about Galton’s development of correlation; see also Aldrich (1995, p. 365) for 
a detailed discussion on this issue. However, as we describe next, it is very possible that 
Pearson was speaking only on behalf of the “men of science” in the UK and not of those in 
the US or elsewhere. Very few statisticians and other allied practitioners of statistics today 
use the term’s “chance” or “coincidence” in the literature (although they are often used when 
teaching introductory undergraduate service statistics courses), instead using “correlation” 
and “association”. Despite this, the very essence of these (and other similar) terms aligns 
perfectly with how statisticians over the past 120 years have described the meaning of 
“correlation” and “association”. It must be kept in mind that the difference in vernacular is 
not in how Finley et al. used their terms but in the timing of when “correlation” and 
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“association” were first used. As it was noted in Section 6.2, “association” was first used by 
Yule (1900) while “correlation” was used by Galton (1888) and these terms have been used 
extensively throughout the statistical literature ever since. So, it very much seems that the 
statistical spirit of the work undertaken during the “Finley affair” was still very much alive 
even if they didn’t use the same terms developed and adopted at the turn of the 20th century. 

• The Continental or Discipline Divide?: It may be tempting to argue that the lack of 
awareness of the “Finley affair” by those in UK and Europe may be due to the distance that 
lies between the two continents so that there was a general lack of awareness of the work 
being done. Was it, instead, due to some bias that exists between them, or was there some 
other reason that meant that the likes of Galton and Pearson did not refer to the work of 
Finley and his successors? The first two sentences of Kelves, Sturchio & Carroll (1980, p. 
26) may help to answer this question. They painted a vivid picture of the “continental biases” 
that existed between scientists in Europe and the in US at the turn of the 20th century (I am 
including the UK to be within the confines of Europe here). They said: 

“For many years American science circa 1880 was understood to have been a 
primitive enterprise, a colonial outpost of European research, an intellectual 
backwater. The research of the time was written off as merely applied work and, 
hence, by some mysterious logic, as insignificant.”  

Such a sentiment was shared around the same time as the “Finley affair” when US physicist 
Rowland (1883, p. 242) colourfully said of the state of science in the US: 

“I go out to gather grain ripe to the harvest, and I find only tares. Here and there a 
noble head of grain rises above the weeds; but so few are they, that I find the 
majority of my countrymen know them not, but think that they have a waving 
harvest, while it is only one of weeds after all.” 

Therefore, it seems highly likely that the work undertaken during the “Finley affair” was 
not viewed as being significant or original (or at the very least, being merely practical) in 
the eyes of scientists in Europe and the UK at the time. Therefore, it may even be plausible 
to suggest that Galton and Pearson were not aware of the work undertaken by Finley et al.. 
This may be suggested at since  the work of those involved in the “Finley affair” appeared 
in US-centric publications (for example, The American Meteorological Journal, Science and 
Bulletin of the Philosophical Society of Washington) while the works of Galton and his 
successors appeared in UK-centric publications (such as Philosophical Transactions of the 
Royal Society of London, Philosophical Magazine, Biometrika, Drapers’ Company 
Research Memoirs and Journal of the Royal Statistical Society). However, it is clear that 
Galton was familiar with at least some of what was published in Science (being a US-centric 
journal) having published a letter there (Galton, 1880). One also does not have to go too far 
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into his Finger Prints book to see the evidence. For example, Galton (1892, p. 26) states “A 
correspondent of the American Journal Science, viii 166, . . .” in reference to Hough (1886) 
who discussed the use “thumb and finger markings” in China for identification purposes, 
and that Chinese pots were made with patterns resembling fingerprint features. Pearson’s 
awareness of the activities in the US was also apparent. Bellhouse (2009) provides a very 
interesting account of Pearson’s influence in the US and the contacts he maintained there, 
although these span the early part of the 20th century through to his death in 1936. 

It therefore seems unlikely that Galton and Pearson were aware of the events underlying the 
Finley affair and that the people they were in contact with were biologically and not 
meteorologically focused. Irrespective of whether Galton and Pearson were aware of the 
Finley affair, it must be agreed that, while Finley et al. were insightful in their arguments 
and derivations, they focused primarily on resolving a specific practical problem and their 
work (perhaps with the exception of Doolittle) lacked the depth and rigour when compared 
with the contributions of Galton, Pearson and their successors. It should therefore be of no 
surprise that it is this depth and rigour that have endeared Galton, Pearson et al. to the 
statistical and allied literature. 

9.3  Some Final Thoughts 

The legacy of Finley, his data and his index are well documented and understood in the 
meteorological literature. The lack of attention given to Finley, Gilbert, Peirce and Doolittle is 
certainly not because their contributions are not without merit (they certainly are worthy of 
merit) but because of the impressive, thorough and rigorous manner in which Pearson, Yule 
and their successors went about developing the foundations of categorical data analysis 20 
years later. It is to be hoped that this paper better places the contributions of Finley, Gilbert, 
Peirce and Doolittle in further discussions on the evolution of contingency table analysis and 
that any conversation on this topic includes something of their work. 
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