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Abstract

Power transformations of count data, including for cell frequencies of
a contingency table, have been well understood for nearly 100 years
with much of the attention focused on the square root transformation.
Over the past 15 years or so this topic has been the focus of some new
insights into areas of correspondence analysis where two forms of power
transformation have been discussed. One type considers the impact of
raising the joint proportions of the cell frequencies of a table to a known
power while the second type examines the power transformation of the
relative distribution of the cell frequencies. While the foundations of
the graphical features of correspondence analysis rest with the numeri-
cal algorithms of reciprocal averaging, and other analogous techniques,
discussions of the role of power transformations in reciprocal averag-
ing have not been described. Therefore, this paper examines this link
where a power transformation is applied to the cell frequencies of a
two-way contingency table. In doing so, we show that reciprocal aver-
aging can be performed under such a transformation to obtain row and
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2 Profile Transformations for RA and SVD

column scores that provide the maximum association between the vari-
ables and the greatest discrimination between the categories. Finally,
we discuss the connection between performing reciprocal averaging and
singular value decomposition under this type of power transforma-
tion. The R function, powerRA.exe() is included in the Appendix to
this paper and calculates the row and column scores, and their maxi-
mum correlation, under a power transformation of the cell frequencies.

Keywords: Reciprocal Averaging, Canonical Correlation Analysis, Power
Transformations

1 Introduction

Transforming a random variable is commonly adopted to overcome various

problems with the data, including to stabilise the variance when it is linked

to the expectation. This is particularly the case for a Poisson random vari-

able, Y , with expectation and variance λ, and dates back to Bartlett (1936)

who considered the square root transformation,
√
Y . Bartlett (1947) showed

improvements could be made to stabilise the variance by using the transfor-

mation
√
Y + 1/2 while Anscombe (1948) showed further improvements could

be gained using
√
Y + 3/8. Anscombe (1953) then showed that Y 2/3 yielded

an asymptotically zero skewness coefficient and was “highly successful in nor-

malizing the distribution even if [λ] is as low as 4 . . . but at the cost of a

non-constant variance” (p. 229); Anscombe (1953) stated that the variance

of Y 2/3 is (4/9)λ1/3. A decade later, the Box-Cox power transformation was

developed as a strategy to improve the normality of random variables (Box

and Cox, 1964). Another transformation that is frequently used to accom-

modate for the non-constant variance of a Poisson variable was proposed by

Freeman and Tukey (1950) and is of the form
√
Y +

√
Y + 1. More recently,

Yu (2009) showed that
(√

Y +
√
Y + 1

)
/2 has improved variance stabilisation

properties for small λ.

While the square root transformation may be the most common power

transformation considered throughout the statistical and allied literature, it is
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not the only transformation that one may consider. A more general transfor-

mation, and one that is the focus of this paper, involves Y δ for some given and

real value of δ. Bishop et al. (2007, Example 14.6-3) examined the inferential

aspects of this transformation and showed that Y δ has an expectation of λδ and

a variance of δ2λ2δ−1 so that, for all δ, the residual Zδ =
(
Y δ − λδ

)
/
(
δλδ−1/2

)
is an asymptotically standard normal random variable. One may note, there-

fore, that using this result the variance of Y 2/3 is exactly what Anscombe

(1953) stated. Note also that, for a sample of size n, the sum-of-squares of the

Zδ values gives the Cressie-Read family of divergence statistics (Cressie and

Read, 1984; Read and Cressie, 1988) which is a chi-squared random variable

with n− 1 degrees of freedom, for δ ∈ (−∞, ∞).

Our attention in this paper will focus on a two-way contingency table where

its cell frequencies (like Y above) are raised to the power of δ, although we

shall be relaxing any need to impose a Poisson (or any other) distribution

assumption on the frequencies. In doing so, our core focus is to develop an

objective strategy for determining scores for each row and column category

that best discriminates the categories while also maximising the correlation

between the variables. To do this we shall be using reciprocal averaging (RA),

a technique that is akin to the scoring procedures described by, for example,

Hirschfeld (1935) and Hill (1974) and is related to the dual scaling method

of Nishisato (1980, 2007) and to the singular value and eigen- decompositions

that are commonly used in the context of correspondence analysis (CA); see,

for example, Greenacre (1984, 2017), Lebart et al. (1984), Beh (2004) and Beh

and Lombardo (2014, 2021). By adopting an RA strategy to determine the

scores that are calculated for each of the categories of the contingency table,

a clear interpretation of their meaning can be made in terms of the power

transformation of the profiles.

To discuss the impact of applying a power transformation to the cell fre-

quencies on the row and column scores obtained using RA, this paper is divided

into seven further sections. Section 2 gives an overview of the classical approach
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to RA that makes use of the profile of each row and column category of the

contingency table. Three types of transformation for a contingency table are

discussed in Section 3. The first two we briefly discuss are the “power family 1”

and “power family 2” transformations described Greenacre (2009). The third

transformation involves raising the cell frequencies of the contingency table to a

power δ; it is this transformation that we shall give the remainder of our atten-

tion to. This is certainly the case for Section 4 which outlines the RA algorithm

for this third transformation that produces the one-dimensional set of row and

column scores for a given value of δ and is fitted with the powerRA.exe()

function described in the Appendix. Section 4 also uses canonical correlation

analysis to show that the correlation between these scores is maximised for a

given power transformation. Section 5 expands upon the one-dimensional RA

algorithm described in Section 4 by showing that a multi-dimensional solution

can be obtained through matrix decomposition. We demonstrate the appli-

cability of this method of RA in Section’s 6 and 7. Section 6 examines the

changes in the row and column scores under the tranformation of the cell counts

by studying the ground-breaking data set of Selikoff (1981) that established

the dangers of occupational exposure of asbestos fibre’s. Section 7 studies the

monthly distribution of tropical depressions, storms and hurricanes appearing

in the Hurricane Databases (HURDAT) of the US National Hurricane Center

between 1851 – 2021. Some final remarks are left for Section 8.

2 An Overview of Hill’s Reciprocal Averaging

2.1 On Profiles

The process of RA has been described in various ways since Horst (1935, p.

370) first coined the phrase method of reciprocal averaging to describe the

method outlined in Richardson and Kuder (1933). While these contributions

provide a written description of the technique, Hirschfeld (1935) presented

what is essentially the same idea but as a detailed mathematical description

of the method for a two-way contingency table. Such a description would form
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the basis of the method outlined by Hill (1974) and has been discussed in the

context of CA in the texts of Greenacre (1984, Section 4.2), Lebart et al. (1984,

Section 5.2.1), Gifi (1990, pp. 106 – 118), Nishisato (2007, Section 2.2), Beh and

Lombardo (2014, Section 3.5), Greenacre (2017, pp. 111 – 112) and Nishisato

et al. (2021, Chapters 7 & 8). We now provide an overview of RA which is

based on the centred profile of a category as a measure of its departure from

the hypothesis of independence between the two categorical variables. This

will help to give some context to the developments outlined in the following

sections which focus on the RA of the power transformation of these profiles.

Suppose we have an I ×J contingency table N with sample size n. Denote

the (i, j)th cell frequency of N by nij so that the (i, j)th element of the

corresponding matrix of cell proportions, P, is pij = nij/n, for i = 1, 2, . . . , I

and j = 1, 2, . . . , J . Denote pi• =
∑J

j=1 pij and p•j =
∑I

i=1 pij to be the

contingency table’s ith row and jth column marginal proportion, respectively.

When examining the association between the variables of an I × J con-

tingency table, RA calculates the row scores, a = (a1, a2, . . . , aI)
T

, and the

column scores, b = (b1, b2, . . . , bJ)
T

, that maximise the association between

their variables and ensures the greatest discrimination between the categories.

Here we shall focus on a one-dimensional solution to the RA problem and

then establish how eigen-decomposition (ED) and singular value decomposi-

tion (SVD) can be used to determine a multi-dimensional set of orthogonal

solutions.

The foundations of RA rest with (using the parlance of CA) the profile of

each category. The ith centred row profile is defined as

(
pi1
pi•
− p•1,

pi2
pi•
− p•2. . . . ,

piJ
pi•
− p•J

)
(1)

while the jth centred column profile is

(
p1j
p•j
− p1•,

p2j
p•j
− p2•, . . . ,

pIj
p•j
− pI•

)
. (2)
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When there is complete independence between the row and column variables

of N, the elements of all profiles will be zero.

The row and column scores can be determined by solving the following two

equations

λa =
(
R−1P− 1Ic

T
)
b (3)

λb =
(
C−1PT − 1JrT

)
a . (4)

Here, 1 denotes a vector of 1’s of length specified by its subscript, and r =

vec (pi•)
T

, R = diag (pi•) while c = vec (p•j)
T

and C = diag (p•j). After a

number of iterations cycling through (3) and (4), the scores will converge to

a desired level to give an optimal solution which maximises the correlation

λ = aTPb between a and b. The solutions to a and b are centred at zero with

a variance of one so that they have the property aTRa = 1 and bTCb = 1,

respectively.

Beh and Lombardo (2014, Section 3.5.2), for example, showed that when

pre-multiplying both sides of (3) by R1/2 and (4) by C1/2, the solution to the

triplet (a, b, λ) found via RA can also be determined from the one-dimensional

solution to the SVD of the matrix of Pearson’s residuals

Z = R−1/2(P− rcT )C−1/2 .

While RA provides a one-dimensional solution of a and b, the SVD of Z pro-

vides the analyst with a multi-dimensional solution. Such a solution is obtained

from

Z = AΛBT

where A is the I ×M column matrix of left singular vectors while B is the

J×M column matrix of right singular vectors; the first column of A and B are

weighted versions of a and b, respectively, which are obtained from the RA of

the contingency table. These matrices are constrained such that ATA = IM
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and BTB = IM . The singular values of Z are the elements of the M ×M

diagonal matrix, Λ, where the (1, 1)th element is equivalent to λ.

A feature obtained from the SVD of Z is that Pearson’s chi-squared statistic

can be expressed in terms of its elements, and the elements of Λ, such that

X2 = n · trace
(
ZZT

)
= n · trace

(
ZTZ

)
= n · trace

(
Λ2
)
.

3 Three Power Transformations

3.1 Two Known Power Transformations

There are times when one may wish to apply a power transformation to the

elements of a contingency table, or to some alternative form of the data.

Greenacre (2009), Cuadras and Cuadras (2006) and Beh and Lombardo (2023)

describe when it may be appropriate to do so from a CA perspective and

Greenacre (2009) considered two types of power transformation. The first type

we describe is his “power family 2” transformation and it also lies at the heart

of the methods discussed by Cuadras and Cuadras (2006) and Beh and Lom-

bardo (2023). Therefore, the profiles defined by (1) and (2) can be amended

to incorporate the power transformation of its elements so that, for the ith

centred row profile,

((
pi1
pi•

)δ
− pδ•1,

(
pi2
pi•

)δ
− pδ•2, . . . ,

(
piJ
pi•

)δ
− pδ•J

)
(5)

and, for the jth centred column profile,

((
p1j
p•j

)δ
− pδ1•,

(
p2j
p•j

)δ
− pδ2•, . . . ,

(
pIj
p•j

)δ
− pδI•

)
(6)

for some given value of δ. Greenacre (2009) showed that δ → 0 leads to his

log-ratio analysis (LRA). Comparisons could then me made by observing dif-

ferences in the results between classical CA (when δ = 1) and LRA. At its
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core, the discussion of Cuadras and Cuadras (2006) also involves (5) and (6)

which they referred to as their parametric version of CA. Part of their dis-

cussion was to show what happens when δ = 1/2 leading to their Hellinger

Distance Decomposition (HDD) method and comparisons could be then made

of this method with CA. Therefore, such an approach to CA involves taking

the square-root of the profile elements and the interested reader is invited to

peruse the pages of Escofier (1978), Domenges and Volle (1979), Rao (1995a,b,

1997), Nakayama et al. (1998) and Beh et al. (2018) for discussions involving

the square-root of the profile elements and the Hellinger distance in CA.

There are many benefits of the LRA and HDD methods of Greenacre (2009)

and Cuadras and Cuadras (2006), and further comparisons were undertaken

by Cuadras et al. (2006). Beh and Lombardo (2023) showed that both are

special cases of a more general framework where the Cressie-Read family of

divergence statistics (Cressie and Read, 1984; Read and Cressie, 1988) is used

as the measure of association for the variables. They showed that LRA and

HDD have, at their numerical heart, the modified log-likelihood ratio statistic

and the Freeman-Tukey statistic, respectively. Beh et al. (2023) show the link

between RA and the power transformed profiles given by (5) and (6).

3.2 A New Power Transformation

While (5) and (6) show that each profile element is raised to a power δ, at

its core, they both involve pδij not nδij ; this is the second type of transfor-

mation (briefly) considered by Greenacre (2009) and is his “power family 1”

transformation. One may also note that (5) is expressed in terms of pδi•. How-

ever, pδi• is not the summation of pδij across the all of the columns. Nor does

pδ•j , a term present in (6), involve the summation (across the rows) of the pδij

values. Rather, pδi• is the power transformation of the ith marginal propor-

tion of the contingency table while pδ•j is the power transformation of the jth

marginal proportion. In both cases, a unitary transformation is applied to the

cell proportions (p1ij , for i = 1, 2, . . . , I and j = 1, 2, . . . , J). This suggest
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a third, new, transformation may be considered. While the null hypothesis of

independent is preserved when δ = 1 so that

H0 : pij = pi•p•j

it is not true that

H0|δ : pδij = (pi•p•j)
δ

for any given value of δ 6= 1. Therefore, the third transformation we now

discuss may be viewed as being more closely related to the “power family 1”

than to “power family 2” but is nonetheless different to both. To accommodate

for the discrepency in the null hypothesis, H0|δ, we define an alternative null

hypothesis involving the power transformation of the cell frequencies so that

H0|δ : pij (δ) = pi• (δ) p•j (δ) (7)

where pij(δ) is the joint proportion after each element of nij is raised to the

power of δ. That is, pij (δ) = nδij/nδ where nδ =
∑I

i=1

∑J
j=1 n

δ
ij . In (7), pi• (δ)

and p•j (δ) are defined as

pi• (δ) =

J∑
j=1

pij(δ) =
1

nδ

J∑
j=1

nδij

and

p•j (δ) =

I∑
i=1

pij(δ) =
1

nδ

I∑
i=1

nδij ,

respectively.

With this alternative transformation defined, we now turn our attention to

deriving the RA algorithm.



Springer Nature 2021 LATEX template

10 Profile Transformations for RA and SVD

4 Power Transformation and Reciprocal

Averaging

4.1 The Algorithm

Consider the power transformation of the (i, j)th cell frequency, nδij , for all i =

1, 2, . . . , I and j = 1, 2, . . . , J . Then, under this particular transformation

and its associated null hypothesis of (7), the ith centred row profile is

(
pi1 (δ)

pi• (δ)
− p•1 (δ) ,

pi2 (δ)

pi• (δ)
− p•2 (δ) , . . . ,

piJ (δ)

pi• (δ)
− p•J (δ)

)
(8)

while

(
p1j (δ)

p•j (δ)
− p1• (δ) ,

p2j (δ)

p•j (δ)
− p2• (δ) , . . . ,

pIj (δ)

p•j (δ)
− pI• (δ)

)
(9)

is the jth centred column profile.

Denote ai (δ) to be the ith row score for some value of δ ∈ (−∞, ∞) and

bj (δ) to be the jth column score for this value of δ. The RA of the power

transformed centred profiles involves solving ai (δ) and bj (δ) such that

λ (δ) ai (δ) =

(
pi1(δ)

pi• (δ)
− p•1 (δ)

)
b1 (δ) + . . .+

(
piJ (δ)

pi• (δ)
− p•J (δ)

)
bJ (δ)

=

J∑
j=1

(
pij(δ)

pi•(δ)
− p•j(δ)

)
bj (δ) (10)

and

λ (δ) bj (δ) =

(
p1j(δ)

p•j (δ)
− p1• (δ)

)
a1 (δ) + . . .+

(
pIj (δ)

p•j (δ)
− pI• (δ)

)
aI (δ)

=

I∑
i=1

(
pij (δ)

p•j (δ)
− pi• (δ)

)
ai (δ) . (11)
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Here
I∑
i=1

pi•(δ)ai (δ) = 0,

I∑
i=1

pi•(δ)a
2
i (δ) = 1 (12)

and
J∑
j=1

p•j (δ) bj (δ) = 0

J∑
j=1

p•j(δ)b
2
j (δ) = 1 (13)

while

λ (δ) =

J∑
j=1

I∑
i=1

pij (δ) ai (δ) bj (δ) (14)

is the correlation between the set of row scores aδ = (a1 (δ) , . . . , aI (δ))
T

and

column scores, bδ = (b1 (δ) , . . . , bJ (δ))
T

.

The RA algorithm for solving the triplet (aδ, bδ, λ (δ)) can be expressed

in matrix notation. To do so, we define Pδ to be the I × J matrix of pij (δ) =

nδij/nδ elements. We also define rδ = vec (pi• (δ))
T

and Rδ = diag (pi• (δ))

while cδ = vec (p•j (δ))
T

and Cδ = diag (p•j (δ)). Then (10) and (11) are

elements of

λ (δ)aδ =
(
R−1δ Pδ − 1Ic

T
δ

)
bδ (15)

and

λ (δ) bδ =
(
C−1δ PT

δ − 1JrTδ
)
aδ, (16)

respectively, and the matrix form of the right-hand side of (12) and (13) is

aTδ Rδaδ = 1 and bTδ Cδbδ = 1, (17)

respectively.

The iterative steps involved in solving for aδ and bδ here are akin to the

steps used in solving the classical RA problem described by, for example, Hill

(1974) and Beh and Lombardo (2014, Section 3.5). Also, the above method

and classical RA are equivalent when δ = 1. This can be verified since n1 =∑I
i=1

∑J
j=1 n

1
ij = n, so that pij(1) = nij/n = pij and the ith row and jth
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column marginal proportions are pi•(1) =
∑J

j=1 nij/n = pi• and p•j(1) =∑I
i=1 nij/n = p•j , respectively. Therefore, the matrix P1 contains the pij

elements, for i = 1, 2, . . . , I and j = 1, 2, . . . , J and so is equivalent to P

while R1 = R and C1 = C. The R function powerRA.exe() is included in the

Appendix to this paper and calculates the row and column scores, and their

maximum correlation, using this method of RA.

We do note that other emendations have been proposed to the traditional

approach to RA discussed in Section 2. For example, Nishisato (1984) proposed

the method of reciprocal medians to help “mitigate the problem of extreme

weights” (p. 143) while Nishisato et al. (2021, Chapter 8) discussed the recip-

rocal geometric averaging and reciprocal harmonic averaging algorithms for nij

and so there is scope for generalising these RA methods for nδij .

4.2 Maximising the Correlation of the Scores

We can show using canonical correlation analysis that λ2 (δ), defined by squar-

ing (14), yields the maximum (positive) correlation between aδ and bδ. To do

so we note that this correlation can be expressed as

λ (δ) =
Cov(aδ, bδ)√

Var(aδ)
√

Var(bδ)
=

aTδ Pδbδ√
aTδ Rδaδ

√
bTδ Cδbδ

.

Note that at this stage we are not yet requiring that aδ and bδ are subject to

any particular property. Therefore, the squared correlation can be expressed as

λ2 (δ) =
(
aTδ Rδaδ

)−1 (
aTδ Pδbδ

)2 (
bTδ Cδbδ

)−1
. (18)

We can now maximise λ2 (δ) by differentiating (18) with respect to the two

sets of scores. When differentiated with respect to aδ, we get

∂

∂aδ
λ2 (δ) =

[
∂

∂aδ

(
aTδ Rδaδ

)−1 (
aTδ Pδbδ

)2] (
bTδ Cδbδ

)−1
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=
{
−
(
aTδ Rδaδ

)−2
(2Rδaδ)

(
aTδ Pδbδ

)2
+

2
(
aTδ Rδaδ

)−1 (
aTδ Pδbδ

)
(Pδbδ)

}(
bTδ Cδbδ

)−1
= 2

(
aTδ Rδaδ

)−1 (
aTδ Pδbδ

)
(Pδbδ)

(
bTδ Cδbδ

)−1 −
2
(
aTδ Rδaδ

)−2
(Rδaδ)

(
aTδ Pδbδ

)2 (
bTδ Cδbδ

)−1
which can be simplified to

∂

∂aδ
λ2 (δ) = 2

(
aTδ Rδaδ

)−2 ((
aTδ Rδaδ

) (
aTδ Pδbδ

)
Pδbδ−(

aTδ Pδbδ
)2

Rδaδ

) (
bTδ Cδbδ

)−1
.

It is at this point that we substitute into this derivative the property of aδ

and bδ given by (17) yielding

∂

∂aδ
λ2 (δ) = 2

(
aTδ Pδbδ

) (
Pδbδ −

(
aTδ Pδbδ

)
Rδaδ

)
.

Setting this derivative to zero gives

Pδbδ =
(
aTδ Pδbδ

)
Rδaδ (19)

while substituting (17) into (18) gives

λ (δ) = aTδ Pδbδ (20)

which is the matrix form of (14). We can confirm that this is the maximum

correlation between the row and column scores for the given value of δ since

∂2

∂a2
δ

λ2 (δ) = −2λ (δ) Rδ < 0
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for all δ ∈ (−∞, ∞). To show that the row scores are those obtained via RA,

(19) reduces to

Pδbδ = λ (δ) Rδaδ (21)

so that

λ (δ)aδ = R−1δ Pδbδ

=
(
R−1δ Pδ − 1Ic

T
δ

)
bδ

which is just (15). Following a similar derivation, but one that maximises the

squared correlation (18) with respect to bδ, leads to (16). Therefore, obtaining

the row and column scores, aδ and bδ using the RA algorithm described above

produces the maximum possible correlation for a given δ – defined by (14) –

of these scores.

5 Solving the M -Dimensional Problem

5.1 One-dimensional Solution via Matrix Decomposition

Rather than solving for aδ and bδ iteratively we can instead use matrix decom-

position. Here we shall describe the link between the RA procedure described

in Section 4 and the role of ED and SVD for determining the solution to the

triplet (aδ, bδ, λ (δ)).

The matrix decomposition approach to obtaining an RA solution to the

triplet is to solve for aδ and bδ by first pre-multiplying both sides of (15) by

λ (δ) R
1/2
δ such that

λ2 (δ)
(
R

1/2
δ aδ

)
= λ (δ) R

1/2
δ

(
R−1δ Pδ − 1Ic

T
δ

)
bδ

=
[
R
−1/2
δ

(
Pδ − rδc

T
δ

)
C
−1/2
δ

] (
λ (δ) C

1/2
δ bδ

)
(22)
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while pre-multiplying (16) by C
1/2
δ gives

λ (δ) C
1/2
δ bδ =

[
C
−1/2
δ

(
Pδ − rδc

T
δ

)T
R
−1/2
δ

] (
R

1/2
δ aδ

)
. (23)

Substituting (23) into (22) and simplifying gives

(
ZδZ

T
δ − λ2 (δ) II

) (
R

1/2
δ aδ

)
= 0I (24)

where

Zδ = R
−1/2
δ

(
Pδ − rδc

T
δ

)
C
−1/2
δ (25)

which is the matrix of standardised residuals for the elements of Pδ.

Equation (24) shows that the solution to aδ can be obtained from pre-

multiplying the first eigen-vector of ZδZ
T
δ by R

−1/2
δ , while the correlation λ (δ)

is equivalent to the square root of its largest eigen-value. Therefore, λ (δ) is the

absolute value of this correlation. The solution to bδ can be found by solving

(
ZTδ Zδ − λ2 (δ) IJ

) (
C

1/2
δ bδ

)
= 0J

so that it can be obtained by pre-multiplying the largest eigen-vector of ZTδ Zδ

by C
−1/2
δ .

Rather than obtaining the solution to aδ and bδ through two ED’s, they

can be determined by applying a SVD to (25). By using such an approach

multiple orthogonal solutions to these scores can also be obtained and we shall

discuss this further in Section 5.2.

5.2 M -dimensional Reciprocal Averaging via

Eigen-Decomposition

By considering the power transformation of the cell frequencies that is

outlined in Section 3, solving the two RA formulae of (15) and (16) pro-

duces an M -dimensional solution that can be obtained by applying a SVD
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to Zδ, where M = min (I, J) − 1. To show this, we start by examining

how they can be obtained from an ED involving Zδ. To do so, we define

Aδ =
(
aδ(1), . . . , aδ(M)

)
to be the I × M column matrix of row scores

where aδ(m) =
(
a1(m) (δ) , a2(m) (δ) , . . . , aI(m) (δ)

)T
and AT

δ RδAδ = II .

We also define Bδ =
(
bδ(1), . . . , bδ(M)

)
to be the J × M column matrix

of column scores where bδ(m) =
(
b1(m) (δ) , b2(m) (δ) , . . . , bJ(m) (δ)

)T
and

BT
δ CδBδ = IJ . Denote the M ×M diagonal correlation matrix between Aδ

and Bδ by Λδ = AT
δ PδBδ where λm (δ) is the (m, m)th element. Then the

RA formulae for obtaining a solution to each of the M row and column scores

is to iteratively solve

λm (δ)aδ(m) =
(
R−1δ Pδ − 1Ic

T
δ

)
bδ(m) (26)

and

λm (δ) bδ(m) =
(
C−1δ PT

δ − 1JrTδ
)
aδ(m) . (27)

By following a derivation that is similar to what is described in Section 5.1 we

obtain the following two ED equations

(
ZδZ

T
δ − λ2m (δ) II

) (
R

1/2
δ aδ(m)

)
= 0I (28)(

ZTδ Zδ − λ2m (δ) IJ
) (

C
1/2
δ bδ(m)

)
= 0J (29)

where Zδ is defined by (25). Therefore, λ2m(δ) is the mth largest eigen-value of

ZδZ
T
δ and ZTδ Zδ so that λm (δ) = aTδ(m)Pδbδ(m). Note that this expression of

λm (δ) is similar in form to Beh et al. (2023, eq. (15)) however when δ 6= 1 the

two produce different correlation values due to the different ways the power

transformation is applied. When δ = 1, λ1 (1) and the correlation of Beh et al.

(2023, eq. (15)) are both equivalent to (20). We can also see that the mth

eigen-vector of ZδZ
T
δ is ãδ(m) = R

1/2
δ aδ(m) while b̃δ(m) = C

1/2
δ bδ(m) is the
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mth eigen-vector of ZTδ Zδ. These eigen-vectors have the property

ãTδ(m)ãδ(m′) =

1, m = m′

0, m 6= m′

and

b̃Tδ(m)b̃δ(m′) =

1, m = m′

0, m 6= m′
.

Thus the vector of row and column scores, aδ(m) and bδ(m), can be obtained

from the components of the SVD of Zδ such that

aδ(m) = R−1/2ãδ(m) (30)

bδ(m) = C−1/2b̃δ(m) . (31)

5.3 M -dimensional Reciprocal Averaging via SVD

Since the solution to aδ(m) and bδ(m) can be obtained from the ED of ZδZ
T
δ

and ZTδ Zδ, respectively, they can also be determined by applying a SVD to

Zδ. That is, one may consider

Zδ = ÃδΛδB̃
T

δ

where the I × M matrix Ãδ contains ãδ(m) as its mth column and is the

matrix of left singular vectors of Zδ. Similarly, the J ×M matrix B̃δ contains

b̃δ(m) as its mth column and is the matrix of right singular vectors of Zδ. The

M × M matrix Λδ is diagonal and contains the singular values, λm (δ) for

m = 1, 2, · · · ,M , of Zδ. These matrices have the property that Ã
T

δ Ãδ = II and

B̃
T

δ B̃δ = IJ . Applying a SVD in this manner is the typical way of determining

the multi-dimensional set of orthogonal row scores and column scores for the

classical approach to RA (when δ = 1) and is a standard tool used in the CA
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literature; see, for example, Nishisato (1980), Lebart et al. (1984), Greenacre

(1984, 2017), Beh (2004) and Beh and Lombardo (2012, 2014, 2019, 2021) for

a variety of comprehensive discussions of the role of SVD in CA. It is also

easy to perform the necessary calculations in the R programming environment

because of the versatility of svd() that is included as a base function.

Assessing the overall departure from independence between the row

and column categories when a power transformation is applied to the cell

frequencies can be made by denoting the measure of association such that

φ2(δ) = trace(ZTδ Zδ)

= trace

((
ÃδΛδB̃

T

δ

)T
ÃδΛδB̃

T

δ

)
= trace

(
B̃δΛδÃ

T

δ ÃδΛδB̃
T

δ

)
= trace

(
B̃δΛ

2
δB̃

T

δ

)
.

When B̃δ is full rank B̃δB̃
T

δ = IJ so that

φ2(δ) = trace(Λ2
δ) =

M∑
m=1

λ2m(δ) .

Therefore, the measure of association can be quantified from the sum-of squares

of the singular values of Zδ. For example, φ2(1) = X2/n is Pearson’s phi-

squared statistic of a two-way contingency table and X2 is Pearson’s statistic.

6 Application: Selikoff’s Asbestos Data

6.1 Preliminary Analysis

Consider the data in Table 1 that originates from the studies by the American

chest physician Irving Selikoff. After noticing unusual cases amongst the work-

ers from a local asbestos factory in the 1950’s, he and his team undertook a

comprehensive examination of the potential causes of the illness amongst New
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Table 1: Cross tabulation of Selikoff’s studies on
the link between occupational exposure to asbestos

and the diagnosed grade of asbestosis.

Asbestosis grade diagnosed

Occupational
exposure (years)

None Grade 1 Grade 2 Grade 3 Total

0 - 9 310 36 0 0 346
10 -19 212 158 9 0 379
20-29 21 35 17 4 77
30-39 25 102 49 18 194
40+ 7 35 51 28 121
Total 575 366 126 50 1117

York construction workers. From his study of 1117 workers, he established

that there was a link between the number of years of occupational exposure

to asbestos fibres and the severity of asbestosis that the worker was diagnosed

with. Due to the nature of his findings, Selikoff concluded that workers who

had been exposed to asbestos fibres for 20 years were highly likely to be diag-

nosed with severe cases of asbestosis and referred to this as his “20-year rule”.

However, the results were not published until 1981 (Selikoff, 1981). The impact

of this finding had been felt internationally and was described in detail, in

the context of categorical data analysis, by Beh and Smith (2011), Tran et al.

(2012) and Beh and Lombardo (2014, Section 1.4).

We shall therefore apply the RA and SVD scoring techniques described

in Sections 4 and 5 to Table 1 where the sample size is n = 1117. It cross-

classifies 5 different lengths of time that a worker was (occupationally) exposed

to asbestos (in decadal intervals) and four grades (in severity) of asbestosis

that the workers were diagnosed with. A chi-squared test of independence of

Table 1 gives a Pearson statistic of 648.81 with (5 − 1)(4 − 1) = 12 degrees

of freedom. Therefore, with a p-value that is less than 0.001, there is clear

evidence of the existence of a statistically significant association between the

years of exposure to asbestos and the diagnosed level of asbestosis.
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6.2 The One-Dimensional Solution

Since there exists a statistically significant association between the variables

of Table 1 we can examine the nature of this association by determining the

scores for the row and column categories using the RA approach described in

Section 4. In doing so, the one-dimensional solution to the set of row scores,

aδ = (a1(δ), · · · , a5(δ))T , the column scores, bδ = (b1(δ), · · · , b4(δ))T and their

correlation, λ(δ), are summarised in Table 2 for three values of δ; δ = 0.001,

δ = 0.5 and δ = 1. The choice of δ ≈ 0 is made to reflect a transformation

close to, but not equal, to zero. Note that a zero power transformation will

result in all transformed cell frequencies being 1 so that departures of these

cells from 1/(IJ) are assessed. We also consider δ = 1 to demonstrate that

a unitary transformation yields the same solution as the classical method of

RA and δ = 0.5 is chosen to compare the results with those obtained when

a near zero and a unitary power transformation are considered. These values

have been calculated using the RA algorithm described in Section 4 and by

applying a SVD to the Zδ matrix of Table 1 and rescaling the matrices of left

and right singular vectors using (30) and (31). For the scores obtained using

Table 2: Comparison of the row and column
scores obtained from the RA and the SVD of Zδ

for Table 1; for δ = 0.001, 0.5 and 1.

δ = 1 δ = 0.5 δ ≈ 0

RA SVD RA SVD RA SVD

Row scores
a1 (δ) -1.0229006 -1.0228997 -1.4321469 -1.4321471 -2.2773040 -2.2773154
a2 (δ) -0.3684099 -0.3684108 -0.6924097 -0.6924096 -0.8763991 -0.8763842
a3 (δ) 0.6684296 0.6684290 0.4183102 0.4183102 0.5979584 0.5979566
a4 (δ) 1.0929230 1.0929224 0.7543871 0.7543872 0.5990797 0.5990779
a5 (δ) 1.9012795 1.9012811 1.3263083 1.3263081 0.6012666 0.6012647

Column scores
b1 (δ) -0.8467648 -0.8467646 -1.06740098 -1.06740100 -0.7890030 -0.7890042
b2 (δ) 0.4155945 0.4155940 0.02886595 0.02886599 -0.7846205 -0.7846216
b3 (δ) 1.7993315 1.7993319 1.22954011 1.22954011 0.6681646 0.6681715
b4 (δ) 2.1613281 2.1613289 1.74030643 1.74030637 1.7349748 1.7349696

λ (δ) 0.6994048 0.6994048 0.5507601 0.5507601 0.3455012 0.3455012
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Fig. 1: λ (δ) versus δ ∈ (0, 1]

RA, they were calculated using the R function powerRA.exe(). The scores

from the SVD of Zδ were obtained using the svd() function.

We can visually assess the impact of the transformation described in

Section 4 by illustrating the change in the row scores, the column scores and

their correlation for changes in δ. Fig. 1 shows the impact on the correlation

λ (δ) for δ ∈ (0, 1]. It shows that, for Table 1, λ (δ) linearly increases from its

minimum of 0.346 at δ ≈ 0 to its maximum of 0.699 at δ = 1. One can also

observe changes in the row and column scores for changes in δ. The first plot

of Fig. 2 shows such changes and highlights that, for the row categories, there

is virtually no difference in the profiles of the third, fourth and fifth row cat-

egories of Table 1 when δ = 0.001. However, for this value of δ, there is quite

a big difference between the transformed profiles of these three categories and

the first and second categories which are themselves different. As δ approaches

1, so that one is getting closer to performing the classical approach to RA,
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Fig. 2: The impact on the configuration of similar or different row (top) and
column (bottom) profile distributions as δ changes; for δ ∈ (0, 1]
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the difference in the transformed profiles for the first two categories remains

fairly constant, although the profiles of the third, fourth and fifth row profiles

become more different under the transformation. A similar shift in the four

column scores can also be observed from the second plot of Fig. 2. It shows

that there is very little difference in the transformed profile of the first and sec-

ond column categories for δ = 0.001. However, as δ → 1, the scores for these

column categories become increasingly different while the profile of the third

and fourth column categories become increasingly similar. While not shown

in the top figure of Fig. 2, as δ approaches 2 and beyond, the fifth row cate-

gory diverges away from zero. The same effect can been observed for the third

and fourth column categories. These results highlight that applying a power

transformation to the cells of Table 1 yields a very different set of scores as δ

changes.

While this section has highlighted the equivalency of the one-dimensional

solution to aδ, bδ and λ (δ) when applying the method of RA described above

and a SVD to Zδ, we can also obtain a multi-dimensional solution to these

quantities. We now turn our attention to examine this issue.

6.3 The Multi-Dimensional Solution

The solution to aδ, bδ and their correlation λ(δ), using RA under any power

transformation of the cells of a contingency table can be extended to the M -

dimensional case by applying a full rank SVD to Zδ. We now do so for Table 1

with δ = 0.001, 0.5 and 1 and obtain M = min(5, 4) − 1 = 3 orthogonal

solutions. Therefore, if we were to visualise the association we would need at

most three-dimensions to capture all of the association structure that exists

between the variables of the contingency table.

Table 3 gives the solution to

aδ(m) =
(
a1(m) (δ) , a2(m) (δ) , . . . , a5(m) (δ)

)T
bδ(m) =

(
b1(m) (δ) , b2(m) (δ) , . . . , b4(m) (δ)

)T
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and λ(m)(δ) for m = 1, 2, 3 and our three values of δ. This table shows that

applying the power transformation to the profile elements, as shown by (8)

and (9), has an impact on the value of the row and column scores, and their

correlation, as δ changes.

Table 3: The M -dimensional solution determined
by SVD under three power transformations.

m = 1 m = 2 m = 3

δ = 1 δ = 0.5 δ ≈ 0 δ = 1 δ = 0.5 δ ≈ 0 δ = 1 δ = 0.5 δ ≈ 0

Row scores
a1(m) (δ) -1.0229 -1.4321 -2.2773 0.9485 1.3158 1.5180 -0.3899 0.1906 0.0020
a2(m) (δ) -0.3684 -0.6924 -0.8764 -0.9168 -1.2145 -1.9735 0.8663 0.0257 0.0012
a3(m) (δ) 0.6684 0.4183 0.5980 -0.5817 -0.3287 0.2402 -2.7298 -2.1516 -1.6601
a4(m) (δ) 1.0929 0.7544 0.5991 -0.7385 -0.4548 0.2407 -0.5844 1.2277 0.5798
a5(m) (δ) 1.9013 1.3263 0.6013 1.7136 1.0943 0.2406 1.0754 -0.0882 1.0773

Column scores
b1(m) (δ) -0.8468 -1.0674 -0.789 0.4717 0.6792 0.2842 -0.0556 -0.2244 -1.3022
b2(m) (δ) 0.4156 0.0289 -0.7846 -1.3397 -1.2037 0.2822 0.2906 0.6754 1.305
b3(m) (δ) 1.7993 1.2295 0.6682 0.8788 -0.1133 -1.6748 -1.9635 -1.735 -0.0024
b4(m) (δ) 2.1613 1.7403 1.735 2.1673 1.8212 1.2893 3.46 1.6907 -0.0019

λ(m) (δ) 0.6994 0.5508 0.3455 0.2986 0.1525 0.1866 0.0501 0.0225 0.0001

7 Application: HURDAT

7.1 Preliminary Analysis

Table 4 shows the distribution of tropical depressions, tropical storms and all

five categories of hurricanes occurring in the North Atlantic basin between

1851 and 2021. This data comes from the Hurricane Databases (HURDAT) of

the National Hurricane Center (USA) and is available online at https://www.

nhc.noaa.gov/data/. The hurricane categories are determined using the Saffir-

Simpson Hurricane Wind Scale and are classified as Category 1 through to

Category 5 where each category has a maximum (one minute) sustained wind

speed ten metres above the surface of between 119–153km/h (Category 1), 154–

177km/h (Category 2), 178–208km/h (Category 3), 209-251km/h (Category 4)

and 252km/h or higher (Category 5), respectively. Tropical depressions (TD)

https://www.nhc.noaa.gov/data/
https://www.nhc.noaa.gov/data/
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Table 4: Cross-tabulation of the hurricane strength based on the
Saffir-Simpson Hurricane Wind Scale and the month they occurred, for 1851

– 2021.

Saffir-Simpson Hurricane Wind Scale

Month TD TS Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Total
January 0 2 2 0 0 0 0 4
February 0 1 0 0 0 0 0 1
March 0 0 0 1 0 0 0 1
April 3 3 0 0 0 0 0 6
May 5 30 5 0 0 0 0 40
June 21 72 24 12 3 0 0 132
July 44 65 39 16 7 3 2 176
August 41 148 80 68 60 46 13 456
September 70 220 129 92 63 57 17 648
October 30 147 81 56 25 18 6 363
November 10 48 23 8 4 3 0 96
December 1 9 3 0 0 0 0 13
Total 225 745 386 253 162 127 38 1936

are defined as cyclones with a maximum sustained wind speed of 61km/h or

less near the center of the storm while the speed of Tropical Storms (TS) falls

between 62km/h and 88km/h; for a more complete description of how the

data is collected see https://www.nhc.noaa.gov/aboutsshws.php. Data that is

similar in type given by Table 4 were also reported in, for example, Cry (1965)

for hurricanes recorded between 1871 and 1963.

A chi-squared test of independence of Table 4 gives a Pearson chi-squared

statistic of 192.88 and with (12− 1) (7− 1) = 66 degrees of freedom results in

a p-value that is less than 0.001. This indicates that a statistically significant

association exists between the months of the year and the category of storms

that were formed. This should be of no surprise since the Atlantic hurricane

season is between June 1 and November 30. However, while such a period

was initiated in 1965 to capture the most likely period in which hurricanes

would hit landfall, more recent research suggests that, with the impact of a

changing global climate, questions are being asked of its reliability; see, for

example, Kossin (2008) and Truchelut et al. (2022). With the existence of such

an association in Table 4, we shall investigate the impact of applying a power

https://www.nhc.noaa.gov/aboutsshws.php


Springer Nature 2021 LATEX template

26 Profile Transformations for RA and SVD

Fig. 3: λ (δ) versus δ ∈ (0, 1]

transformation to its cell counts on the row and column scores calculated using

RA.

7.2 Power Transformation of RA for HURDAT

The RA algorithm has been applied to Table 4 over a range of delta values to

observe the change and the impact of power transformation on the association.

The resulting effect is visualised in Fig. 3 showing the change in the correla-

tion λ (δ) for δ ∈ (0, 1]. A decrease in correlation from λ(δ) = 0.5043953 to

0.2599614 is observed as δ increases from approximately 0 to 1. Rather than

observing an increased association as δ increases like in Fig. 1, the association

between the month and the category of hurricanes that occurs decreases as δ

approaches 1. This indicates that more association can be captured as a bene-

fit of decreasing the value of power transformation compared to the traditional

method of RA when δ = 1.
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Fig. 4: The impact of power transformation on the configuration of similar
or different row (top) and column (bottom) profile distributions as δ changes.

The row scores a1, . . . , a12 representing each of the 12 months of Table 4

are calculated using RA and appear in the upper plot of Fig. 4 for δ ∈ (0, 3].

It shows that, for δ values in this interval, a power transformation applied

to the cell counts has a fairly similar impact on the scores for the months

August (a8), September (a9) and October (a10). We can also see a similar

feature is observed for the row categories January (a1), February (a2), May

(a5) and December (a12) indicating that the power transformation applied to
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the cell counts of these months leads to fairly similar scores at each value

of δ; note that it is these months that have relatively few hurricane strength

storms compared to the northern hemisphere summer months. For both sets

of row categories, as δ increases, their scores approach zero. This suggests that

there is effectively very little difference in the relative impact on the scores by

applying a power transformation to the cell counts of June (a6) and November

(a11). However, as δ increases, the RA score for April (a4) and July (a7)

diverge away from zero. Interestingly, both months have very different profiles

with May observing only six tropical level wind speeds while July observes

176 recorded storms with 62% of them (or 109 of the 176 storms) being only a

tropical depression or tropical storm. This highlights the increasing importance

of April and July on the association structure between the variables. This may

be because both months have very different profiles when compared with the

other row categories and this is accentuated as a power transformation (of

δ > 1) is applied to the cells counts of Table 4. Interestingly, the score for

March (a3) is consistently different to all other scores calculated and the top

plot of Fig. 4 shows it to have a consistently greater score than any other row

score for δ ∈ (0, 1]. This feature arises because of the single Category 2 storm

recorded which lies outside of the regular hurricane season for the Atlantic

basin (June 1 – November 30).

The column scores, b1, . . . , b7 are depicted in the lower plot of Fig. 4 and

represent the categories ordered by the strength of the hurricanes from low

(Tropical Depression) to high (Category 5), respectively. We find a similar

general pattern in the effect of power transformation on the scores calculated

for Category 3 (b5), Category 4 (b6) and Category 5 (b7) wind speeds. At the

lower power transformations (for δ less than about 1), the pattern observed in

the scores of Category 2 (b4) experiences a very different effect compared to the

general pattern for b5, b6 and b7. All column scores tend to approximately zero

as δ increases except for the score associated with a TD (b1). The column score
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diverges negatively instead of positively as observed in the scores obtained

from the analysis of Selikoff’s asbestos data; see Section 6.

8 Discussion

Strategies that numerically and visually describe the association between cate-

gorical variables often involve performing analytical techniques such as RA and

CA (Nishisato, 2007; Lebart et al., 1984; Greenacre, 1984, 2017; Beh and Lom-

bardo, 2014; Nishisato et al., 2021). Investigating objective scoring methods for

the categories of a contingency table while adopting a power transformation

provides a deeper understanding of how the profiles of the categories com-

pare and, more broadly, of the association that exists between the variables.

The method of RA described in this paper considers a third type of power

transformation that involves raising the cell frequencies to a power δ and com-

plements the two discussed by Greenacre (2009). By expanding the solutions

to the multi-dimensional case, such scores can be obtained by considering a

matrix of modified Pearson’s residuals – see (25) – and applying SVD to it.

The equivalence of the scores between RA and the SVD of Zδ can be obtained

by reweighting the left and right singular vectors by diagonal matrices involv-

ing rδ and cδ and the application to Selikoff’s classic asbestos data verifies the

equivalence of the two approaches.

There are various avenues of further research that can be undertaken that

use and extend the method of RA described in this paper. One such avenue

involves determining the most suitable value of δ. The choice of δ may be made

subject to a wide range of criteria such as

� ensuring the correlation is maximised across a range of δ values. Like

Greenacre (2009), the first example considered values of δ ranging between

0 and 1 (although, strictly speaking, we consider δ = 0.001 as the value of

the lower limit). However, any value of δ > 0 may be considered and we

extended this interval to (0, 3] for the analysis of the HURDAT data. Both

analyses show that the correlation between the row and column scores is
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maximised for different values of δ. For example, the maximum correlation

for Table 1 was achieved at δ = 1, while the maximum correlation of Table 4

approached 1 as δ → 0. Therefore, there is no clear general choice that may

be recommended since the value of δ depends on the structure of the data,

on the association between the two variables and other factors.

� visually maximising the association between the variables in a low-

dimensional plot if the scoring method outline in this paper is used as the

basis for the visualisation of association (such as when performing CA, dual

scaling and other analogous techniques). Such a choice was a point of discus-

sion by Cuadras and Cuadras (2006, p. 72). It was also raised by Beh et al.

(2023) and Beh and Lombardo (2023) although, for their scaling approach –

which is equivalent to the “power family 2” of Greenacre (2009) – they also

discussed other criteria on which δ may be chosen,

� ensuring that an association does exist between the variables. Preliminary

investigations reveal that there are values of δ where there is no statistically

significant association between the variables (when Pearson’s chi-squared

statistic, say, is used as a goodness-of-fit measure). In the context of better

understanding the structure of the association between categorical variables,

and visually exploring the nature of the association (using, for example,

CA) such a choice of δ must be avoided. This property is directly related to

the family of Cressie-Read divergence statistics and the “power family 2”

transformation (Beh and Lombardo, 2023) but also has potential implica-

tions for the power transformation considered in this paper. Such an issue

was discussed by Wang and Beh (2022).

Another possible way in which the RA method outlined above can be

extended concerns the presence of over-dispersion that exists in the data; a

property that has been discussed in the context of categorical data analysis by

Haberman (1973) and Agresti (2013, p. 80), while Beh and Lombardo (2020,

2023) examined the issue from a CA perspective. Determining the appropriate
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power transformation that minimises the presence of over-dispersion when per-

forming RA is another possible avenue for future consideration that will help

to gain a deeper understanding, and resolve potential issues, when analysing

the association between categorical variables.
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Springer Nature 2021 LATEX template

Profile Transformations for RA and SVD 35

Rao, C. (1995b). The use of Hellinger distance in graphical displays of con-

tingency table data. In Tiit, E.-M., Kollo, T., and Niemi, H., editors, New

Trends in Probability and Statistics, Volume 3: Multivariate Statistics and

Matrices in Statistics, pages 143 – 161. VSP BV, The Netherlands.

Rao, C. (1997). An alternative to correspondence analysis using Hellinger

distance. In Fang, K. and Hickernell, F., editors, Contemporary Multivariate

Analysis and its Applications, pages 1 – 19. Hong Kong.

Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-Fit Statistics for

Discrete Multivariate Data. Springer-Verlag.

Richardson, M. W. and Kuder, G. F. (1933). Making a rating scale that

measures. Personnel Journal, 12:36 – 40.

Selikoff, I. J. (1981). Household risks with inorganic fibers. Bulletin of the

New York Academy of Medicine, 57:947 – 961.

Tran, D., Beh, E. J., and Smith, D. R. (2012). Real world occupatonal epi-

demiology, Part 3: An aggregate data analysis of Selikoff’s “20-year rule”.

Archives of Environmental & Occupational Health, 67:243 – 248.

Truchelut, R. E., Klotzbach, P. J., Staehling, E. M., Wood, K. M., Halperin,

D. J., Schreck III, C., and Blake, E. S. (2022). Earlier onset of North Atlantic

hurricane season with warming oceans. Nature Communications, 13, 4646:8

pages.

Wang, T.-W. and Beh, E. J. (2022). Comparison of power transformation

approaches to reciprocal averaging. In 24th International Conference on

Computational Statistics (COMPSTAT2022). 23–26 August, 2022. Bologna,

Italy.

Yu, G. (2009). Variance stabilizing transformations of Poisson, binomial

and negative binomial distributions. Statistics & Probability Letters,

79(14):1621–1629.



Springer Nature 2021 LATEX template

36 Profile Transformations for RA and SVD

Appendix: The powerRA.exe function

This appendix contains the R function powerRA.exe which performs the RA

algorithm described by (15) and (16) so that the resulting vector of row scores,

aδ, and column scores, bδ, are subject to (17).

The function powerRA.exe performs these calculations using the following

arguments:

� data - the two-way contingency table of size I × J , where I > 2 and J > 2,

� delta - the power of the transformation that is applied to the cell frequencies

of the contingency table. By default, delta = 1 leading to the same solution

as the traditional approach to RA,

� rho.ini - the initial value of the correlation between the row and column

scores. By default this argument is set to rho.ini = 1,

� acc - the number of decimal places required for defining the convergence of

the algorithm. By default the function performs the RA algorithm so that

convergence is achieved to 6 decimal places.

powerRA.exe <- function(data, delta = 1, rho.ini = 1, acc = 6) {

###############################################################

# Some basics #

###############################################################

I <- nrow(data)

J <- ncol(data)

n <- sum(data)

P <- data^delta/sum(data^delta)

pidot <- apply(P, 1, sum)

pdotj <- apply(P, 2, sum)

R <- diag(pidot, I, I)

C <- diag(pdotj, J, J)

###############################################################

# The algorithm #

###############################################################

a.ini <- c(1:nrow(data)) # Initial value of the vector of

# row scores

b.ini <- c(1:ncol(data)) # Initial value of the vector of

# column scores
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# The first iteration of the row scores, columns scores, and

# lambda value

a.old <- a.ini/sqrt(t(a.ini)%*%R%*%a.ini)[1,1]

b.old <- (1/rho.ini)*(solve(C)%*%t(P) - (rep(1, times = J)%*%

t(pidot)))%*%a.old

b.old <- b.old/sqrt(t(b.old)%*%C%*%b.old)[1,1]

lamb.old <- (t(a.old)%*%P%*%b.old)[1,1]

# The iterative step of the algorithm - it converges when the

# value of \delta differs from its updated value by less than

# acc decimal places

counter <- 0

repeat{

a.new <- (1/lamb.old)*(solve(R)%*%P - (rep(1, times = I)

%*%t(pdotj)))%*%b.old

a.new <- a.new/sqrt(t(a.new)%*%R%*%a.new)[1,1]

b.new <- (1/lamb.old)*(solve(C)%*%t(P) -

(rep(1, times = J)%*%t(pidot)))%*%a.new

b.new <- b.new/sqrt(t(b.new)%*%C%*%b.new)[1,1]

lamb.new <- (t(a.new)%*%P%*%b.new)[1,1]

counter <- counter + 1

lamb.comp <- abs(lamb.old - lamb.new)

if (lamb.comp < 10^(-1*acc)) break

a.old <- a.new

b.old <- b.new

lamb.old <- lamb.new

}

###############################################################

# The numerical output . . . #

###############################################################

list(iterations = round(counter, acc),

a = round(a.new, acc),

b = round(b.new, acc),

lamb = round(lamb.new, acc))

}

To demonstrate the applicability of the function powerRA.exe, define Table 1

as the R object asbestos.dat such that
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> asbestos.dat <- matrix(c(310, 212, 21, 25, 7, 36, 158, 35,

+ 102, 35, 0, 9, 17, 49, 51, 0, 0, 4, 18, 28), nrow = 5)

> dimnames(asbestos.dat) <- list(paste(c("0-9", "10-19", "20-29",

+ "30-39", "40+")), paste(c("None", "Grade 1", "Grade 2",

+ "Grade 3")))

> asbestos.dat

None Grade 1 Grade 2 Grade 3

0-9 310 36 0 0

10-19 212 158 9 0

20-29 21 35 17 4

30-39 25 102 49 18

40+ 7 35 51 28

>

We can show that the function performs the classical RA on asbestos.dat

by using the default values for its arguments as follows; however, we define

acc = 10 so that convergence is achieved after 10 decimal places:

> powerRA.exe(asbestos.dat, acc = 10)

$iterations

[1] 6

$a

[,1]

[1,] -1.0229006

[2,] -0.3684099

[3,] 0.6684296

[4,] 1.0929230

[5,] 1.9012795

$b

[,1]

[1,] -0.8467648

[2,] 0.4155945

[3,] 1.7993315

[4,] 2.1613281

$lamb

[1] 0.6994048

>

and are just those values in the second column Table 2. We can also replicate

the values given in Table 2 for δ = 0.5 and δ = 0.001 using powerRA.exe such

that
> powerRA.exe(asbestos.dat, delta = 0.5, acc = 10)

$iterations
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[1] 5

$a

[,1]

[1,] -1.4321469

[2,] -0.6924097

[3,] 0.4183102

[4,] 0.7543871

[5,] 1.3263083

$b

[,1]

[1,] -1.06740098

[2,] 0.02886595

[3,] 1.22954011

[4,] 1.74030643

$lamb

[1] 0.5507601

>

> powerRA.exe(asbestos.dat, delta = 0.001, acc = 10)

$iterations

[1] 8

$a

[,1]

[1,] -2.2773040

[2,] -0.8763991

[3,] 0.5979584

[4,] 0.5990797

[5,] 0.6012666

$b

[,1]

[1,] -0.7890030

[2,] -0.7846205

[3,] 0.6681646

[4,] 1.7349748

$lamb

[1] 0.3455012

>
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