
 

Copyright © 2023 by the National Institute for Applied Statistics Research Australia, UOW.   

Work in progress, no part of this paper may be reproduced without permission from the Institute. 

 

National Institute for Applied Statistics Research Australia, University of Wollongong, 

Wollongong NSW 2522, Australia T: +61 2 42215076. E: karink@uow.edu.au 

 
 
 
 
 
 

National Institute for Applied Statistics Research 
Australia 

 

 University of Wollongong, Australia 

 
 

Working Paper 
 
 

18-23 
 
 
 

A Comparison of Likelihood-Based Methods  
for Size-Biased Sampling 

 
 

Victoria L. Leaver, Robert G. Clark, Pavel N. Krivitsky, and Carole L. Birrell 
 

mailto:karink@uow.edu.au


A comparison of likelihood-based methods for size-biased
sampling

Victoria L. Leavera,∗, Robert G. Clarkb, Pavel N. Krivitskyc, Carole L. Birrelld

aSchool of Mathematics and Applied Statistics, University of Wollongong, New South Wales 2522, Australia
bResearch School of Finance, Actuarial Studies and Statistics , Australian National University, Australian

Capital Territory 2601, Australia
cSchool of Mathematics and Statistics, University of New South Wales, New South Wales 2052, Australia

dSchool of Mathematics and Applied Statistics, University of Wollongong, New South Wales 2522, Australia

Abstract

Three likelihood approaches to estimation under informative sampling are compared
using a special case for which analytic expressions are possible to derive. An indepen-
dent and identically distributed population of values of a variable of interest is drawn
from a gamma distribution, with the shape parameter and the population size both as-
sumed to be known. The sampling method is selection with probability proportional to
a power of the variable with replacement, so that duplicate sample units are possible.
Estimators of the unknown parameter, variance estimators and asymptotic variances
of the estimators are derived for maximum likelihood, sample likelihood and pseudo-
likelihood estimation. Theoretical derivations and simulation results show that the effi-
ciency of the sample likelihood approaches that of full maximum likelihood estimation
when the sample size n tends to infinity and the sampling fraction f tends to zero.
However, when n tends to infinity and f is not negligible, the maximum likelihood
estimator is more efficient than the other methods because it takes the possibility of
duplicate sample units into account. Pseudo-likelihood can perform much more poorly
than the other methods in some cases. For the special case when the superpopula-
tion is exponential and the selection is probability proportional to size, the anticipated
variance of the pseudo-likelihood estimate is infinite.
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1. Introduction

Maximum likelihood, sample likelihood and pseudo-likelihood estimation are three
frequentist approaches to survey estimation. Maximum likelihood estimation is a stan-
dard approach that uses the likelihood function to estimate unknown parameter values
from observed data. The sample likelihood method maximizes a likelihood function
calculated from a weighted distribution function that incorporates the selection proba-
bilities; it is equivalent to the product of the densities conditional on each unit having
been selected in the sample. The widely used pseudo-likelihood method maximises an
inverse-probability-weighted estimator of the log-likelihood that would have been ob-
tained if all the population units were selected. Chambers et al. (2012) advocates for the
use of full maximum likelihood on the grounds of statistical efficiency. Maximum like-
lihood and sample likelihood are both straightforward for so-called ignorable designs
such as when the selection probabilities depend only on the covariate in a regression
model. However, survey data are now frequently being combined with information
from other sources such as adminstrative collections, leading to informative designs
becoming more common (for example, see Kopra et al. 2015 and Gray et al. 2020).
See Sugden and Smith (1984) for a discussion of implications of informative designs
on likelihood estimation.

“Informative designs” can be defined as cases where the distributions of the ob-
served variables, the sample inclusion probabilities and the design variables are jointly
dependent (page 301 of Chambers et al. 2012). For such designs, estimators for the
full maximum likelihood approach can be very difficult to derive in practice, even
for relatively simple cases (for example, see Section 3.6.2 of Pfeffermann 2011 and
Clark 2020). Sample likelihood is a simpler alternative to full maximum likelihood,
but it is not always clear how efficient the sample likelihood estimator will be. The
pseudo-likelihood estimator may be less efficient than both full maximum likelihood
and sample likelihood (for example, see the “Additional Remarks” section in Lawless
1997), but in many cases it is used because it is the easiest method to implement, with
options to apply pseudo-likelihood estimation available in statistical software such as
the survey package in R (Lumley, 2011). There are currently no general theoretical
results on the relative efficiencies of the three approaches, which makes the choice of
estimation method even more difficult.

Other approaches have also been suggested, such as weight smoothing (Beaumont,
2008). However, these approaches will generally reduce to pseudo-likelihood in our
assumed design, where probabilities are a function of the variable of interest. Another
possible approach is empirical likelihood (Rao and Wu, 2009).
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This paper presents a case where the relative efficiencies of the three approaches
(maximum likelihood, sample likelihood and pseudo-likelihood) can be directly com-
pared. In this case, we estimate the superpopulation parameter θ when a population is
drawn from the gamma distribution with rate θ and known shape α. A sample is then
drawn with probability proportional to a power of the size y, with replacement. This
is an example of a case where there is limited information available to the analyst, be-
cause the population parameter θ and therefore the sample inclusion probabilities are
assumed to be unknown. This relatively simple example will yield insights into which
of the three approaches may be most appropriate for more complex models or designs.
Our set-up is related to that of the example in Section 2.3.3 of Chambers et al. (2012),
but they also assumed knowledge of at least one inclusion probability, which implies
knowledge of all population values. This is a degenerate scenario, as the sample design
then becomes irrelevant. In contrast, we assume only that it is known that the inclusion
probabilities are proportional to a power of the variable of interest. In our example, the
assumption of the known shape parameter α was made so that tractable results could
be obtained. However, there are real-life situations where this assumption is reasonable
(for example, see Borgos et al. 2002, discussed later in this paper). In practice, it may
be necessary to estimate α from the sample data as an initial step.

For the assumed models and designs, we derive asymptotic anticipated variances
for all three approaches so that the performance of the estimators can be compared.
The anticipated variance is defined as the variance over both probability sampling and
realisation of the population from an assumed model; it is an appropriate measure for
comparing probability-based and model-based estimators.

This case serves as an illustration of the potential complexity of applying full max-
imum likelihood methods to even relatively simple examples. However, the compari-
son of the full maximum likelihood results with results from the sample likelihood and
pseudo-likelihood demonstrates that full maximum likelihood estimation can poten-
tially provide better results in practice. In this example, the with replacement sampling
approach has important implications for the performance of the different methods, par-
ticularly when the sampling fraction is high. The size-biased sampling approach also
affects the performance of the pseudo-likelihood estimator, which would not be recom-
mended in this case, given that its anticipated variance can be infinite, and the variance
of the estimates obtained from simulations is very high.

Although this case is relatively simple to allow theoretical results to be derived,
there are some related real-life problems in the natural sciences literature. For exam-
ple, Solow and Smith (1997) describe a model in which mean taxonomic duration is
assumed to have an exponential distribution and the discovery of preserved finds in
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the fossil record is assumed to follow a Poisson process. Borgos et al. (2002) find
that the fault sizes in a data set of geological faults is “best described by the exponen-
tial distribution”, and the probability of discovering faults may be proportional to size,
depending on the technological method used to scan the ocean floor.

Section 2 describes the assumed model and the notation. Sections 3, 4 and 5 present
the estimators and theoretical anticipated variances for maximum likelihood, sample
likelihood and pseudo-likelihood respectively. Section 6 compares the performance of
the three methods using results from a simulation study. Section 7 applies the sample
likelihood and pseudo-likelihood approaches to the geological fault data in Borgos et al.
(2002). Section 8 discusses the theoretical properties of the estimators, the simulation
results and the case study.

2. Assumed model and notation

Suppose that the population values {yi : i = 1, . . . ,N} are drawn independently and
identically from a gamma distribution with shape parameter α and rate parameter θ. It
is assumed that α is fixed and known, while the aim is to estimate θ. The probability
density function for this distribution is:

f (y) =
θαyα−1e−θy

Γ(α)
0 ≤ y < ∞ .

There is no auxiliary information. The inclusion probabilities are unknown, but the
population size N is known. A sample of size n units is selected with replacement,
with the probability of selection of a unit yi being proportional to a power m of yi,
where m is assumed to be known. We observe only the n × 1 vector of values for the
sampled units, ys, which may contain duplicates. While the value yi is observed for
each sampled unit, the probability of selection for yi remains unknown, because the
constant of proportionality is unobserved.

Figure 1 is an illustrative example of the assumed model, showing the theoreti-
cal gamma distribution, the expected distribution of the sample, a single population
drawn from the gamma distribution and four different samples selected from the sin-
gle population. For the case shown by Fig. 1, m = 1, and so larger population units
are more likely to be selected in the samples. Using the framework presented in
Patil and Ord (1976), the expected distribution of the sample is calculated by deriv-
ing the population distribution f (y) weighted by the selection probability. For the
m = 1 case, the weighted distribution is fw(y) = y f (y)/

∫
y f (y) dy, which equals
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yθαyα−1e−θyθ/ (Γ(α)(α + 1)) = θα+1yαe−θy/Γ(α + 1) (see Section 4.4 of Pfeffermann
et al. 1998). This is the gamma distribution with parameters (θ, α + 1), and it is shown
by the solid line in Fig. 1.

The expected number of times that the ith unit is selected is πi ∝ ym
i . The probability

that the ith population unit is the jth unit selected in the sample is πi/n for any j.
Throughout this paper, U refers to the set of units in the population, S contains the

sampled units including any duplicates, S d is the set of distinct units in the sample, and
R is the set of units in U that are not in S d. The N × 1 vector of units in the population
is written as yU . The number of distinct units in the sample is denoted nsd , and ysd is
the nsd × 1 vector of distinct units in the sample, while the number of population units
not selected in the sample is denoted nr, and yr is the vector of non-sampled units in
the population. The sum of the values of the sampled units is denoted ts, tsd is the sum
of the values of the distinct units in the sample, tr is the sum of the values of the non-
sampled units, tU = tsd + tr is the sum of the values of the population units, and ȳU is the
population mean. The design expectation is denoted by Ep and the model expectation
is denoted by Em (see Särndal et al. 1992 for definitions of design expectation and
model expectation), and the corresponding variances are denoted varp and varm. The
anticipated variance is the variance evaluated over both the model and the design, and
it can be decomposed as Em

(
varp

)
+ varm

(
Ep

)
. Throughout this paper, integrals are

evaluated from 0 to∞ unless otherwise stated.
While the assumption that α is known may be considered to be a limitation of the

theoretical results derived in this paper, in practice it is possible to obtain a reasonably
good estimate of α from the observed data, using properties of the gamma distribution
such as the result derived in Section 4.4 of Pfeffermann et al. (1998).

3. Maximum Likelihood Estimation

The missing information principle (Orchard and Woodbury, 1972) is often used
to calculate the maximum likelihood estimate. However, for the model described in
Section 2, the score function for the sample can be derived directly.

Theorem 1. In the maximum likelihood case, the score function for a given sample ys

is

sc(θ) =

∫ {∏
k∈R

θαyα−1
k e−θyk

Γ(α)

} (
1∑

k∈U ym
k

)n (
Nαθ−1 − tsd − tr

)
dyr∫ {∏

k∈R
θαyα−1

k e−θyk

Γ(α)

} (
1∑

k∈U ym
k

)n
dyr

. (1)

For the proof of Theorem 1, see Appendix A.
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Figure 1: An illustrative example of the assumed model. The gamma distribution used for this example has
parameters θ = 1 and α = 1, and the sampling scheme uses m = 1 (probability proportional to size selection).
The population size is 100 and the sample size is 20.
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The score function in (1) can also be expressed in the following form, which is
useful for setting up simulations:

sc(θ) =

Eyr

{(
1∑

k∈U ym
k

)n (
Nαθ−1 − tsd − tr

)
: yr

iid
∼ Gamma(α, θ)

}
Eyr

{(
1∑

k∈U ym
k

)n
: yr

iid
∼ Gamma(α, θ)

} . (2)

Here, the notation
Eyr

{
. . . : yr

iid
∼ Gamma(α, θ)

}
is shorthand for the integral with respect to yr weighted by this gamma density. It
does not imply that yr follows this distribution; it does not, because of the informative
selection.

The maximum likelihood estimate for θ is obtained by setting the score function in
(1) to 0.

In practice, we can estimate θ by using numerical optimisation to find a value of θ̂
that makes the right hand side of (1) as close as possible to 0.

In the special case where m = 1, we immediately obtain by elementary operations:

sc(θ) = Nαθ−1 − tsd −

∫ tnrα−1
r e−θtr(
tsd + tr

)n dtr

−1 ∫
tnrα
r e−θtr(

tsd + tr
)n dtr . (3)

The observed information for a given sample and value of θ,

infos(θ) = −
∂

∂θ
scs(θ), (4)

can be derived explicitly from the score function, or it can be calculated by numerical
differentiation.

3.1. Fisher information for the Maximum Likelihood Estimator

In this section, the Fisher or expected information is derived for the maximum
likelihood estimator. The derivation uses the approach of scaling the sample values of
y by θ, with the scaled units being denoted by zi = θyi. The sum of the distinct units in
the scaled sample zs is denoted by tzsd

, the sum of the scaled non-sampled units in zr is
denoted by tzr and the sum

∑
k∈U zm

k is denoted by tZm .
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Theorem 2. In the maximum likelihood case, the Fisher information is

I(θ) = θ−2Ezs




Ezr

{ (
Nα−tzsd

−tzr

)
(tZm )n : zr

iid
∼ Gamma(α, 1)

}
Ezr

{
1

(tZm )n : zr
iid
∼ Gamma(α, 1)

}


2 (5)

where zs = θys are the scaled sampled units, tzr is the sum of the scaled non-sampled

units zr = θyr, tzsd
is the sum of the distinct units in the scaled sample, and nd is the

number of distinct units in the sample.

See Appendix A for the proof. This result shows that the Fisher information for the
maximum likelihood case depends on θ only as a scaling parameter.

For m = 1, the Fisher information is

I(θ) = θ−2Ezs




Etzr

{ (
Nα−tzsd

−tzr

)(
tzsd

+tzr

)n : tzr ∼ Gamma(nrα, 1)
}

Etzr

{
1(

tzsd
+tzr

)n : tzr ∼ Gamma(nrα, 1)
}


2 . (6)

Also, for the m = 1 case, if N → ∞ while n and the other parameters remain fixed,

I (θ)→ θ−2n(α + 1). (7)

For a heuristic derivation of (7), see Appendix A.

4. Sample Likelihood

The sample likelihood method maximizes a likelihood function calculated from a
weighted distribution function that incorporates the selection probabilities (Patil and
Ord 1976, Krieger and Pfeffermann 1992). This method has been used in a wide range
of applications, including multilevel modelling (Pfeffermann et al., 2006).

4.1. Sample likelihood: estimator and theoretical anticipated variance

We begin by calculating

pr (Ii = 1) = E
{
pr (Ii = 1 | yi)

}
= nE

 nym
i∑

j∈U ym
j

 .
To proceed with sample likelihood, it is necessary to assume that the denominator∑

j∈U ym
j can be treated as a constant (Krieger and Pfeffermann, 1992). This assump-
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tion implies that pr (Ii = 1) ∝ E
(
ym

i

)
= Γ(m + α)/ (Γ(m)θm). Following Krieger and

Pfeffermann (1992), the sample likelihood is defined as

Ls =
∏
i∈s

pr (Ii = 1 | yi) f (yi)
pr (Ii = 1)

∝
∏
i∈s

θmΓ(m)ym
i

θα

Γ(α) y
α−1
i e−θyi

Γ(m + α)
=

∏
i∈s

θα+mΓ(m)yα+m−1
i e−θyi

Γ(m + α)Γ(α)
.

(8)
Taking the logarithm of (8) gives

log Ls = log(K)+∑
i∈s

{
(α + m) log(θ) + log Γ(m) + log

(
yα+m−1

i

)
− θyi − log Γ(m + α) − log Γ(α)

}
(9)

where K is a constant. Differentiating (9) with respect to θ gives the score function,
which is solved to obtain the sample likelihood estimate of θ, denoted by θ̂S L:

∑
i∈s

(
α + m
θ̂S L

− yi

)
= 0 ⇒ θ̂S L =

α + m
ȳs

(10)

where ȳs is the mean of the sample units yi.
The information function is:

infoys = −
∂ sc(θ)
∂θ

= −
∂

∂θ

∑
i∈s

(
α + m
θ
− yi

)
=

n(α + m)
θ2 . (11)

An estimated variance for the sample likelihood estimator can be calculated by
taking the inverse of (11). However, this formula for the variance does not take into
account the loss of information due to the possibility of selecting duplicate units in the
sample. The anticipated variance will provide a more accurate measure, especially if
the sampling fraction is high.

The theoretical anticipated variance of the sample likelihood estimate of θ is

AV
(
θ̂S L

)
≈

θ2

(α + m)2

(
α + m

n
+

3m2 + 2mα + 2m + α

N

)
. (12)

See Appendix B for the derivation of (12).
For the m = 1 case, when N → ∞while the other parameters remain fixed, AVS L →

θ2/n (α + 1).
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5. Pseudo-Likelihood

The aim of the pseudo-likelihood approach is to “construct a design-consistent es-
timate” (Chambers et al., 2012) of the score function that would have been obtained
if the population units had been selected, rather than just a sample. The approach was
discussed in the context of deriving estimators for complex surveys by Binder (1983),
and Godambe and Thompson (1986) presented further theoretical properties.

5.1. Pseudo-likelihood: estimator and theoretical anticipated variance

Let θ̂PL denote the pseudo-likelihood estimate of θ. The probability weighted score
function is

scw(θ) =
∑
i∈S

∑
j∈S d

ym
j +

∑
k∈R ym

k

nym
i

(
α

θ
− yi

)
(13)

and so

0 =
α

θ̂PL

∑
i∈S

1
ym

i
−

∑
i∈S

y1−m
i

⇒ θ̂PL = α

∑
i∈S y−m

i∑
i∈S y1−m

i

. (14)

The theoretical anticipated variance of θ̂PL can be approximated as follows:

AV
(
θ̂PL

)
≈
θ2

n

[
1 +

Γ (α − m) Γ (α + m)
Γ (α)2 − 2

Γ (α + m) Γ (α − m + 1)
Γ (α) Γ (α + 1)

+
Γ (α − m + 2) Γ (α + m) +

{
(n − 1) N−1α − α2

}
Γ (α)2

Γ (α + 1)2

]
. (15)

See Appendix C for the derivation of (15).
For the m = 1 case, as N → ∞ while the other parameters remain fixed, AVPL →

θ2/n (α − 1) (from Corollary 7 in Appendix C).
If X ∼ Gamma(α, θ) and m ≥ α, then E

[
X−m]

is infinite (see Lemma 8 in Appendix
C), and so the theoretical anticipated variance from (15) is also infinite. In particular,
for the case where the population is drawn from the exponential distribution and the
selection is probability proportional to size, the anticipated variance for the pseudo-
likelihood estimator is infinite.

10



6. Simulation results

6.1. Design of simulation study

This section presents results from a simulation study that explores the performances
of the maximum likelihood, sample likelihood and pseudo-likelihood estimators as the
sampling fraction f = n/N and other parameters are varied. The results in this section
have been obtained using the R statistical analysis software. In each iteration of the
simulation, a population is drawn from the gamma distribution and a sample is drawn
with replacement from the population.

For the maximum likelihood case, numerical optimisation and integration methods
were used for the calculations. The integrate function in R was used to obtain val-
ues for the integrals, and the optimize function was used to find θ̂ from (1). Due to
computational limitations, Simpson’s rule was used to approximate integral values in
some cases. The theoretical anticipated variance for the maximum likelihood case is
the inverse of the Fisher information I, which has been calculated using Monte Carlo
integration to evaluate (2). The theoretical anticipated variance for the sample likeli-
hood case is (12). For the pseudo-likelihood case, the theoretical anticipated variance
is (15).

The weight coefficient of variation has been used in the literature to derive measures
of the impact on the variance of an estimate caused by variation of the survey weights
(Levy and Lemeshow, 2008). The weight coefficient of variation may be useful as
a guide to when the results presented in this paper may be indicative of the relative
efficiencies of different likelihood approaches in more complex survey designs. The
weights are considered to be the inverse of the selection probabilities. When α = 1 and
m = 1, the weight coefficient of variation ranges from about 1 (for n = 20 and N = 100)
to 1.3 (for n = 50 and N = 1000) in these simulations, while when α = 3 and m = 1,
the weight coefficient of variation ranges between 0.6 to 0.7, and when α = 1 and
m = 2, the weight coefficient of variation ranges between 1.7 to 2.2. For comparison,
the weight coefficient of variation for the first cohort (initially surveyed during October
1999 to December 2000) of the National Survey of Child and Adolescent Wellbeing is
1.92 (Levy and Lemeshow, 2008, pp. 509-512). This suggests that α = 1 and m = 2
may be a realistic scenario.

6.2. Estimates, variances, estimated variances and theoretical anticipated variances

for α = 1, m = 1

The results in Table 1 show the estimates, simulation variances and theoretical an-
ticipated variances for maximum likelihood, sample likelihood and pseudo-likelihood
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for the case when α = 1 and m = 1. These results have been calculated from 10,000
simulations. This table provides a comparison of the estimated variance and the theo-
retical antipicated variance with the variance of the values of θ̂ from the simulations.
For the α = 1 and m = 1 case, the pseudo-likelihood theoretical antipicated variance is
infinite.

The maximum likelihood estimated variance in Table 1 is the inverse of the ob-
served information from (4), which was calculated using numerical differentiation with
the grad function in the numDeriv package (Gilbert and Varadhan, 2016). The sam-
ple likelihood estimated variance is the mean of the inverse of the observed informa-
tion from (11) across the simulations. As discussed in subsection 4.1, this estimated
variance will generally underestimate the theoretical anticipated variance. The pseudo-
likelihood estimated variance is calculated by taking the mean across the simlulations
of the design variance varp

(
θ̂
)
, which equals

(
α2/n

) [
t−1
Y

∑
k∈U Y−1

k − (N/tY )2
]

in the
α = 1, m = 1 case. These estimated variances can all be calculated using informa-
tion observed only in the sample, as opposed to the theoretical anticipated variance
calculations, which incorporate the true value of θ.

6.3. Comparison of theoretical anticipated variances for m = 1 case as α and the

sampling fraction vary

The plots in Fig. 2 compare the theoretical anticipated variances for maximum
likelihood, sample likelihood and pseudo-likelihood as α varies. Each plot shows the
results for a particular combination of sample size n and population size N.

The plots illustrate how the pseudo-likelihood anticipated variance increases as α
approaches 1. For high sampling fractions (plots B and C in Fig. 2), the performance of
the maximum likelihood estimator is better than that of the sample likelihood estimator,
while for small sampling fractions (plots A and D), the performance of the maximum
likelihood and sample likelihood estimators are similar.

6.4. Theoretical anticipated variances for maximum likelihood, sample likelihood and

pseudo-likelihood for different values of m

The anticipated variances in Table 2 are calculated from the theoretical formulas
derived in this paper. For maximum likelihood, the theoretical anticipated variance
is calculated from (2) using Monte Carlo integration, while the theoretical anticipated
variances for sample likelihood and pseudo-likelihood can be calculated directly from
(12) and (15). The true value of θ is set to 1. This table presents results for various
values of m and α. In Table 2, RES L is the relative efficiency of the SL estimator
compared with the maximum likelihood estimator, and it is defined as the anticipated

12



Table 1: Simulation results for θ = 1, number of simulations = 10, 000, m = 1. Here, E (nd) denotes the mean
number of distinct sample units across the simulations, E

(
θ̂
)

is the mean value of θ̂, var
(
θ̂
)

is the variance
of the values of θ̂ from the 10, 000 simulations, E ( ˆvar) is the mean value of the variance estimate given by
the inverse of the observed information, and AV is the theoretical anticipated variance, which is calculated
using Monte Carlo integration for the MLE. In the Method column, ‘MLE’ indicates maximum likelihood
estimation, ‘SL’ indicates sample likelihood and ‘PL’ indicates pseudo-likelihood

α n N n
N E (nd) Method E

(
θ̂
)

var
(
θ̂
)

E ( ˆvar) AV
1 10 50 0.2 8.48 MLE 1.0638 0.0728 0.0547 0.0565
1 10 50 0.2 8.48 SL 1.1097 0.1003 0.0666 0.0900
1 10 50 0.2 8.48 PL 1.0265 0.6447 2.0339 ∞

1 25 50 0.5 16.90 MLE 1.0327 0.0349 0.0298 0.0306
1 25 50 0.5 16.90 SL 1.0809 0.0621 0.0246 0.0600
1 25 50 0.5 16.90 PL 1.0141 0.1809 0.8142 ∞

1 40 50 0.8 22.50 MLE 1.0272 0.0272 0.0244 0.0254
1 40 50 0.8 22.50 SL 1.0754 0.0530 0.0151 0.0525
1 40 50 0.8 22.50 PL 1.0201 0.1436 0.5109 ∞

1 20 100 0.2 16.82 MLE 1.0328 0.0332 0.0282 0.0281
1 20 100 0.2 16.82 SL 1.0572 0.0474 0.0291 0.0450
1 20 100 0.2 16.82 PL 1.0159 0.2691 0.9132 ∞

1 50 100 0.5 33.55 MLE 1.0170 0.0164 0.0151 0.0146
1 50 100 0.5 33.55 SL 1.0410 0.0303 0.0111 0.0300
1 50 100 0.5 33.55 PL 1.0110 0.2520 0.3562 ∞

1 80 100 0.8 44.70 MLE 1.0133 0.0134 0.0123 0.0102
1 80 100 0.8 44.70 SL 1.0376 0.0265 0.0069 0.0263
1 80 100 0.8 44.70 PL 1.0096 0.0964 0.2195 ∞
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A: Theoretical anticipated variances (f=0.1)
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B: Theoretical anticipated variances (f=0.5)
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C: Theoretical anticipated variances (f=0.5)
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D: Theoretical anticipated variances (f=0.01)
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Figure 2: Comparison of theoretical anticipated variances for maximum likelihood, sample likelihood and
pseudo-likelihood for varying α. The four plots show the comparison for different combinations of sample
size n and population size N ( f = n/N is the sampling fraction).
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variance of the maximum likelihood estimator divided by the anticipated variance of
the sample likelihood estimator. Similarly, REPL is defined as the anticipated variance
of the maximum likelihood estimator divided by the anticipated variance of pseudo-
likelihood estimator.

The results in Table 2 illustrate how the relative efficiencies of the sample likeli-
hood and pseudo-likelihood estimators vary across different scenarios. In particular,
for higher values of m, the relative efficiency of the pseudo-likelihood estimator be-
comes very low, especially when α is close to 1. As discussed at the end of subsection
6.1, these results may be indicative of the relative efficiencies of the different likelihood
approaches in related but more complex survey designs.

7. Case study using data set of geological faults

Borgos et al. (2002) compare two possible models for the distribution of underwater
geological faults. Limitations of the methods for surveying these faults suggest that
the observations are likely to be biased. A Pareto distribution has commonly been
used in the geophysics literature to model the population of faults, but an exponential
distribution has also been proposed. The authors use a data set, considered to be of
high quality, collected from the Gullfaks Field in the North Sea, and they evaluate
the models using the Bayes factor, which is a ratio that can be used as a criterion for
deciding which of two models describes the observed data better. The method for
observing the faults is sonar pulses from ships on the ocean surface. This method is
more likely to detect larger faults. Table 1 of Borgos et al. (2002) contains the full data
set of observed geological faults, which we use to explore an application of the results
from this paper to a real-life example.

Borgos et al. (2002) state assumptions about the probability of observing a fault,
depending on its length. These assumptions are based on properties of the technique
used to collect the data. For faults with a length below 2 metres, the probability of
selection is assumed to be constant and close to 0, while for faults with a length above
20 metres, the probability of selection is assumed to be constant and close to 1. For
faults with a length between 2 metres and 20 metres, the probability of selection is
assumed to be proportional to size. The selection probability as a function of length is
continuous.

In the Gullfaks Field data, there were 66 faults between 2 metres and 20 metres,
and 103 faults greater than 20 metres. The minimum length was 2 metres, the 25th
percentile value was 16, the median value was 24, the 75th percentile value was 56 and
the maximum value was 256.
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Table 2: Results for θ = 1, number of Monte Carlo realisations = 10,000. Here, E (nd) denotes the mean
number of distinct sample units across the realisations, AVMLE is the anticipated variance for the maximum
likelihood estimate, AVS L is the anticipated variance for the sample likelihood estimate, AVPL is the an-
ticipated variance for the pseudo-likelihood estimate, RES L is the relative efficiency of sample likelihood
compared with maximum likelihood and REPL is the relative efficiency of pseudo-likelihood compared with
maximum likelihood

m α n N n
N E (nd) AVMLE AVS L AVPL RES L REPL

0 1 20 100 0.2 18.22 0.0547 0.0600 0.0595 0.911 0.919
0 1 50 100 0.5 39.49 0.0257 0.0300 0.0298 0.858 0.864
0 1 80 100 0.8 55.25 0.0181 0.0225 0.0224 0.806 0.810
0 3 20 100 0.2 18.21 0.0180 0.0200 0.0198 0.900 0.908
0 3 50 100 0.5 39.53 0.0084 0.0100 0.0099 0.839 0.844
0 3 80 100 0.8 55.30 0.0060 0.0075 0.0075 0.798 0.803
0 5 20 100 0.2 18.22 0.0110 0.0120 0.0119 0.914 0.922
0 5 50 100 0.5 39.43 0.0051 0.0060 0.0060 0.853 0.859
0 5 80 100 0.8 55.21 0.0038 0.0045 0.0045 0.838 0.843

0.5 1 20 100 0.2 17.79 0.0372 0.0500 0.0684 0.744 0.544
0.5 1 50 100 0.5 37.52 0.0180 0.0300 0.0334 0.600 0.539
0.5 1 80 100 0.8 51.56 0.0140 0.0250 0.0246 0.560 0.569
0.5 3 20 100 0.2 18.07 0.0158 0.0206 0.0200 0.767 0.788
0.5 3 50 100 0.5 38.85 0.0075 0.0120 0.0100 0.620 0.746
0.5 3 80 100 0.8 54.02 0.0055 0.0099 0.0075 0.552 0.727
0.5 5 20 100 0.2 18.13 0.0100 0.0130 0.0119 0.768 0.834
0.5 5 50 100 0.5 39.14 0.0048 0.0075 0.0060 0.640 0.800
0.5 5 80 100 0.8 54.53 0.0034 0.0062 0.0045 0.546 0.749

1 1 20 100 0.2 16.82 0.0281 0.0450 ∞ 0.624 0
1 1 50 100 0.5 33.55 0.0146 0.0300 ∞ 0.487 0
1 1 80 100 0.8 44.70 0.0102 0.0263 ∞ 0.387 0
1 3 20 100 0.2 17.71 0.0139 0.0213 0.0282 0.644 0.486
1 3 50 100 0.5 37.18 0.0065 0.0138 0.0133 0.475 0.492
1 3 80 100 0.8 50.98 0.0047 0.0119 0.0095 0.397 0.494
1 5 20 100 0.2 17.90 0.0090 0.0139 0.0144 0.651 0.628
1 5 50 100 0.5 38.07 0.0042 0.0089 0.0070 0.473 0.604
1 5 80 100 0.8 52.56 0.0031 0.0076 0.0051 0.403 0.604
2 1 20 100 0.2 13.76 0.0208 0.0400 ∞ 0.520 0
2 1 50 100 0.5 24.73 0.0122 0.0300 ∞ 0.406 0
2 1 80 100 0.8 31.53 0.0078 0.0275 ∞ 0.285 0
2 3 20 100 0.2 16.35 0.0101 0.0224 0.1698 0.452 0.060
2 3 50 100 0.5 32.09 0.0051 0.0164 0.0699 0.310 0.073
2 3 80 100 0.8 42.52 0.0033 0.0149 0.0450 0.222 0.073
2 5 20 100 0.2 17.01 0.0073 0.0155 0.0369 0.470 0.198
2 5 50 100 0.5 34.51 0.0036 0.0112 0.0160 0.318 0.224
2 5 80 100 0.8 46.40 0.0025 0.0102 0.0107 0.243 0.230
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It should be noted that in this case study, the value of N is assumed to be a fixed but
unknown quantity. The sample likelihood and pseudo-likelihood estimators derived
in this paper do not rely on N being known, and so they can be adapted for this case
study. However, the maximum likelihood result derived in this paper assumes that N

is known, and so it is not directly applicable. It may be possible to derive a maximum
likelihood estimator for this case study using a different approach such as the missing
information principle.

We assume that the population values of fault length y are drawn from the expo-
nential distribution with rate parameter θ, and a sample is drawn from the population,
with selection probabilities

pr (Ii = 1 | yi) ∝


h1, 0 ≤ yi < h1

yi, h1 ≤ yi < h2

h2, h2 ≤ yi

(16)

where h1 = 2 and h2 = 20.
The methods used previously to derive sample likelihood and pseudo-likelihood

estimators can be extended in a straightforward way to the model in this case study.
The sample likelihood estimate of θ (θ̂S L) can be obtained by finding the solution to:

ȳs =
1
θ̂S L
−

1
θ̂S L

−h1θ̂S Le−h1 θ̂S L − e−h1 θ̂S L + h2θ̂S Le−h2 θ̂S L + e−h2 θ̂S L

h1θ̂S L + e−h1 θ̂S L − e−h2 θ̂S L

 . (17)

See Appendix B for the derivation of (17).
The pseudo-likelihood estimate of θ (θ̂PL) is:

θ̂PL =

n1
h1

+
∑

i∈S ,h1<yi≤h2
1
yi

+
n3
h2∑

i∈S ,yi<h1

yi
h1

+ n2 +
∑

i∈S ,yi≥h2

yi
h2

(18)

where n1 is the number of sample units yi such that 0 ≤ yi < h1, n2 the number of
sample units yi such that h1 ≤ yi < h2 and n3 the number of sample units yi such that
h2 ≤ yi. See Appendix C for the derivation of (18).

Applying these estimators to the actual data set from Table 1 of Borgos et al. (2002)
gives θ̂S L = 0.028 and θ̂PL = 0.033, compared with an estimate of 0.027 with a 95%
prediction interval of [0.023, 0.031] calculated from the Markov Chain Monte Carlo
technique used by Borgos et al. (2002).

Using the values of θ̂ and N estimated by Borgos et al. (2002) to run 10, 000 sim-
ulations, the mean parameter estimates and 95% confidence intervals derived from the
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Monte Carlo variances are 0.0273 and [0.0217, 0.0330] for sample likelihood, and
0.0272 and [0.0211, 0.0334] for pseudo-likelihood. Even though the simulated sam-
ple data sets have a large proportion of observations that are greater than h1 and so
are assumed to be selected with equal probability, the Monte Carlo variance of the
sample likelihood estimator is nearly 16% lower than the Monte Carlo variance of the
pseudo-likelihood estimator in this simulation study.

It should be noted that the example given in Borgos et al. (2002) contains some ad-
ditional complexities not discussed here. In particular, some degree of bias is expected
in the measurement of the fault length, and there is a small value of y below which
observation is impossible in practice.

8. Discussion of theoretical results, simulation study and case study

The comparison of the anticipated variances shown in Table 1 suggests that the
maximum likelihood approach and the sample likelihood approach will perform sub-
stantially better than pseudo-likelihood when α is close to 1. When this is the case,
there are many population units with low probabilities of selection. However, sample
likelihood is not always more efficient than pseudo-likelihood, particularly when the
sampling fraction is large and α is small. The sample likelihood estimator and the
pseudo-likelihood estimator do not include any information about duplicate units in
the sample, while the maximum likelihood estimator contains some information about
duplicate units in the tsd term. The sample likelihood estimator is particularly affected
by duplicate units and becomes relatively less efficient compared with the full maxi-
mum likelihood as the sampling fraction f = n/N increases (see fig. 2). Conversely, as
the population size N increases and the other parameters are held constant, the antic-
ipated variance for sample likelihood converges to that of maximum likelihood, while
pseudo-likelihood remains less efficient. As N → ∞, AVPL/AVS L → (α + 1)/(α − 1)
(from (12) and Corollary 7 in Appendix C), which goes to infinity as α goes to 1.

The case study using the data from Borgos et al. (2002) gives an example of ap-
plying the results derived in this paper to a real-life problem. Even though most of
observations in the data set are assumed to be selected with equal probability, the sam-
ple likelihood approach is still more efficient than pseudo-likelihood, with the variance
of the pseudo-likelihood estimator being nearly twenty percent higher than the variance
of the sample likelihood estimator.

18



Appendix A. Maximum likelihood proofs

Proof of Theorem 1 . The probability function for the sampled units given the popula-
tion is the design-based probability of selecting the entire sample, which is

f (ys | yU) =
∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k
.

The likelihood is therefore

L(θ) = f (ys) =

∫
f (ys, yr) dyr =

∫
N!
nr!

f (ys, yU) dyr =

∫
N!
nr!

f (ys | yU) f (yU) dyr

as there are N!/nr! ways for ys to be interleaved with the non-sampled units yr

=

∫
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏j∈U

θαyα−1
j e−θy j

Γ(α)

 dyr

= Eyr

 N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏

j∈S d

θαyα−1
j e−θy j

Γ(α)

 : yr
iid
∼ Gamma(α, θ)

 .
(A.1)

So

∂L(θ)
∂θ

=
∂

∂θ

∫
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏j∈U

θαyα−1
j e−θy j

Γ(α)

 dyr

=

∫
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏j∈U

yα−1
j

Γ(α)

 ∂

∂θ

(
θNαe−θtU

)
dyr

(assuming regularity conditions apply, allowing

the derivative ∂/∂θ to be taken within the integral)

=

∫
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏

j∈S d

θαyα−1
j e−θy j

Γ(α)

∏
k∈R

θαyα−1
k e−θyk

Γ(α)

 (
Nαθ−1 − tU

)
dyr
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= Eyr

[
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏

j∈S d

θαyα−1
j e−θy j

Γ(α)

(
Nαθ−1 − tsd − tr

)
: yr

iid
∼ Gamma(α, θ)

]
. (A.2)

Let
∑

k∈U ym
k =

∑
j∈S d

ym
j +

∑
k∈R ym

k be denoted by tYm . The score function is

sc(θ) =
∂ log L(θ)

∂θ
=

∂
∂θ

L(θ)
L(θ)

=

N!
nr!

(∏
i∈S ym

i

) {∏
j∈S d

θαyα−1
j e−θy j

Γ(α)

}
Eyr

{(
1

tYm

)n (
Nαθ−1 − tsd − tr

)
: yr

iid
∼ Gamma(α, θ)

}
N!
nr!

(∏
i∈S ym

i

) {∏
j∈S d

θαyα−1
j e−θy j

Γ(α)

}
Eyr

{(
1

tYm

)n
: yr

iid
∼ Gamma(α, θ)

}

=

Eyr

{(
1

tYm

)n (
Nαθ−1 − tsd − tr

)
: yr

iid
∼ Gamma(α, θ)

}
Eyr

{(
1

tYm

)n
: yr

iid
∼ Gamma(α, θ)

} . (A.3)

Proof of Theorem 2 . Let zi = θyi. The sum of the distinct units in the scaled sample
zs is denoted by tzsd

, the sum of the scaled non-sampled units in zr is denoted by tzr ,
and the sum of the scaled population units in zU is denoted by tZ . For a change of
integration variable,

dyr = θ−nr dzr . (A.4)

From (A.1) and (A.4), the likelihood of the sample ys is

L(θ) =

∫
N!
nr!

∏
i∈S

θ−mzm
i∑

j∈S d
θ−mzm

j +
∑

k∈R θ
−mzm

k


∏j∈U

θzα−1
j e−z j

Γ(α)

 θ−nr dzr

=
N!θN

Γ(α)N

∫
θ−nr

nr!

∏
i∈S

zm
i∑

j∈S d
zm

j +
∑

k∈R zm
k


∏

j∈U

zα−1
j

 e−tZ dzr . (A.5)
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Let
∑N

k=1 zm
k =

∑
j∈S d

zm
j +

∑
k∈R zm

k be denoted by tZm . Then, from (A.5),

∂L(θ)
∂θ

=
∂

∂θ

∫
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏j∈U

θαyα−1
j e−θy j

Γ(α)

 dyr

=

∫
N!
nr!

∏
i∈S

ym
i∑

j∈S d
ym

j +
∑

k∈R ym
k


∏j∈U

yα−1
j

Γ(α)

 ∂

∂θ

(
θNαe−θtU

)
dyr

(assuming regularity conditions apply, allowing

the derivative ∂/∂θ to be taken within the integral)

=

∫
N!
nr!

∏
i∈S

θ−1zm
i∑

j∈S d
θ−mzm

j +
∑

k∈R θ
−mzm

k


∏j∈U

θ−(α−1)zα−1
j

Γ(α)


×

(
NαθNα−1e−tZ − θNαθ−1tZe−tZ

)
θ−nr dzr

=
N!θN−1

Γ(α)N

∫
θ−nr

nr!

∏
i∈S

zm
i

tZm


∏

j∈U

zα−1
j

 e−tZ (Nα − tZ) dzr . (A.6)

From (A.5) and (A.6), the score function for the sample ys is

sc(θ) =

∂
∂θ

L(θ)
L(θ)

=

N!θN−1

Γ(α)N

∫
θ−nr

nr!

(∏
i∈S

zm
i

tZm

) (∏
j∈U zα−1

j

)
e−tZ (Nα − tZ) dzr

N!θN

Γ(α)N

∫
θ−nr

nr!

(∏
i∈S

zm
i

tZm

) (∏
j∈U zα−1

j

)
e−tZ dzr

= θ−1

∫
θ−nr

nr! (Nα − tZ)
(∏

i∈S
zm

i
tZm

) (∏
j∈U zα−1

j

)
e−tZ dzr∫

θ−nr

nr!

(∏
i∈S

zm
i

tZm

) (∏
j∈U zα−1

j

)
e−tZ dzr

. (A.7)

It is a standard result that if regularity conditions hold, I(θ) = E
[
{sc(θ)}2

]
. This

expectation is across all the possible samples, and the value of nr depends on the par-
ticular scaled sample zs. We partition the set of possible zs into groups based on the
value of nr. For each of these groups, nr can be treated as a constant for expectations
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calculated across the samples within the group. So from (A.7),

I(θ) = Ezs

[
{sc(θ)}2

]
=

n∑
nd=1

Ezs

[
(sc(θ))2 | nd

]
pr [nd]

=

n∑
nd=1

Ezs


θ−1

∫
θ−nr

nr! (Nα − tZ)
(∏

i∈S
zm

i
tZm

) (∏
j∈U zα−1

j

)
e−tZ dzr∫

θ−nr

nr!

(∏
i∈S

zm
i

tZm

) (∏
j∈U zα−1

j

)
e−tZ dzr


2

| nd

 pr (nd)

= θ−2
n∑

nd=1

Ezs





∏
i∈S

zm
i


∏

i∈S d

zα−1
i e−zi

 Γ(α)−nr Ezr

{ (
Nα−tzsd

−tzr

)
(tZm )n

}
∏

i∈S

zm
i


∏

i∈S d

zα−1
i e−zi

 Γ(α)−nr Ezr

{
1

(tZm )n

}


2

| nd


pr (nd)

= θ−2
n∑

nd=1

Ezs




Ezr

{ (
Nα−tzsd

−tzr

)
(tZm )n : zr

iid
∼ Gamma(α, 1)

}
Ezr

{
1

(tZm )n : zr
iid
∼ Gamma(α, 1)

}


2

| nd

 pr (nd)

= θ−2Ezs




Ezr

{ (
Nα−tzsd

−tzr

)
(tZm )n : zr

iid
∼ Gamma(α, 1)

}
Ezr

{
1

(tZm )n : zr
iid
∼ Gamma(α, 1)

}


2 . (A.8)

Heuristic derivation of (7). We assume that the probability of selecting duplicate units
is 0, so that N = n+nr and tzsd

= tzs . We also assume that the sum of the scaled sampled
units tzsd

is very small compared with the sum of the scaled non-sampled units tzr , so
that (tzsd

+ tzr )
n ≈ tn

zr
. Under these assumptions, (6) becomes

I(θ) ≈ θ−2Ezs


Nα − tzs −

Etzr

{
t−n+1
zr

: tzr ∼ Gamma(nrα, 1)
}

Etzr

{
t−n
zr : tzr ∼ Gamma(nrα, 1)

} 
2 . (A.9)

From properties of the gamma distribution, if X ∼ Gamma(α, θ) and q > −α, then
E

(
Xq+1

)
/E (Xq) = (q + α) /θ. So

Etzr

{
t−n+1
zr

: tzr ∼ Gamma(nrα, 1)
}

Etzr

{
t−n
zr : tzr ∼ Gamma(nrα, 1)

} = −n + nrα (A.10)
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for nrα > n. Substituting (A.10) into (A.9) gives

I(θ) ≈ θ−2 Ezs

[{
Nα − tzs − (−n + nrα)

}2
]

= θ−2 Ezs

[{
n(α + 1) − tzs

}2
]
. (A.11)

In this case, m = 1, so the expectation of tzs is

Ezs

(
tzs

)
= Em

{
Ep

(
tzs

)}
= Em

n ∑
k∈U

Zk

tZ
Zk


= n

Em

(∑
k∈U Z2

k

)
Em

(∑
k∈U Zk

) = n
α (α + 1)

α
= n(α + 1) . (A.12)

So from (A.11) and (A.12),

I(θ) ≈ θ−2 Ezs

[{
Ezs

(
tzs

)
− tzs

}2
]

= θ−2 varzs

(
tzs

)
= θ−2

[
Em

{
varp

(
tzs

)}
+ varm

{
Ep

(
tzs

)}]
. (A.13)

Following the approach in Sections 6.1 and 6.2 of Lohr (2021), the design expecta-
tion and variance of tzs are

Ep
(
tzs

)
= n

N∑
k=1

Zk

tZ
Zk =

n
tZ

∑
k∈U

Z2
k (A.14)

and

varp
(
tzs

)
= Ep

(
t2
zs

)
−

{
Ep

(
tzs

)}2

= n
∑
k∈U

Zk

tZ
Z2

k +
(
n2 − n

) ∑
k∈U,l∈U

ZkZl

t2
Z

ZkZl −
n2

t2
Z

 N∑
k∈U

Z2
k

2

= n

∑
k∈U

Z3
k

tZ
−

∑
k∈U

Z2
k

tZ

2 . (A.15)
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Combining (A.13), (A.14) and (A.15) gives

I(θ)

≈ θ−2

Em

n
∑

k∈U

Z3
k

tZ
−

∑
k∈U

Z2
k

tZ

2

 + Em


 n

tZ

∑
k∈U

Z2
k

2 −
Em

n
tZ

∑
k∈U

Z2
k

2

≈ θ−2
{

Γ (α + 3)
αΓ (α)

−
Γ (α + 2)2

α2Γ (α)2 +
nΓ (α + 4)
Nα2Γ (α)

−
nΓ (α + 2)2

Nα2Γ (α)2

}
from properties of the gamma distribution

= θ−2n
{
(α + 1) +

n
Nα

(
4α2 + 10α + 6

)}
→ θ−2n(α + 1) as N → ∞ while n is fixed. (A.16)

Appendix B. Sample likelihood proofs

Proof of (12). The selection probabilities are ym
i /

∑N
k=1 ym

k . Let
∑N

k=1 ym
k be denoted by

tYm . The anticipated variance of ȳs is

AV (ȳs) = Em

{
varp(ȳs)

}
+ varm

{
Ep (ȳs)

}
. (B.1)

The design expectation and variance of ȳs are

Ep (ȳs) =

N∑
k=1

Ym
k

tYm
Yk =

N
tYm

∑N
k=1 Ym+1

k

N
, (B.2)

varp (ȳs) = n−1


N∑

k=1

Ym+2
k

tYm
−

 N∑
k=1

Ym+1
k

tYm

2 . (B.3)
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Substituting (B.2) and (B.3) into (B.1) gives

AV {ȳs}

= Em

n−1

NYm+2

tYm
−

(
NYm+1

tYm

)2
 +

1
N

varm

(
N
tYm

Ym+1
)

= n−1
{

(m + 1 + α)(m + α)
θ2 −

(m + α

θ

)2
}

+
1
N

{
(2m + 1 + α)(2m + α)

θ2 −

(m + α

θ

)2
}

(from properties of the gamma distribution)

=
α + m

nθ2 +
3m2 + 2mα + 2m + α

Nθ2 . (B.4)

From (10), θ̂S L = (α + m)/ȳs. From (B.2),

E (ȳs) = Em

{
Ep (ȳs)

}
= Em

 N
tYm

∑N
k=1 Ym+1

k

N

 =
α + m
θ

. (B.5)

Using a Taylor series expansion and combining (B.5) and (B.4) gives

AV
(
θ̂
)

= (α + m)2 AV
(

1
ȳs

)
≈ (α + m)2

{
1

E (ȳs)

}4

AV (ȳs)

= (α + m)2
(

θ

α + m

)4 (
α + m

nθ2 +
3m2 + 2mα + 2m + α

Nθ2

)
=

θ2

(α + m)2

(
α + m

n
+

3m2 + 2mα + 2m + α

N

)
. (B.6)

Proof of (17) (sample likelihood estimator for case study of geological fault data). Given
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the model (16), the sample likelihood is

Ls =
∏
i∈s

pr (Ii = 1 | yi) f (yi)
pr (Ii = 1)

∝

 ∏
i∈S ,yi<h1

h1θe−θyi


 ∏

i∈S ,h1<yi≤h2

yiθe−θyi


 ∏

i∈S ,yi≥h2

h2θe−θyi

×∏
i∈s

(∫ h1

0
h1θe−θyi dy +

∫ h2

h1

yθe−θyi dy +

∫ ∞

h2

h2θe−θyi dy
)
−1

=

 ∏
i∈S ,yi<h1

h1θe−θyi


 ∏

i∈S ,h1<yi≤h2

yiθe−θyi


 ∏

i∈S ,yi≥h2

h2θe−θyi

×∏
i∈s

(
h1 −

e−h2θ

θ
+

e−h1θ

θ

)
−1

.

Therefore

∂

∂θ
log (Ls) =

∑
i∈S

(
1
θ
− yi

)
− n

(
−h1θe−h1θ − e−h1θ + h2θe−h2θ + e−h2θ

θ2h1 + θe−h1θ − θe−h2θ

)

and

ȳs =
1
θ̂
−

1
θ̂

−h1θ̂e−h1 θ̂ − e−h1 θ̂ + h2θ̂e−h2 θ̂ + e−h2 θ̂

θ̂h1 + e−h1 θ̂ − e−h2 θ̂

 .

Appendix C. Pseudo-likelihood proofs

A Taylor series approximation for the variance of a ratio of two random variables
A and B is

var (A/B) ≈
{E(A)}2

{E(B)}2

[
var (A)

{E(A)}2
− 2

cov (A, B)
E(A)E(B)

+
var (B)

{(E(B)}2

]
. (C.1)

The following four lemmas will be used in the derivation of the anticipated variance
of the pseudo-likelihood estimator.

Lemma 3. If X ∼ Gamma (α, θ), then by properties of the gamma distribution,

E (Xq) =
Γ (q + α)
θqΓ (α)

for any q such that q + α > 0.
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Lemma 4. Suppose s is selected from U with probability proportional to a power m

of size with replacement, and α + m + q > 0 and α + m > 0. Then the following result

applies.

E

∑
i∈S

yq
i

 = Em

Ep

∑
i∈S

yq
i


 = Em

n
∑
k∈U

(
Ym

k

tYm
Yq

k

) ≈ Em

(
Ym+q

k

)
Em (tYm )

= nθ−q Γ (α + m + q)
Γ (α + m)

(C.2)

from Lemma 3.

Lemma 5. Suppose s is selected from U with probability proportional to a power m of

size with replacement, and α + m + q1 > 0, α + m + q2 > 0, α + m + q1 + q2 > 0 and

α + m > 0. Then the following result applies.

acov

∑
i∈S

yq1
i ,

∑
i∈S

yq2
i

 = Em

Ep

∑
i∈S

yq1
i

∑
i∈S

yq2
i


 − Em

Ep

∑
i∈S

yq1
i


 Em

Ep

∑
i∈S

yq2
i




= Em

Ep

 ∑
i∈S , j∈S

yq1
i yq2

j


 − Em

n ∑
k∈U

Ym
k

tYm
Yq1

k

 Em

n ∑
k∈U

Ym
k

tYm
Yq2

k



≈ Em

Ep

∑
i∈S

yq1
i yq2

i

 + Ep

 ∑
i, j∈S ,i, j

yq1
i yq2

j




− n
Γ (α + m + q1)
θq1Γ (α + m)

n
Γ (α + m + q2)
θq2Γ (α + m)

= Em

n
∑
k∈U

Ym
k

tYm
Yq1+q2

k +
(
n2 − n

) ∑
k∈U,l∈U

Ym
k Ym

l

(tYm )2 Yq1
k Yq2

l


− n2 Γ (α + m + q1) Γ (α + m + q2)

θq1+q2Γ (α + m)2
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= nEm

∑
k∈U

Yq1+q2+m
k

tYm

 +
(
n2 − n

) [
Em

∑
k∈U

Yq1+q2+2m
k

(tYm )2

 +

Em

 ∑
k,l∈U,k,l

Yq1+m
k Yq2+m

l

(tYm )2


]

− n2 Γ (α + m + q1) Γ (α + m + q2)
θq1+q2Γ (α + m)2

≈
nθmΓ (α)
Γ (m + α)

Γ (q1 + q2 + m + α)
θq1+q2+mΓ (α)

+

(
n2 − n

)
N2

θ2mΓ (α)2

Γ (m + α)2

{
NΓ (q1 + q2 + 2m + α)

θq1+q2+2mΓ (α)
+

N (N − 1) Γ (q1 + m + α) Γ (q2 + m + α)
θq1+mθq2+mΓ (α)2

}
− n2 Γ (q1 + m + α) Γ (q2 + m + α)

θq1+q2Γ (m + α)2

≈
n

θq1+q2

{
Γ (q1 + q2 + m + α)

Γ (m + α)
+

(n − 1) Γ (α) Γ (q1 + q2 + 2m + α)
NΓ (m + α)2 +

(1 − n − N) Γ (q1 + m + α) Γ (q2 + m + α)
NΓ (m + α)2

}
using a Taylor series approximation and Lemma 3.

Lemma 6. For yi selected with probability proportional to a power m of yi from a

population drawn from a gamma distribution with parameters (α, θ), the anticipated

variance

AV

∑
i∈S

yq
i

 ≈ n
θ2q

{
Γ (2q + m + α)

Γ (m + α)
+

(n − 1) Γ (α) Γ (2q + 2m + α)
NΓ (m + α)2 +

(1 − n − N) Γ (q + m + α)2

NΓ (m + α)2

}
for any q, as long as α + m + q > 0, α + m + 2q > 0, and α + m > 0, from Lemma 5.
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Proof of (15). Combining (C.1), Lemma 4, Lemma 5 and Lemma 6 gives

AV
(
θ̂PL

)
≈ α2

[
Em

{
Ep

(∑
i∈S y−m

i

)}]2[
Em

{
Ep

(∑
i∈S y1−m

i

)}]2

( AV
(∑

i∈S y−m
i

)
[
Em

{
Ep

(∑
i∈S y−m

i

)}]2

− 2
acov

(∑
i∈S y−m

i ,
∑

i∈S y1−m
i

)
Em

{
Ep

(∑
i∈S y−m

i

)}
Em

{
Ep

(∑
i∈S y1−m

i

)} +
AV

(∑
i∈S y1−m

i

)
[
Em

{
Ep

(∑
i∈S y1−m

i

)}]2

)

=
θ2

n

[
1 +

Γ (α − m) Γ (α + m)
Γ (α)2 − 2

Γ (α + m) Γ (α − m + 1)
Γ (α) Γ (α + 1)

+
Γ (α − m + 2) Γ (α + m) +

{
(n − 1) N−1α − α2

}
Γ (α)2

Γ (α + 1)2

]
.

Corollary 7 (Special case: m = 1). When m = 1, the pseudo-likelihood estimator

becomes

θ̂PL =
α

n

∑
i∈S

y−1
i (C.3)

and the anticipated variance becomes

AV
(
θ̂PL

)
≈

θ2

n (α − 1)

{
1 +

(n − 1) (α − 1)
Nα

}
=

θ2

n (α − 1)
+
θ2 (n − 1)

Nnα
(C.4)

for α > 1, from (15).

Lemma 8. If X ∼ Gamma(α, θ) and m ≥ α, then E
[
X−m]

is infinite.

Proof.

E
[
X−m]

=

∫ ∞

0
x−m θ

αxα−1e−θx

Γ(α)
dx =

θα

Γ(α)

∫ ∞

0
x−m+α−1e−θx dx

by definition of the gamma function. For x > 0, x−m+α−1e−θx is always non-negative, so
if

∫ 1
0 x−m+α−1e−θx dx is infinite, then

∫ ∞
0 x−m+α−1e−θx dx is also infinite. For 0 ≤ x ≤ 1,
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e−θx ≥ e−θ. Also, if 0 ≤ x ≤ 1 and m ≥ α, then x−m+α−1e−θx ≥ x−1e−θx. If m ≥ α, then∫ ∞

0
x−m+α−1e−θx dx ≥

∫ 1

0
x−m+α−1e−θx dx ≥

∫ 1

0
x−1e−θx dx

≥

∫ 1

0
x−1e−θ dx = log (x) e−θ

]1
0 = ∞ .

Proof of (18) (pseudo-likelihood estimator for case study of geological fault data). Given
the model (16), the probability weighted score function is

scw (θ) ∝
∑

i∈S ,yi<h1

1
θ
− yi

h1
+

∑
i∈S ,h1<yi≤h2

1
θ
− yi

yi
+

∑
i∈S ,yi≥h2

1
θ
− yi

h2

and so

θ̂ =

n1
h1

+
∑

i∈S ,h1<yi≤h2
1
yi

+
n3
h2∑

i∈S ,yi<h1

yi
h1

+ n2 +
∑

i∈S ,yi≥h2

yi
h2

where n1 is the number of sample units yi such that 0 ≤ yi < h1, n2 is the number of
sample units yi such that h1 ≤ yi < h2, and n3 is the number of sample units yi such that
h2 ≤ yi.
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