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Abstract

The natural cycles of the surface-to-atmosphere fluxes of carbon dioxide (CO2) and
other important greenhouse gases are changing in response to human influences. These
changes need to be quantified to understand climate change and its impacts, but this is
difficult to do because natural fluxes occur over large spatial and temporal scales and
cannot be directly observed. Flux inversion is a technique that estimates the spatio-
temporal distribution of a gas’ fluxes using observations of the gas’ mole fraction and a
chemical transport model. To infer trends in fluxes and identify phase shifts and am-
plitude changes in flux seasonal cycles, we construct a flux-inversion system that uses a
novel spatially varying time-series decomposition of the fluxes. We incorporate this de-
composition into the Wollongong Methodology for Bayesian Assimilation of Trace-gases
(WOMBAT, Zammit-Mangion et al., Geosci. Model Dev., 15, 2022), a hierarchical flux-
inversion framework that yields posterior distributions for all unknowns in the underlying
model. We also extend WOMBAT to accommodate physical constraints on the fluxes, and
to take direct in situ and flask measurements of trace-gas mole fractions as observations.
We apply the new method, which we call WOMBAT v2.0, to a mix of satellite obser-
vations of CO2 mole fraction from the Orbiting Carbon Observatory-2 (OCO-2) satellite
and direct measurements of CO2 mole fraction from a variety of sources. We estimate the
changes in the natural cycles of CO2 fluxes that occurred from January 2015 to December
2020, and compare our posterior estimates to those from an alternative method based on
a bottom-up understanding of the physical processes involved. We find substantial trends
in the fluxes, including that tropical ecosystems trended from being a net source to a net
sink of CO2 over the study period. We also find that the amplitude of the global seasonal
cycle of ecosystem CO2 fluxes increased over the study period by 0.11 PgC/month (an
increase of 8%), and that the seasonal cycle of ecosystem CO2 fluxes in the northern
temperate and northern boreal regions shifted earlier in the year by 0.4–0.7 and 0.4–0.9
days, respectively (2.5th to 97.5th posterior percentiles), consistent with expectations for
the carbon cycle under a warming climate.

∗michael bertolacci@uow.edu.au
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1 Introduction

The increasing atmospheric concentrations of carbon dioxide (CO2), methane, and nitrous oxide
are the primary drivers of climate change (Masson-Delmotte et al., 2021). The increases are
largely due to anthropogenic emissions, but the surface-to-atmosphere fluxes of these gases
also have natural cycles. These cycles are influenced by human activities such as land usage
(Vitousek et al., 1997; Tagesson et al., 2020), by increasing surface temperatures (Barichivich
et al., 2013), and by the direct response of ecosystems to increased atmospheric concentrations
(Friedlingstein, 2015), and it is important to gauge the scale of the influences. For CO2 in
particular, the land and ocean have responded to increased concentrations by absorbing more
than half of the anthropogenic emissions (Shevliakova et al., 2013), and the seasonal cycles
of important source and sink processes such as respiration and photosynthesis are changing
(Gonsamo et al., 2018; Park et al., 2019). Understanding how much the natural cycles of fluxes
of climate-influencing trace gases have changed, and where those changes have occurred, is
therefore critical in the study of climate change.

The net surface-to-atmosphere flux of a trace gas is the sum of its fluxes due to different
processes at Earth’s surface. For CO2, these processes include the burning of fossil fuels,
assimilation of CO2 through photosynthesis (often called gross primary productivity, or GPP),
respiration of CO2 by plants and soils, biomass burning, human use of biofuels, and CO2

exchange between the ocean and the atmosphere (known as air–sea fluxes). The net flux of a
trace gas can thus be modelled as

X(s, t) =
∑
c∈C

Xc(s, t); s ∈ S2, t ∈ T , (1)

where X(s, t) is the net flux of the trace gas at location s and time t, S2 is the surface of Earth,
T ≡ [t0, t1] is the time period of interest, and {Xc(·, ·) : c ∈ C} is a collection of component
flux fields of size C = |C|. It is impossible to measure flux fields directly over large spatial and
temporal scales, and hence estimation of X(·, ·) and {Xc(·, ·) : c ∈ C} is indirect. There are two
broad categories of methods for doing so: bottom-up and flux inversion (which is top-down).

Bottom-up methods typically target a single component field, Xc(·, ·), such as GPP for CO2,
rather than the net flux (e.g., see Landschützer et al., 2016; Haynes et al., 2019a, for natural
ocean and land fluxes, respectively). These methods use a mechanistic understanding of the
physical processes relevant to the component, such as the relationship between temperature
and plant decay, and they are informed by ancillary information such as estimates of surface
temperatures. Bottom-up methods can estimate the spatio-temporal distribution of fluxes at
relatively fine scales, but their accuracy varies depending on the target field (Crowell et al.,
2019). Estimates of CO2 fluxes from fossil-fuel usage, for example, are considered to be much
more accurate (Oda and Maksyutov, 2011; van der Werf et al., 2017) than those of natural CO2

fluxes (Basu et al., 2013).
Flux inversion, the approach taken in this paper, uses atmospheric mole-fraction data to

infer fluxes at Earth’s surface. A gas’ mole-fraction field, which we denote by Y (s, h, t) at
location s ∈ S2, geopotential height h ≥ 0, and time t ∈ T , is related to its flux field, X(s, t),
through the process of atmospheric transport. Flux inversion involves inverting the forward
transport relationship and hence is an ill-posed problem that usually requires a significant
injection of prior information (Enting, 2002). Most inversion methods take a Bayesian approach
where prior information comes from bottom-up estimates of fluxes; typically these are used to
specify the prior mean of the flux field (e.g., Chevallier et al., 2005; Basu et al., 2013; Zammit-
Mangion et al., 2022). Estimates from flux inversions are usually most accurate at coarse scales,
while inference at finer scales is less accurate.

The majority of operational CO2 flux-inversion systems (e.g., Crowell et al., 2019) are pa-
rameterised over a partition of space and time, without parameters that explicitly govern the
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trend and seasonality of fluxes. Exceptions include the works of Rayner et al. (2005) and re-
lated studies (e.g., Scholze et al., 2016; He et al., 2022) that directly adjust the parameters of a
bottom-up land biosphere model using observations of atmospheric CO2 mole fractions (which
in turn directly affect the seasonal behaviour of the biosphere model). With this approach, the
parameterisation is rather parsimonious and lends itself to inferences that are physically inter-
pretable. Another method that does not use a direct space–time partition is the system labelled
“CSU” in Crowell et al. (2019), which adjusts the bottom-up estimates through multiplication
by harmonics at different frequencies; this also allows for borrowing of strength between obser-
vations. Although based on harmonics, the parameterisation does not explicitly separate the
trend and seasonal parts of the fluxes, which are features of primary scientific interest and a
key feature of our approach.

In this article, we present a new flux-inversion method with several innovations that facilitate
the study of the trends and changing seasonal cycles of the component flux processes in (1).
Our method builds on the Bayesian hierarchical flux-inversion framework of Zammit-Mangion
et al. (2022), called the WOllongong Methodology for Bayesian Assimilation of Trace-gases,
version 1.0 (WOMBAT v1.0), and hence we call it WOMBAT version 2.0 (WOMBAT v2.0).

A major contribution of WOMBAT v2.0 is the incorporation of a novel spatially varying
time-series decomposition of the component fluxes built on a spatially-varying regression coeffi-
cient model (Brunsdon et al., 1996; Wikle et al., 1998; Gelfand et al., 2003). Our decomposition
allows for direct inference of the flux trends and of phase shifts and amplitude changes in the
flux seasonal cycle, through which we are able to answer questions of scientific importance.
The decomposition is preserved under aggregation, so that inferences on the changes can be
made at different spatial scales. The underlying component processes can also be projected into
the future. Inference on the trend and seasonal cycle of the flux at a location is parsimonious
and efficient, as it is made through a small number of parameters. This is in contrast to a
conventional flux-inversion setup where the component flux is parameterised over a space–time
partition (e.g., the flux in a grid cell over eight days, as in Chevallier et al., 2005), so that
seasonal cycles must be inferred anew every year. Our parameterisation also helps with gaps in
observational coverage over time through borrowing of strength between years: if observations
for some time period are missing, observations from the same time period in other years help
fill the gap.

A second major contribution of WOMBAT v2.0 builds on an extension to WOMBAT v1.0
that we implemented in Stell et al. (2022) to allow for fully-Bayesian inference on flux fields
that must satisfy physical constraints. For example, in our application to CO2 flux, one com-
ponent field is always negative (GPP) and another is always positive (respiration). We show
how these constraints can be approximated using a system of just over half a million linear con-
straints, which allows the Hamiltonian Monte Carlo (HMC) method of Pakman and Paninski
(2014) to sample the unknown parameters in the model with the constraints preserved. Other
improvements to WOMBAT v1.0 include the ability to estimate CO2 fluxes over a longer time
period (79 months rather than WOMBAT v1.0’s 31 months), and the flexibility to augment the
satellite observations with in situ and flask measurements. Other important features of WOM-
BAT v1.0 are retained, including the capacity to combat model misspecification by specifying
a parameter model and inferring these unknowns within the Bayesian hierarchical framework.

The paper is organised as follows. In Section 2 we present the novel Bayesian hierarchical
model for WOMBAT v2.0, along with details on how we make inferences with the model. In
Section 3 we discuss how we configure WOMBAT v2.0 to estimate land biosphere fluxes and
ocean (air–sea) fluxes of CO2 using a mix of satellite observations of CO2 mole fraction from
the Orbiting Carbon Observatory-2 (OCO-2) satellite and direct measurements of CO2 mole
fraction from a variety of sources, with a focus on estimating changes to the natural cycle of the
land fluxes and quantifying their uncertainties. The results, which are given in Section 4, both
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reinforce our understanding of and shed new light on Earth’s carbon cycle. In agreement with
the bottom-up estimates, we find that the overall global seasonal cycle of CO2 is increasing
in amplitude over the six years in our study. We find evidence of linear trends in the fluxes
in all regions of the globe. Significantly, we find that over 2015–2020 the land ecosystems of
the northern extratropics (defined as 23°N–90°N) are a net sink of CO2, but a positive trend
indicates that the sink is decreasing. Equally significantly, over the same time period the
ecosystems of the tropics (23°S–23°N) trend from a source of CO2 to a sink. This latter finding
is important as tropical ecosystems have been described as the “lungs” of our planet (Wood,
1990), and this increased sink is likely a response to increased CO2 in the atmosphere. The
decomposition used by WOMBAT v2.0 is able to isolate the impact of the 2015/16 El Niño
event, which is found to have caused a reduction in ecosystem productivity leading to a net
positive flux (i.e., source) of CO2 over northern tropical South America. We also find changes
to regional CO2 flux seasonal cycles, including that the seasonal cycles of ecosystem CO2 fluxes
in the northern temperate and northern boreal regions are shifting earlier in the year.

Section 5 concludes the paper with a discussion of our framework, the results, and future
research directions. Appendices A through to D contains extra details on the framework and
how it was configured to estimate fluxes of CO2, as well as additional figures and tables to
support the results. Software that implements the method is available online at https://

github.com/mbertolacci/wombat-v2-workflow.

2 Model

Our top-down framework for estimating the surface fluxes of a trace gas has its foundations
in the WOMBAT v1.0 framework (Zammit-Mangion et al., 2022). As in WOMBAT v1.0, we
construct a hierarchical Bayesian statistical model consisting of a process model for the fluxes, a
process model for the mole-fraction field linked to the flux field, a mole-fraction data model, and
a parameter model for the unknown parameters in the process and data models. Sections 2.1–
2.3 present the new process model that is needed for WOMBAT v2.0 to answer important
questions about a changing carbon cycle. Section 2.4 outlines the parts of WOMBAT v1.0 that
are retained in WOMBAT v2.0. Section 2.5 discusses inference in the framework.

2.1 Decomposition of the flux process model

Recall from (1) that the net flux of a trace gas, X(s, t), is modelled as the sum of the component
flux fields {Xc(·, ·) : c ∈ C}. The component fluxes depend on the physical processes that are
relevant to the trace gas being studied; for an example of a set of components, see the CO2

application in Section 3. It is common for some of these components, such as the fossil-fuel
contribution for CO2, to be assumed known and fixed to a bottom-up estimate (Crowell et al.,
2019).

In WOMBAT v1.0, and in the vast majority of flux inversion systems in use today, the
component fluxes in {Xc(·, ·) : c ∈ C} that are not fixed are modelled as rescaled bottom-up
estimates, where the scaling factors are allowed to vary slowly in both space and time. As
discussed in Section 1, this model requires adjustments to the seasonal cycle of fluxes to be
made anew each year, and does not allow explicit inference on the characteristics of the natural
cycles of the fluxes. To remedy this, the new process model in WOMBAT v2.0 posits that
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Xc(·, ·) has the following spatially varying time-series decomposition:

Xc(s, t) = βc,0(s) + βc,1(s)t+
Kc∑
k=1

(βc,2,k(s) + βc,3,k(s)t) cos(2πkt/365.25)

+
Kc∑
k=1

(βc,4,k(s) + βc,5,k(s)t) sin(2πkt/365.25) + εc(s, t), (2)

for s ∈ S2 and t ∈ T , where βc,·(s), βc,·,·(s), and εc(s, t) are treated as unknown. The joint
distribution of the unknown parameters in (2) is constructed through a combination of bottom-
up estimates and a basis-function representation; see Section 2.2.

The decomposition in (2) comprises an intercept, a linear temporal trend, 2Kc harmonics
of the solar-cycle with a period of 365.25 days, and a residual term, εc(·, ·). The intercept
and the linear trend capture the long-term changing level of the fluxes, while the harmonics
capture the seasonal (intra-annual) component, which is also allowed to change between years.
The residual term, εc(·, ·), accommodates any deviations from the flux trend and seasonality at
location s and time t. These deviations are largely unpredictable in the long term, are often
substantial, and are themselves of scientific interest. For example, in Section 4 an El Niño event
that occurred during our study period leads to substantial residual CO2 fluxes in some regions
of Earth. Some component fluxes also have a diurnal cycle with a period of 24 hours, which
cannot be represented by the annual harmonics. The diurnal cycle will therefore appear in the
residual term; this high-frequency cycle is not the focus of this study, so we make no further
effort to isolate it.

The decomposition in (2) fits into the class of spatially-varying coefficient models (Bruns-
don et al., 1996; Wikle et al., 1998; Gelfand et al., 2003), in which the coefficients of a series
of covariates are assigned a spatial structure. In this context, previous studies have also used
harmonics with temporally and spatially-varying coefficients to accommodate changing season-
ality. A recent example is given by North et al. (2021), who examine the changing seasonality
of temperature in North America over 40 years. In their case, the coefficients of the harmonics
evolve in time according to a dynamical model, while in (2) their change in time depends on a
random trend term.

2.1.1 Time-varying phase and amplitude

A useful property of the decomposition in (2) for the study of natural cycles of the fluxes is
that the harmonic terms accommodate time-varying periodicity. This is because the seasonal
component of the decomposition can be written as

Kc∑
k=1

(βc,2,k(s) + βc,3,k(s)t) cos(2πkt/365.25)

+
Kc∑
k=1

(βc,4,k(s) + βc,5,k(s)t) sin(2πkt/365.25) =
Kc∑
k=1

Ac,k(s, t) cos(2πkt/365.25 + Pc,k(s, t)), (3)

where

Ac,k(s, t) ≡
√

(βc,2,k(s) + βc,3,k(s)t)2 + (βc,4,k(s) + βc,5,k(s)t)2 and

Pc,k(s, t) ≡ tan−1
(
−βc,4,k(s) + βc,5,k(s)t

βc,2,k(s) + βc,3,k(s)t

)
,
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for s ∈ S2 and t ∈ T . Equation (3) expresses the seasonal component as a sum of Kc har-
monics, each with its own time-varying amplitude, Ac,k(·, ·), and phase, Pc,k(·, ·). Therefore, by
making inference on the β coefficients in (2), one is implicitly making inference on the changing
amplitude and phase of the seasonal fluxes.

In the typical space–time parameterisation of fluxes used in most flux-inversion systems
(such as WOMBAT v1.0), fluxes are often assigned prior means derived from bottom-up esti-
mates of the fluxes and marginal prior standard deviations proportional to the magnitude of
the prior means. This can complicate the ability of the system to shift the phase of the fluxes
relative to the prior mean, since fluxes at time points where the prior mean is small (e.g., at
positive-to-negative transitions) are assigned a low prior uncertainty, and hence not updated
in the inversion. By contrast, (3) shows that phase shifts are easily accommodated in our
framework, and in Section 4 we show the utility of this modelling choice for making inference
on changes to the natural cycles of CO2 fluxes.

2.1.2 Decomposition of linear aggregates

Another useful property of the decomposition in (2) is that it has the same form under linear
aggregation. For example, given two components c and c′ for which Kc = Kc′ , the sum of their
fluxes Xc+c′(s, t) ≡ Xc(s, t) +Xc′(s, t), is equal to

Xc+c′(s, t) = βc+c′,0(s) + βc+c′,1(s)t+
Kc∑
k=1

(βc+c′,2,k(s) + βc+c′,3,k(s)t) cos(2πkt/365.25)

+
Kc∑
k=1

(βc+c′,4,k(s) + βc+c′,5,k(s)t) sin(2πkt/365.25) + εc+c′(s, t), (4)

where βc+c′,0(s) ≡ βc,0(s) + βc′,0(s), βc+c′,1(s) ≡ βc,1(s) + βc′,1(s), and so on. That is, the
coefficients of the decomposition of the sum can be calculated by summing the corresponding
coefficients for the two components c and c′. Similarly, suppose S ⊆ S2, and consider the
aggregate flux at time t in the region S, given by

X̃c(S, t) ≡
∫
S
a(s)Xc(s, t) ds, (5)

where a(s) corresponds to a weighting by area. For example, if S = S2, X̃c(S, t) is the global
total flux of component c at time t. Through linearity, X̃c(S, t) can be decomposed by applying
the aggregation operation to each individual β and ε coefficient in the original point-level
decomposition (2). For a discretisation of S2, such as a latitude–longitude grid, (5) can be
rewritten as an area-weighted sum.

A consequence of (4) and (5) is that the seasonal component (3) is well defined under
aggregation, so the time-varying phase and amplitude is well defined for an aggregated flux.
This is used in Section 4.4 to examine changes to the annual cycle of fluxes at various spatial
scales.

2.2 Basis-function representation of the flux decomposition

The terms of (2), {βc,·(s)}, {βc,·,·(s)}, and εc(s, t), are highly variable spatial or spatio-temporal
processes that generally span the whole globe S2 and multiple years. For computations to
remain tractable, we impose on these terms a lower-dimensional structure using a basis-function
representation of the individual flux components. We do this by partitioning the globe into
R disjoint regions, which we denote by {Dr ⊂ S2 : r = 1, . . . , R}, and by partitioning the
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study’s time period into Q disjoint sequential time periods, which we denote by {Eq ⊂ T : q =
1, . . . , Q}. Define the R-dimensional vector of spatial indicators,

wS(s) ≡ (1(s ∈ D1),1(s ∈ D2), . . . ,1(s ∈ DR))′, s ∈ S2,

and the QR-dimensional spatio-temporal vector of indicators,

wST(s, t) ≡ (1(s ∈ D1 ∩ t ∈ E1),1(s ∈ D1 ∩ t ∈ E2), . . . ,1(s ∈ DR ∩ t ∈ EQ))′,

s ∈ S2, t ∈ T ,

on the spatial and spatio-temporal partitions, respectively, where 1(·) is the indicator function.
For c ∈ C, we model the unknown spatial and spatio-temporal processes that comprise Xc(·, ·)
in (2) as follows:

βc,j(s) = (1 + wS(s)′αc,j)β
0
c,j(s), j = 0, 1,

βc,j,k(s) = (1 + wS(s)′αc,j,k)β
0
c,j,k(s), j = 2, . . . , 5, k = 1, . . . , Kc,

εc(s, t) = (1 + wST(s, t)′αc,6)ε
0
c(s, t),

(6)

for s ∈ S2 and t ∈ T , where αc,j ≡ (αc,j,1, . . . , αc,j,R)′ for j = 0, 1; αc,j,k ≡ (αc,j,k,1, . . . , αc,j,k,R)′

for j = 2, . . . , 5 and k = 1, . . . , Kc; and αc,6 ≡ (αc,6,1,1, αc,6,1,2, . . . , αc,6,R,Q)′. The α vectors
are random and unknown, while the fields β0

c,·(·), β0
c,·,·(·), and ε0c(·, ·) are (known) bottom-up

estimates of the coefficients that define the flux trend, seasonality, and residual. In Section 3.1,
these are obtained through a deterministic decomposition of a bottom-up estimate of the com-
ponent flux. At location s, βc,0(s) is equal to (1 + αc,0,r)βc,0(s) if s ∈ Dr, and is equal to zero
otherwise, and a similar relationship holds for all other processes. The unknown and random α
vectors therefore serve to spatially adjust the bottom-up estimate of the trend and seasonality,
and to spatio-temporally adjust the bottom-up estimate of the residual.

The degree to which spatial or spatio-temporal adjustment is done is determined by the
resolution of the partitioning of S2 and T . Although adjustments happen over partitions,
within each spatial partition the trend and seasonality still vary spatially according to their
bottom-up estimates, and within each spatio-temporal partition the residual varies spatio-
temporally according to its bottom-up estimate. Thus, fine-scale effects that are present in the
bottom-up estimates (such as differing carbon assimilation and respiration among land types
within a spatial partition) are represented in our flux process model.

Equations (2) and (6) can be combined to write the component fluxes as a basis function
model. For c ∈ C,

Xc(s, t) = φc(s, t)
′(1 +αc) = X0

c (s, t) + φc(s, t)
′αc, s ∈ S2, t ∈ T , (7)

where φc(·, ·) is a vector of basis functions of dimension (2R+4KcR+QR); X0
c (·, ·) ≡ φc(s, t)′1

is equal to the sum of the bottom-up estimates of the flux trend, seasonality, and residual (i.e.,
the bottom-up estimate of the net flux); and αc ≡ (α′c,0,α

′
c,1, α

′
c,2,1,α

′
c,2,2, . . . ,α

′
c,5,Kc

,α′c,6)
′.

Each element of φc(·, ·) corresponds to one term of (2) evaluated over a spatial or spatio-
temporal partition, and is equal to zero outside the partition. For example, the first set of R
elements of φc(s, t) are equal to β0

c,0(s) for s ∈ Dr and zero otherwise, for r = 1, . . . , R, and the
second set of R elements are equal to β0

c,1(s)t for s ∈ Dr and zero otherwise, for r = 1, . . . , R.
The last QR elements are equal to ε0c(s, t) for s ∈ Dr and t ∈ Eq, and equal to zero otherwise,
for r = 1, . . . , R, q = 1, . . . , Q.

Combining (1) and (7) gives a basis-function representation of the total flux,

X(s, t) = X0(s, t) + φ(s, t)′α, (8)

where X0(·, ·) ≡
∑

c∈C X
0
c (·, ·) is the total combined flux from the bottom-up estimates, φ(·, ·) ≡

(φc1(·, ·)′, . . . ,φcC (·, ·)′)′, α ≡ (α′c1 , . . . ,α
′
cC

)′, and c1, . . . , cC are the C elements in C.
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2.3 Constrained distribution on the basis-function coefficients

In WOMBAT v1.0, the distribution of α in (8) was set to be Gaussian with mean zero, and the
only dependence assumed was temporal dependence. These assumptions are practical and have
the useful property that the prior mean of the flux field is equal to the bottom-up estimate.
However, they are unrealistic when some component fields in (1) are correlated and subject
to sign constraints, such as GPP and respiration in the context of CO2 (see Section 3.1). In
WOMBAT v2.0, we consider a more elaborate distribution over α, which (i) allows for prior
correlations between component fluxes, and (ii) constrains the inferred fluxes to satisfy pre-
determined physical constraints.

Our general model for the basis-function coefficients is

α ∼ ConstrGau(0,Σα, Fα), (9)

where ConstrGau(µ,Σ, F ) is the constrained multivariate Gaussian distribution, defined as a
multivariate Gaussian distribution with mean vector µ and covariance matrix Σ constrained
to the set F . The constraint set Fα in (9) is specified through M > 0 linear constraints of the
form a + Φα ≥ 0, applied element-wise, where Φ is an M × B matrix, B is the number of
elements in α, and a is a known M -dimensional vector. We show in Section 3.4 how the non-
positivity and non-negativity of the GPP and respiration component flux fields, respectively,
can be represented in approximate fashion using a large but finite number of linear constraints.

The constraint set in (9) means that α = 0 will typically not be the mean of the distribution
over α, but in most applications α = 0 will be its mode. This is because α = 0 in (8)
corresponds to Xc(·, ·) = X0

c (·, ·) for c ∈ C, and the bottom-up estimate X0
c (·, ·) will almost

always satisfy the physical constraints embodied in Fα. This is distinct from WOMBAT v1.0
and most other flux inversions systems, where the flux prior mean is equal to the bottom-up
estimate.

The parameterisation of the covariance matrix Σα is described in Appendix A.1. The param-
eters involved are τβc and τ εc , c ∈ C, the marginal precisions of the component c trend/seasonality
and the residual scaling factors, respectively; ρβc,c′ and ρεc,c′ , c, c

′ ∈ C, the correlation between
the scaling factors of component c and c′ for the trend/seasonality and for the residual, respec-
tively; and κεc, c ∈ C, the temporal correlation between residual scaling factors for component
c.

2.4 Mole-fraction process and data models

Sections 2.1–2.3 outlined the innovations in WOMBAT v2.0 that accommodate a scientifically
interpretable and flexible flux process model tailored to the study of the natural cycles of
fluxes. The remaining two levels of the hierarchy are the mole-fraction process model and
the mole-fraction data model, both of which remain largely unchanged from WOMBAT v1.0
(Zammit-Mangion et al., 2022). The mole-fraction process model links the flux field, X(s, t),
to the mole-fraction field, Y (s, h, t), where h > 0 corresponds to geopotential height, and is
described in Appendix A.2. The mole-fraction data model encodes the error properties of the
mole-fraction observations used as data. Observations are split into groups g = 1, . . . , G, within
which observations are assumed to have similar error properties. Observations are prescribed
known “error budgets” that determine the total marginal variance of their errors, and the
error budgets for group g are scaled by unknown factors (γZg )−1. The total error associated
with each observation is split into temporally correlated and uncorrelated components, and the
proportion of the error budget assigned to the correlated component for group g is given by the
unknown parameter ρZg . The e-folding length of the temporal correlation for group g is given
by the unknown parameter `Zg . Observations in each group are also assumed to be biased,
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and we use a linear model for the bias terms where the unknown coefficients are denoted as
ηg, g = 1, . . . , G. Full mathematical details of the mole-fraction data model, including the
priors on the unknown parameters, are given in Appendix A.3.

2.5 Inference

The unknown quantities in our model are α, {τβc : c ∈ C}, {ρβc,c′ : c, c′ ∈ C}, {τ εc : c ∈
C}, {κεc : c ∈ C}, {ρεc,c′ : c, c′ ∈ C}, η, γZ ≡ (γZ1 , . . . , γ

Z
G)′, ρZ ≡ (ρZ1 , . . . , ρ

Z
G)′, and `Z ≡

(`Z1 , . . . , `
Z
G)′. The parameters ρZ and `Z are the most computationally demanding to estimate,

and Zammit-Mangion et al. (2022) use graphics processing units (GPUs) to alleviate some of
the computational burden. However, the dimensionality of the problem considered in Section 3
precludes their estimation in a full Bayesian setting, even with the use of GPUs. We therefore
estimate these parameters via a two-stage process.

The first stage is a preliminary inversion in which, for c, c′ ∈ C and g = 1, . . . , G, all the
parameters are fixed to reasonable starting values, in our case to τβc = 1, ρβc,c′ = 0, τ εc = 1, κεc = 0,

ρεc,c′ = 0, γZg = 1, and ρZg = 0 (the value of `Zg is therefore irrelevant in this case because errors
are assumed to be uncorrelated). Denote by α̃ and η̃ the posterior means of α and η in this
first-stage inversion, respectively. Conditional on the first-stage estimates α̃ and η̃, we estimate
ρZ and `Z by maximising the full conditional density function, p(ρZ , `Z ,γZ | α = α̃,η = η̃).

This maximisation yields the estimates ρ̂Z ≡ (ρ̂Z1 , . . . , ρ̂
Z
G)′ and ˆ̀Z ≡ (ˆ̀Z

1 , . . . ,
ˆ̀Z
G)′ of ρZ and

`Z , respectively, which are then treated as known in the second stage. The maximisation also
yields an estimate of γZ but, since this parameter does not lead to any computational issues,
γZ is re-estimated in the second stage.

The second stage is a full inversion where ρZ and `Z are fixed to their estimates ρ̂Z and
ˆ̀Z , respectively. The MCMC sampling scheme for estimating the remaining parameters is

described in Appendix C. This sampling scheme is mostly standard, except for its handling
of the basis-function coefficients, α, which in this study are constrained to the set Fα (see
Section 2.3). To handle this, we use the exact HMC scheme for constrained multivariate
Gaussian distributions proposed by Pakman and Paninski (2014). In the application to CO2

in Section 3, this technique is able to draw samples of α in a reasonable time frame, even
when using 623,485 linear constraints across 6,325 variables. Once the posterior samples of α
are computed, posterior samples of the β coefficients in (2), and of the flux component fields,
{Xc(s, t)}, can be computed by substituting the samples of α into (6) and (7), respectively.

3 Top-down estimation of CO2 fluxes

We use the hierarchical framework of Section 2 to make inference on the natural cycles of
surface CO2 fluxes over the period from December 2015 to January 2020 from OCO-2 and
in-situ/flask data. In this section we show how we tailor the framework for this purpose by
describing the bottom-up estimates we use, the data we use, and the prior distributions we
apply to the unknown parameters.

We base our configuration on the protocol of the current round of the OCO-2 model in-
tercomparison project (MIP; see Crowell et al., 2019; Peiro et al., 2022, for past rounds), an
organised effort to compare flux-inversion systems under a common protocol. This round of the
MIP is called the v10 MIP since it centres around the use of version 10 OCO-2 data. To make
results comparable between teams, the MIP protocol prescribes the mole-fraction data to use in
the inversions, a common bottom-up fossil-fuel flux field that is assumed fixed and known, and
a common time period over which to report inferred fluxes. The data for the OCO-2 v10 MIP
span September 2014 to March 2021 and, while fluxes are inferred over this full time period,
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flux estimates are reported for January 2015 to December 2020, inclusive. The extra months
of data on either side of the reporting period are considered necessary to reliably estimate the
fluxes at the start and end of the reporting period.

3.1 Flux model and bottom-up estimates

The net CO2 surface flux at a given time and location is the sum of the component fluxes due
to a variety of physical processes, the most important of which are: the burning of fossil fuels;
the burning of wood, charcoal, and agricultural waste for energy (collectively termed biofuel
fluxes); biomass burning; GPP and respiration of CO2 from the terrestrial biosphere; and air–
sea exchanges due to differences in the ocean and the atmospheric partial pressure of CO2. We
represent this decomposition of the net flux through (1), which here is

X(s, t) = Xfossil(s, t) +Xbiofuel(s, t) +Xbioburn(s, t) +Xgpp(s, t) +Xresp(s, t)

+Xocean(s, t) +Xother(s, t), (10)

for s ∈ S2, t ∈ T , where the fields {Xc(·, ·)} match those named above. The fields satisfy the
following constraints: Xfossil(s, t), Xbiofuel(s, t), Xbioburn(s, t), and Xresp(s, t) are always zero or
positive; Xgpp(s, t) is always zero or negative; and Xocean(s, t) and Xother(s, t) can be positive or
negative. At ocean locations, the biofuel, biomass-burning, GPP, and respiration fluxes are zero,
while ocean fluxes are zero at land locations (note that, in practice, we work with a discretisation
of the flux field in which a grid cell can contain both land and ocean, and in these cells any
component flux can be non-zero; for details on the discretisation, see Appendix B.4). Fossil-fuel
fluxes and “other” fluxes can be non-zero anywhere. The sum of GPP and respiration is called
the net ecosystem exchange (NEE), which we define in our framework asXnee(s, t) ≡ Xgpp(s, t)+
Xresp(s, t). The NEE represents the total flux from the terrestrial biosphere, excluding those
fluxes that come from biomass burning.

We assume that the fossil-fuel, biofuel, and biomass-burning CO2 fluxes are known, and
set them equal to their respective bottom-up estimates. This is a common assumption in flux
inversion, made because bottom-up estimates of these fluxes have relatively low uncertainty
compared to the natural fluxes (Basu et al., 2013). We also assume that the “other” fluxes are
negligible and set them equal to zero everywhere. The fluxes from the remaining components
(GPP, respiration, and air–sea fluxes), are to be estimated. Our working model for the flux at
location s and time t is therefore

X(s, t) = X0
fossil(s, t) +X0

biofuel(s, t) +X0
bioburn(s, t) +Xgpp(s, t)

+Xresp(s, t) +Xocean(s, t). (11)

where the terms with a zero superscript are fixed at their bottom-up estimates. The three
unknown terms, Xgpp(·, ·), Xresp(·, ·), and Xocean(·, ·), are modelled using the decomposition
and basis-function representation given in (2) and (8).

Both the fixed and the unknown flux components are informed by bottom-up estimates, and
Figure D1 shows the monthly-average global total fluxes for the bottom-up estimates we use
for each component. The fossil-fuel component is prescribed by the OCO-2 v10 MIP protocol,
and its estimate comes from the Open-source Data Inventory for Anthropogenic CO2 monthly
fossil-fuel emissions (ODIAC; Oda and Maksyutov, 2011; Oda et al., 2018) with weekly scaling
factors from Temporal Improvements for Modeling Emissions by Scaling (TIMES) (Nassar et al.,
2013). The remaining components are not prescribed by the v10 MIP protocol. For biofuel
fluxes we use the estimated fluxes of Yevich and Logan (2003), whose estimates are based on
data from 1985. Unlike all the other estimates used, the biofuel fluxes vary in space but not
in time. Biomass burning emissions come from the Global Fire Emissions Database, version
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4.1s (GFED4.1s), described by van der Werf et al. (2017). The unknown flux components are
modelled according to (2) and (6), which also require bottom-up estimates. Those for GPP
and respiration fluxes are provided by the SiB4 model, which is described below. The ocean
bottom-up estimates are given by Landschützer et al. (2016), and they are also described below.

SiB4 is a mechanistic land–surface model that simulates several features of the terrestrial bio-
sphere, including the terrestrial carbon cycle (Haynes et al., 2019a,b). Carbon GPP fluxes, res-
piration fluxes, and biomass are modelled simultaneously. Inputs to SiB4 include the biomass-
burning emissions from GFED4.1s (used to model changes to biomass), meteorological drivers
such as solar radiation and temperature, and satellite data that inform the model of the type
of plants in a grid cell, while the timing of plant life-cycle events (known as plant phenology)
is modelled dynamically. The simulations we use were made offline, and cover the period from
January 1, 2000 to December 31, 2020, and they are done with a 10-minute time resolution on
a latitude–longitude grid of resolution 0.5° × 0.5°. To form a bottom-up estimate suitable for
our purposes, we aggregated the simulated fluxes to a 1° × 1° latitude–longitude grid and an
hourly time resolution.

The bottom-up estimates of ocean fluxes by Landschützer et al. (2016) are derived from
observations of the partial pressure difference of CO2 at the air–sea boundary; the CO2 flux is
proportional to this difference. Other inputs include estimates of sea-ice cover and wind speed.
The bottom-up estimates of ocean fluxes cover the period from January 1982 to December 2019,
and they are available on a latitude–longitude grid of 1°× 1° at a monthly time resolution.

3.2 Decomposition of bottom-up flux estimates

SiB4 and Landschützer et al. (2016) together give bottom-up estimates of the net flux in each
grid cell and time period for the GPP, respiration, and air-sea flux components. To get bottom-
up estimates of the flux trend, seasonality, and residual suitable for use in the basis-function
representation in (8), we decompose the estimates of the net flux according to the spatially
varying time-series decomposition in (2). That is, the bottom-up estimates of the flux for
components c ∈ {gpp, resp, ocean} are decomposed as

X0
c (s, t) = β0

c,0(s) + β0
c,1(s)t+

Kc∑
k=1

(β0
c,2,k(s) + β0

c,3,k(s)t) cos(2πkt/365.25)

+
Kc∑
k=1

(β0
c,4,k(s) + β0

c,5,k(s)t) sin(2πkt/365.25) + ε0c(s, t), (12)

for s ∈ S2 and t ∈ T . The decomposition is performed separately for each grid cell in the
GPP, respiration, and ocean bottom-up estimates by applying least-squares regression to the
available bottom-up estimates of the fluxes (21 years for SiB4 and 38 years for Landschützer
et al., 2016). This procedure gives the spatially resolved coefficients β0

c,·(·) and β0
c,·,·(·) at the

grid resolution, which are then used to characterise each term (including the residual term)
appearing in (12).

We applied the decomposition in (12) to the SiB4 GPP and respiration fluxes with the
number of harmonics set to Kgpp = Kresp = 3. Our time period (September 2014 to March 2021)
ends after the last month of the SiB4 simulation (December 2020), so we extend the estimates
by setting the residual terms for January to March 2021 equal to those for January to March
2020. For illustration, some of the resulting decomposed fluxes are shown in Figure 1, where
the GPP fluxes are shown in green and the respiration fluxes are shown in brown. The first two
columns show the fluxes, aggregated to a monthly resolution, at a northern extratropical grid
cell (coordinates 55.5° N, 3.5° W) and at a southern tropical grid cell (coordinates 3.5° S, 135.5°
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Figure 1: Monthly-aggregate bottom-up flux estimates from SiB4 for X0
gpp(·, ·) (green) and

X0
resp(·, ·) (brown). From left to right, fluxes are shown, respectively, for a grid cell in the north-

ern extratropics (coordinates 55.5° N, 3.5° W), a grid cell in the southern tropics (coordinates
2.5° S, 64.5° W), and the global total aggregate flux. The first row gives the total fluxes, the
second row the linear component of the fluxes, the third row the seasonal component, and the
last row gives the residual fluxes, ε0c(·, ·). GPP fluxes are multiplied by −1 for comparison with
respiration fluxes. For the grid cell fluxes, the scale is in kgCO2/m

2/year, while the global total
flux is given in PgC/month. The shaded region indicates the flux reporting period, January
2015 to December 2020.

E), respectively. The first row depicts the total fluxes, the second row the linear component
of the fluxes, the third row the seasonal component, and the last row gives the residual fluxes.
Over the 21 years shown, trends in the fluxes and changes to the seasonality can be seen in
both grid cells, especially for the fluxes in the tropical grid cell, where a linear trend is visible
for both GPP and respiration, and where the amplitude of the seasonal cycle of the respiration
fluxes changes substantially in time. The residual fluxes have no apparent seasonal structure,
so the choice of three harmonics (Kbio = 3) appears to be sufficient.

The bottom-up flux decomposition in (12) has the same form as that in (2), so the useful
properties of time-varying phase and amplitude (Section 2.1.1) and preservation under linear
aggregation (Section 2.1.2) also apply to the bottom-up fluxes. Using the latter property, we
apply (4) to define the SiB4 bottom-up estimate of the NEE, which we denote by X0

nee(s, t) ≡
X0

gpp(s, t) +X0
resp(s, t).

The decomposition in (12) was also applied to the bottom-up air-sea fluxes given by Land-
schützer et al. (2016), X0

ocean(·, ·), with Kocean = 2 harmonics. Like the SiB4 estimates, the
end of the Landschützer et al. estimates is before the end of our study period (December 2019
and March 2021, respectively). We extend the estimates by assuming that the residual terms
for January to December 2020 are equal to those for January to December 2019, and those
for January to March 2021 equal to those for January to March 2019. Figure D2 shows the
estimated fluxes and the resulting decomposition for two ocean grid cells and for the global
total aggregate ocean flux.
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3.3 Basis functions and process model for α

For the basis-function representation described in Section 2.2, we discretise space and time
across R = 23 regions and Q = 79 monthly time periods (September 2014 to March 2021,
inclusive). The regions are the 22 TransCom3 regions (Gurney et al., 2002), plus an extra
region comprising the land area of New Zealand, which will be the target of a separate analysis
reported elsewhere. The spatial extents of the regions are shown in Figure D3, and their full
names are given in Table D1. Of the 22 disjoint TransCom3 regions, 11 are composed principally
of land, and 11 of ocean; the boundaries of the regions include some coastal areas that contain
both land and ocean.

For the process model on the basis-function coefficients α, we assume zero correlation be-
tween the coefficients for the biosphere basis functions and the coefficients for the ocean basis
functions, that is, that ρβgpp,ocean = ρβresp,ocean = ρεgpp,ocean = ρεresp,ocean = 0. The assumption that
land and ocean fluxes are uncorrelated is commonly made in flux inversions (e.g., Basu et al.,
2013).

One challenge when estimating component fluxes of CO2 is that the mole-fraction field.
Y (s, h, t), is a function of the spatio-temporal distribution of the net flux of CO2. For the
biosphere, this means that it can be hard to attribute fluxes to either the GPP or the respiration
component, as attribution must rely on sources of information such as the spatial and temporal
distribution of the bottom-up estimates and the sign constraints of the component fluxes. This
problem is particularly acute for the intercept terms (βc,0(·)) and the trend terms (βc,1(·)) in
(2.1), because their bottom-up estimates for GPP and respiration are very similar, and their
flux basis functions lack complex temporal structure. To address this identifiability issue, we
fix these terms for the respiration fluxes to be known and equal to the bottom-up estimates
by setting their basis-function coefficients equal to zero. Any change relative to the bottom-up
estimate in the linear component of respiration will therefore likely appear in the GPP linear
component. Consequently, when making inference, we limit ourselves to examining the linear
component of NEE (the sum of GPP and respiration), which can be more reliably estimated.

We also fix the trend and seasonality of the land fluxes to their bottom-up estimates in
the 11 predominantly ocean regions and the New Zealand region, which have small land areas,
as well as the trend and seasonality of the air–sea fluxes in all regions. We also introduce
further information in the form of a multivariate pseudo observation to more reliably constrain
the ocean fluxes. A discussion of the rationale for these choices, and the details of their
implementation, are given in Appendix B.1.

The 5,737 basis-function coefficients that we make inference on are therefore:

• αc,0,r and αc,1,r for c = gpp and r = 1, . . . , 11;

• αc,j,k,r for c ∈ {gpp, resp}, j = 2, . . . , 5, k = 1, 2, 3, and r = 1, . . . , 11;

• αc,6,r,q for c ∈ {gpp, resp, ocean}, r = 1, . . . , 23, and q = 1, . . . , 79.

These coefficients correspond, respectively, to: the intercept and trend for GPP in the land
regions; the harmonic terms for GPP and respiration in the land regions; and the residual
terms for all components, regions, and months. While some parts of the decompositions of
the respiration and ocean components are fixed, the residual terms are allowed to vary for all
components. This means that the net flux for c ∈ {gpp, bioresid, ocean} is not fixed at any
time nor at any location.

3.4 Constraints on terrestrial biosphere fluxes

The constrained multivariate Gaussian prior on the basis-function coefficients, α, given in (9)
in Section 2.3, allows for the specification of a constraint set, Fα. We use this set to represent
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two separate types of physical constraints, which both apply to the GPP and respiration fluxes.
The first type of constraint we impose is a sign constraint. The GPP and respiration flux

fields satisfy the natural constraints Xgpp(·, ·) ≤ 0 (always a sink) and Xresp(·, ·) ≥ 0 (always
a source), and it is reasonable to expect that the sum of the trend and seasonality of these
fields satisfies the same constraints. We enforce these constraints in approximate fashion by
aggregating Xgpp(·, ·) and Xresp(·, ·) onto a space-time grid with a spatial resolution of 2° latitude
by 2.5° longitude (with half-size polar cells of 1° × 2.5°; this matches the spatial resolution of
the transport model described in Appendix B.4) and a monthly temporal resolution that spans
the study period T . Let the resulting spatio-temporally aggregated values be given by the
vectors xgpp and xresp for GPP and respiration, respectively. We aggregate the sum of the
trend and seasonality of the two fields in the same manner to yield xβgpp and xβresp, respectively.
For c ∈ {gpp, resp}, denote by x0

c and xβ,0c the same aggregation applied to the bottom-up
estimates. Through (7), we can write

xc = x0
c + Φcαc,

xβc = xβ,0c + Φβ
cαc,

(13)

where Φc is a matrix whose rows are computed by applying the aggregation operation to the
basis functions φc(·, ·), and Φβ

c is the same as Φc but with the columns corresponding to
the basis-function coefficients for the residual terms set to zero. The sign constraints for the
aggregated quantities are

x0
gpp + Φx,gppαgpp ≤ 0 (GPP total ≤ 0),

x0,β
gpp + Φβ

x,gppαgpp ≤ 0 (GPP trend and seasonality ≤ 0),

x0
resp + Φx,respαresp ≥ 0 (Resp. total ≥ 0),

x0,β
resp + Φβ

x,respαresp ≥ 0 (Resp. trend and seasonality ≥ 0),

(14)

where the inequality is applied element-wise. These constraints are necessary but not sufficient
to satisfy the physical constraints, because they allow for the possibility that the field occa-
sionally violates the sign at spatial and temporal scales finer than those of the aggregates. In
this study, however, we only report results that are themselves aggregates of the aggregation,
and the constraints in (14) are sufficient for those aggregates. In practice, a slight relaxation of
(14) is required, where fluxes are allowed to violate the constraint by up to 10−10 kgCO2/m

2/s.
Without the relaxation, some values of the aggregation are numerically very close to the bound-
ary. This causes the HMC algorithm that samples from the conditional distribution of α to
spend too much time reflecting off the boundary of the constrained space, which makes the time
needed to sample a single value of α infeasible (see Appendix C, and Pakman and Paninski,
2014, for more details on this algorithm). The allowable violations are small in practical terms:
if the sign constraints were violated by the maximum allowable amount for every element of the
discretisation, the total flux for the component field over the full study period would violate
the constraint by around 0.1% of its bottom-up estimate.

The second type of constraint we impose pertains to the diurnal cycle of the GPP and
respiration fluxes which, as discussed in Section 2.1, appears in the residual term εc(·, ·). The
phase of the diurnal cycle in these components is principally a function of the local solar
time and is well understood. However, without any constraints, the parameterisation of the
basis-function coefficients in (6) allows the diurnal cycle to be flipped within a given month and
region, implying an unrealistic 12-hour phase shift in the cycle. We enforce “no-flip” constraints
to avoid this problem by requiring that αc,6 ≥ −1 for c ∈ {gpp, resp}.

The different types of constraints are all linear and can therefore be jointly represented
in matrix-vector form as a + Φα ≥ 0. In total, there are 1,136,810 constraints across 6,325
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variables. The matrix Φ is therefore high-dimensional, although it is also rather sparse with
only 0.2% of its entries non-zero. To reduce the computational burden of working with this
system of constraints, we used the linear programming method of Caron et al. (1989) to identify
constraints that are implied by the others and that can therefore be deemed redundant, and
hence removed. Through this method, the number of constraints was reduced by approximately
a factor of two, to 623,485.

3.5 Mole-fraction observations

The CO2 mole-fraction observations used for our inversion include retrievals of column-averaged
CO2 mole-fraction by NASA’s OCO-2 satellite (Eldering et al., 2017), and point-referenced in
situ and flask measurements of CO2 mole-fraction from a variety of sources (Schuldt et al.,
2021a,b; Tohjima et al., 2005; Nara et al., 2017). These data sets are prescribed in the OCO-2
v10 MIP protocol, and full descriptions of their characteristics are given in AppendixB.2.

In the context of flux inversion, satellite retrievals of column-average CO2 have different
strengths and weaknesses to in situ and flask measurements of CO2. In situ and flask mea-
surements are considered to be unbiased and to have negligible measurement error. On the
other hand, these measurements only provide a snapshot of the mole-fraction field at a specific
altitude, latitude, and longitude, which may not be representative of the average of the coarse
3-D grid cell used in the transport model. By contrast, column-average CO2 retrievals contain
information on CO2 averaged across all vertical levels (though its sensitivity varies with alti-
tude and the satellite retrieval usually contains the equivalent information of only one or two
observations), which can make them less sensitive to errors in modelling transport (Deutscher
et al., 2010). Satellite retrievals have wide spatial and temporal coverage, though they are less
abundant in cloudy regions such as parts of the tropics, and in high latitudes during winter.
By contrast, in situ and flask measurements are available in great abundance in some regions
such as North America, Western Europe, and parts of the Pacific Ocean, and are absent in
others; see Figure 2, which shows the spatial and temporal density of the observations of each
type. The temporal coverage of the OCO-2 data is even throughout the study period, while
the number of in situ and flask measurements has declined over time. This decrease is largely
due to the time it takes for observations to be validated and incorporated into the in situ and
flask data sets.

The error characteristics for the different data sources are encoded in the mole-fraction data
model (see Section 2.4 above and Appendix A.3). We describe how the data model is tailored
to the CO2 mole-fraction observations in AppendixB.3.

3.6 Remaining details of the CO2 application

The remaining details of how WOMBAT v2.0 is configured for the CO2 application are given
in appendices: Appendix B.4 describes the chemical transport model (GEOS-Chem; Bey et al.,
2001) and the mole-fraction initial condition that we use, Appendix B.5 describes the priors
on the parameters of the process model and the data model, and Appendix B.6 gives details of
how the computations were performed.

4 Results

We now present the results of applying the WOMBAT v2.0 framework described in Section 2
to the OCO-2 and in situ/flask data described in Section 3. In Section 4.1, we consider the net
flux over the study period, as well as linear trends in the fluxes. The broad-scale characteristics
of the seasonal part of the fluxes are discussed in Section 4.2. Estimates of the residual,
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Figure 2: The total number of observations in each 5°× 5° grid cell for each observation type
(OCO-2 or in situ/flask) in our study period (top panel), and the total number of observations
per month for each type in our study period (bottom panel). In the top panel, unshaded
cells have zero observations, the colour scale has been log-transformed, and the number of
observations at different vertical levels is summed together.

{εc(·, ·) : c ∈ C}, are discussed in Section 4.3. In Section 4.4 we discuss evidence for changes
to the flux seasonal cycles. Finally, in Section 4.5 we present posterior estimates of the model
parameters and discuss their physical relevance. When considering the flux estimates in this
section, it is important to note that the posterior estimates for the NEE are likely to be the
most reliable, as the mole-fraction process, and hence the observed mole fraction, is driven by
the net flux.

4.1 Net flux and linear trends

The linear trend in (2) captures the long-term changes in the fluxes. As described in Section 3.3,
we limit ourselves to examining the linear part of NEE, because the individual linear parts of
the GPP and respiration components are largely unidentifiable.

Global land sink is increasing: Figure 3 shows estimates of the monthly global total fluxes
for each part of the decomposition in (2) for the GPP, respiration, and ocean flux components,
as well as for the NEE. Note that the posterior uncertainty of the linear component is difficult
to see in Figure 3 because it is small. The posterior estimate of the linear component of the
global NEE flux indicates a deeper sink of CO2 (i.e., it is more negative) than the bottom-up
estimate. The trend of the posterior net global sink is −0.008 to −0.005 PgC/year (2.5th
and 97.5th posterior percentiles), while the bottom-up estimate (SiB4) of the trend is −0.011
PgC/year. The sink is therefore estimated to be increasing in magnitude over time in both
the posterior and the bottom-up estimate; this is thought to be mostly driven by the “CO2

fertilisation” effect, where an increase in atmospheric CO2 directly causes increased uptake of
CO2 by the terrestrial biosphere (Norby et al., 2005). However, the trend is more negative
in the bottom-up estimate than in our posterior estimate. This suggests that either the CO2

fertilisation effect modelled by SiB4 is too strong on average, or that other phenomena not
modelled by SiB4 may be influencing the trend, such as changes to land usage.

Northern extratropics (boreal and temperate) are a decreasing sink: Figure D5 shows the
estimated fluxes for the northern boreal band (50°N–90°N) and the northern temperate band
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Figure 3: Bottom-up and posterior-mean monthly global totals of the linear, seasonal, and
residual parts of the flux components for GPP, respiration, ocean fluxes, and NEE (the sum of
GPP and respiration). The shaded areas depict the values between the 2.5th and 97.5th pos-
terior percentiles (i.e., a 95% prediction interval). Panels that do not show posterior estimates
of fluxes correspond to terms that are fixed to bottom-up estimates.

(23°N–50°N) in the same format as Figure 3. The posterior estimates of the NEE for these
regions show that the northern extratropics are a net sink of CO2 (i.e., fluxes are negative) but,
unlike the global fluxes, the trends for these regions are positive at 0.0003 to 0.0009 PgC/year
and 0.0018 to 0.0031 PgC/year for the boreal and temperate band, respectively (2.5th and
97.5th posterior percentiles). This indicates the magnitude of the sink is decreasing, and is
in contrast to the bottom-up estimates where the trend is negative. This suggests that the
capacity for ecosystems in this region to act as a net sink of CO2 may be reducing over time.

To investigate sub-zonal spatial variability in the net flux and the trends leading to this
decrease over time, Figure 4 shows grid-scale bottom-up and posterior mean estimates of the
average NEE flux over January 2015–December 2020 (which indicates whether a region is a net
source or sink), as well as estimated trends in the NEE fluxes. The net sink of CO2 observed
for the northern extratropics is present at almost all locations, except for parts of the western
United States. The majority of the net positive trend in NEE observed for the region appears
to arise from temperate and boreal North America.

Tropics (northern and southern) transition from source to sink: The bottom-up and poste-
rior estimates of the fluxes for the northern tropics (0°–23°N) and southern tropics (23°S–0°) are
shown separately in Figure D6, and estimates for the tropics as a whole (23°S–23°N) are shown
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Figure 4: Estimated average NEE flux over January 2015–December 2020 (left) and trend in
NEE fluxes βnee,1(·) (right). The grid cells are 2°× 2.5°, the resolution of the transport model
(see Appendix B.4). The top row shows the bottom-up estimates, the middle panel shows the
posterior mean estimates, and the bottom panel shows the posterior standard deviation. Cells
shown in grey have zero NEE flux, and the colour scales are truncated to their maximum values.
Grey lines mark the boundaries of the 23 regions used for the basis functions (see Section 3.3).
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in Figure D7. The bottom-up estimates of the NEE attribute both the northern and southern
regions as a sink of CO2, while the posterior estimates of the NEE indicate a net source in the
northern tropics and a net sink in the southern tropics. The tropics as a whole transition in
2018 from being a net source to a net sink of CO2, with the 2.5th and 97.5th posterior per-
centiles for the trend at -0.010 and -0.007 PgC/year, respectively. The negative trend is present
in both the northern and southern tropics, indicating that ecosystems in both regions trended
towards increased carbon uptake over the study period. This increasing absorption of CO2 by
tropical ecosystems is important, as tropical rainforests are the “lungs” of our planet (Wood,
1990), and our results indicate that they may play an increasing role over time in offsetting
anthropogenic emissions of CO2.

The grid-scale estimates in Figure 4 show strong net source regions in tropical northern
Africa and parts of tropical South America. This is in disagreement with the bottom-up
estimate (SiB4), but for North Africa it is in agreement with observational studies such as
that of Palmer et al. (2019), who use very similar data to us to conclude that this region is
the cause of the majority of tropical emissions. In both tropical northern Africa and northern
tropical South America, the flux trend is negative, indicating that these sources are getting
smaller. One caveat to our findings in these regions is that both tropical northern Africa and
northern tropical South America are major biomass burning sources; biomass burning fluxes are
considered fixed and known in our inversion, so inaccuracies in the bottom-up biomass burning
estimates could impact the posterior estimates of the NEE. This is particularly relevant for the
Amazon, where Gatti et al. (2021) find that climate change and deforestation are impacting
the frequency and intensity of burns.

Southern extratropics are an increasing sink: Estimates of the fluxes for the southern extra-
tropics are shown in Figure D7. These indicate a net sink in the region that is deepening over
time. The grid-scale estimates in Figure 4 locate this sink primarily in southern South America
and southern Africa, and the largest increases in the sink occur in southern South America.

4.2 Flux seasonal cycle

In this section we examine the broad-scale characteristics of our estimates of the seasonal cycles
of the components of CO2 flux through the seasonal component in (2); consideration of changes
to these cycles is given later, in Section 4.4.

Posterior global seasonal cycles have smaller amplitudes than bottom-up: The posterior and
bottom-up estimates of the seasonal cycles of the component CO2 global total fluxes are shown
in Figure 3 (note that the posterior uncertainty of the seasonal cycle is difficult to see in the
plots because it is small). The posterior estimate of the global seasonal cycle has a smaller
amplitude than the bottom-up estimate for NEE, GPP, and respiration. This feature also
appears in the seasonal cycles of the northern and southern extratropics, shown in Figure D5
and Figure D7, respectively.

Posterior tropical NEE seasonal cycle has larger amplitude than bottom-up: In contrast to
the extratropical regions, the posterior estimates of the seasonal cycles for the tropics, shown in
Figure D6, have larger amplitudes than the bottom-up estimates. However, the individual GPP
and respiration seasonal cycles in the tropics have smaller amplitudes. The difference between
the posterior and bottom-up estimates of the amplitude is most striking for the respiration
seasonal cycle in the southern tropics, which has relatively little seasonality in the posterior
estimates.

Global NEE and respiration seasonal cycles have two peaks: The posterior estimates of the
global respiration and NEE fluxes (Figure 3) both have a small second peak in March that
does not appear in the bottom-up estimates. The second peak in NEE has been observed in a
number of other flux inversions (Peiro et al., 2022).
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4.3 Residual flux

The residual term in (2) incorporates any features of the fluxes that are not due to either
seasonality or to long-term changes. This includes disturbances to the GPP and respiration
fluxes due to external influences such as a strong El Niño event.

Emissions during the 2015/16 El Niño event : The posterior estimates in Figure 3 indi-
cate that there was a large positive residual NEE flux from December 2015 to February 2016
during the major El Niño event in 2015/16. The positive NEE flux is primarily due to an
unusually large positive residual GPP flux (corresponding to reduced photosynthetic activity)
which, unlike in the bottom-up estimate, is not balanced out by an equivalently large negative
respiration flux residual. The zonal-scale estimates of the residual in Figures D5–Figure D7
indicate that these residual fluxes arose from the tropical bands between 23°S and 23°N (shown
in Figure D6). To see how the residual flux in this period was distributed in space, Figure D8
shows the estimated residual flux in each grid cell averaged over the three months from Decem-
ber 2015 to February 2016. The majority of the NEE flux during this event occurs in tropical
South America. Since this arises from a positive GPP flux anomaly (that is, a decrease in
primary productivity), this suggests that the effect of the El Niño event on this ecosystem was
to decrease plant growth without attenuating other processes, such as plant decay, that drive
respiration.

Liu et al. (2017) also study the 2015/16 El Niño. They used a two-stage process in which
a flux-inversion framework is applied to OCO-2 data to estimate the NEE flux, and then the
NEE is separated into GPP and respiration components using auxiliary data in the form of
retrievals of solar-induced fluorescence (SIF; Sun et al., 2018), a quantity that is linked to GPP.
Our estimates during the 2015/16 El Niño event partially corroborate those of Liu et al., who
find that the tropical ecosystem responded strongly to this event. Liu et al. also found the
strongest net source to be in tropical South America, and they also attribute this to decreased
GPP. However, unlike us, Liu et al. also found a net source during this event in tropical Africa,
which they attribute to increased respiration. This disagreement may arise from differences in
inversion methodology, the priors over the fluxes, or due to the different technique Liu et al.
use to isolate GPP.

Ocean residual may contain land fluxes: The residual for the global total ocean fluxes in
Figure 3 contains the adjustments to the ocean fluxes from the bottom-up estimate. The
residual shows some evidence of seasonality, which is unexpected. This might be occurring
because of small problems in the ocean flux seasonality (which is fixed a priori), or it might
indicate that some seasonality that ought to be attributed to the land has been attributed to
the ocean. The posterior estimates of the ocean residual also indicate a positive CO2 flux during
the 2015/16 El Niño event. This is unexpected, as the scientific consensus is that sea-to-air
fluxes of CO2 decrease during an El Niño event (Feely et al., 2002; Liao et al., 2021). This may
be another instance of land fluxes being inferred as ocean fluxes.

4.4 Phase shifts and amplitude changes in flux seasonal cycles

In this section we discuss our estimates of phase shifts and amplitude changes of the annual cycle
of natural land carbon fluxes. As shown in (3), the harmonic part of the component flux Xc(s, t),
c ∈ C, or of a spatial aggregate X̃c(S, t) over a region S, can be written as the sum of Kc sine
curves at multiples of the annual frequency. Each harmonic is associated with its own spatio-
temporally varying phase and amplitude, Pc,k(s, t) and Ac,k(s, t), respectively, for k = 1, . . . , Kc.
Denote by ∆Pc,k(s) ≡ Pc,k(s, t1) − Pc,k(s, t0) and ∆Ac,k(s) ≡ Ac,k(s, t1) − Ac,k(s, t0) the phase
shift and amplitude change, respectively, over the study period (January 2015 to December
2020) at location s ∈ S2. For a spatial aggregate over a region S we analogously denote the
phase shift and amplitude change as ∆P̃c,k(S) and ∆Ãc,k(S), respectively.

20



0.00

0.05

0.10

0.15

Global
55°N−90°N

23°N−55°N
0°−23°N

23°S−0°
90°S−23°S∆A

~
c,

1(S
) [

P
gC

/m
on

th
] Amplitude change from January 2015 to December 2020

−10
−1

0
1

10

Global
55°N−90°N

23°N−55°N
0°−23°N

23°S−0°
90°S−23°S

∆P
~

c,
1(S

) [
da

ys
]

Phase shift from January 2015 to December 2020

←
la

te
r 

  e
ar

lie
r→

Estimate

|
Bottom up
Posterior
(95% interval)

Component

GPP

Respiration

NEE

Figure 5: Amplitude changes (top) and phase shifts (bottom) over the period from January
2015 to December 2020 for the first annual harmonic of the GPP, respiration, and NEE fluxes.
Changes are shown for the global aggregate fluxes and for the fluxes for five zonal bands: the
northern boreal region (55°N–90°N), the northern temperate region (23.5°N–55°N), the northern
tropics (0°–23°N), the southern tropics (23°S–0°), and the southern extratropics (90°S–23°S).
The crosses depict the bottom-up estimate, and the vertical line segments span the 2.5th
posterior percentile to the 97.5th posterior percentile (i.e., a 95% prediction interval). The
vertical axis for the phase shifts is nonlinear to allow for easier interpretation of the results.

We omit discussion of changes to the seasonal cycles in the tropics because the tropical
seasonal cycle is relatively weak and observations in the tropics are relatively sparse. We focus
on changes to the first annual harmonic (k = 1, with a period of 12 months) associated with
the GPP, respiration, and NEE fluxes, as this first harmonic largely dominates the seasonality
of the land fluxes outside the tropics. For the first annual harmonic, a positive phase shift (left
shift) indicates the peak and trough of the harmonic moved earlier in the year, and a negative
phase shift (right shift) indicates the peak and trough moved later.

Increasing global seasonal cycle amplitude driven by northern regions: The upper panel of
Figure 5 shows bottom-up estimates and the 2.5th and 97.5th posterior percentiles for ∆Ãc,1(S)
for the GPP, respiration, and NEE fluxes. Estimates are shown for the global total (S = S2) and
for the five zonal bands discussed previously. The seasonal amplitude of the global NEE flux
increased in the posterior by 0.11–0.12 PgC/month (2.5th and 97.5th posterior percentiles),
which corresponds to a 7.7%–8.8% increase over the six-year study period, or 1.24%–1.41%
per year. This change is driven by an increase in the amplitude of the NEE fluxes in the
northern temperate and boreal regions, which aligns with Graven et al. (2013), who find that
the amplitude of the seasonal cycle of atmospheric CO2 has increased over the 50 years since
1960, and who also attribute this change to the northern ecosystems. The GPP and respiration
global seasonal amplitudes also increase over the study period, but the change to respiration
is much smaller than the change to GPP and NEE. This agrees with Forkel et al. (2016), who
find that changes to ecosystem productivity drive the changing seasonal amplitude of NEE.

To investigate amplitude changes at the sub-zonal scale, the left column of Figure 6 shows
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grid-scale bottom-up estimates, posterior medians, and posterior interquartile ranges (IQRs)
for Ac,1(s, t) for the NEE flux component. Figures D9 and D10 repeat Figure 6 but for the GPP
and respiration fluxes, respectively. Across the northern extratropics, the amplitude changes
for NEE and GPP in the posterior estimates are uniformly positive, and those for respiration
are either positive or small in magnitude. The bottom-up estimates of the amplitude changes
largely agree in sign with the posterior, but the magnitude of the posterior changes are mostly
larger.

Global NEE phase is not changing: The upper panel of Figure 5 shows bottom-up estimates
and 2.5th and 97.5th posterior percentiles for the phase shift, ∆P̃c,1(S), in the same format
and for the same regions as for the amplitude changes. The posterior 95% interval for the
phase shift in NEE includes zero, and spans −0.1 days to +0.3 days; this contrasts with the
bottom-up estimate of a -0.4 day shift.

Northern extratropical (boreal and temperate) NEE cycle shifting earlier: The posterior
estimate for the phase shift in the NEE fluxes is 0.4–0.7 days earlier (2.5th and 97.5th posterior
percentiles) for the northern temperate latitudes (23°N–55°N) and 0.4–0.9 days earlier for the
northern boreal latitudes (55°N–90°N). Consistent with our results, Graven et al. (2013) found
earlier shifts of 0.17 days/year in the seasonal cycle of CO2 concentrations observed at a location
in the northern boreal latitudes (Barrow, Alaska). The right column of Figure 6 shows grid-
scale bottom-up estimates, posterior medians, and IQRs for the phase shift, Pc,1(s, t), for the
NEE flux component. The grid-scale posterior estimates of the phase shift are consistently
earlier in the northern temperate region, but in the northern boreal region the shift is later in
North America and earlier in Eurasia.

Regionally-varying phase shifts in GPP in the northern extratropics: Several studies have
found evidence that climate change is influencing the timing of growing seasons, linked to GPP,
in northern regions (e.g., Zhu et al., 2012; Buitenwerf et al., 2015; Gonsamo et al., 2018; Park
et al., 2019). The posterior estimate of the phase shift for GPP in the northern boreal region
is −0.1 to +0.3 days (2.5th and 97.5th posterior percentiles; see Figure 5); at the regional
scale, the shift is towards later seasons in boreal North America, and earlier in boreal Eurasia
(Figure D9). For the northern temperate region, the prediction interval of the phase shift for
GPP is −1.2 to −0.7 days (an earlier shift). Like the boreal region, however, the grid-scale
estimates reveal substantial variation in the sign of the phase shifts within the temperate region.
Both Gonsamo et al. (2018) and Park et al. (2019) find a net phase shift towards earlier peak
photosynthesis (linked to GPP) in the northern extratropics; our results suggest that there is
substantial regional variation in changes to the phase of the GPP seasonal cycle.

Respiration shifting earlier in the northern and southern extratropics : The posterior esti-
mate for the phase shift of respiration is 0.2–1.0 days earlier in the northern boreal region,
3.7–5.3 days earlier in the northern temperate region, and 0.6–3 days earlier in the southern
extratropics (2.5th and 97.5th posterior percentiles; see Figure 5). The grid-scale estimates
in Figure D10 show that the posterior phase shift is uniformly earlier across the northern bo-
real region, but the phase shift varies in sign within the northern temperate region and in the
southern extratropics.

4.5 Parameter estimates

Recall from Section 2.5 that we use a two-stage process to get estimates ρ̂Z and ˆ̀Z of the
parameters ρZ and `Z , respectively, and these are held fixed in the MCMC sampling scheme.
For the OCO-2 land observations, this gives ρ̂ZOCO-2 land = 0.934, indicating that the majority of
the error is correlated; for the remaining groups, we assume that ρZg = 1 (see AppendixB.3 for
our justification). The estimated length scales, `Zg , for each group are 53.9 seconds for OCO-2
land retrievals, 7.4 minutes for aircraft measurements, 4.9 hours for shipboard measurements,
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Figure 6: Grid-scale phase shifts (left column) and amplitude changes (right column) from
January 2015 to December 2020 for the first annual harmonic of the NEE flux component. The
grid cells are 2°× 2.5°, the resolution of the transport model (see Appendix B.4). The first row
shows the bottom-up estimate of the quantity, the second row the posterior median, and the
third row the posterior interquartile range (IQR). Areas with zero flux are coloured grey. Grey
lines mark the boundaries of the 23 regions used for the basis functions (see Section 3.3), and
the colour scales are truncated to their maximum values.
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Variable 2.5% 50% 97.5% Variable 2.5% 50% 97.5%

τβgpp 0.774 1.001 1.253 κεbio 0.465 0.516 0.563

τβresp 0.377 0.488 0.624 (γZOCO-2 land)−1 1.318 1.323 1.328

τ εgpp 3.076 3.509 3.950 (γZAircraft)
−1 1.393 1.423 1.454

τ εresp 1.665 1.912 2.187 (γZSurface)
−1 1.433 1.440 1.446

ρβgpp,resp 0.700 0.778 0.841 (γZTower)
−1 1.406 1.412 1.418

ρεgpp,resp 0.114 0.201 0.285 (γZShipboard)−1 1.355 1.363 1.371

Table 1: Posterior percentiles for the parameters that govern the hierarchical prior on α (see
Section 2.3), and for the error-budget scaling factors {(γZg )−1} (see Appendix A.3).

16 hours for surface measurements, and 14.9 hours for tower measurements. It appears that the
inferred length scales are proportional to the speeds of the moving instruments. The OCO-2
satellite’s ground track moves very quickly (24,480 km hour−1) and its observations have the
shortest length scale. Aircraft observations are the next fastest (around 600 km hour−1) and
have the next shortest length scale, followed by shipboard observations (around 20 km hour−1).
The stationary instruments at surface and tower sites have the longest length scales. Taking
into account instrument velocity, the implied spatial correlation length scale is on the order of
a hundred kilometres, which is similar to the resolution of our flux/transport model (between
100–200 km, depending on latitude). This similarity suggests that the correlated components
of the error budgets are dominated by errors in the transport model.

Table 1 shows posterior 2.5th, 50th, and 97.5th percentiles for the parameters that govern
the prior on α. The estimated precisions for the GPP basis-function coefficients are larger than
those for respiration for both the trend and seasonality (τβc ) and the residual (τ εc ). This indicates
that smaller adjustments from the prior are needed for GPP than for respiration. The posterior
median of the correlation between the GPP and respiration basis-function coefficients is 0.78
for the trend and seasonality (ρβgpp,resp), and 0.20 for the residual (ρεgpp,resp). The respiration
fluxes are positive and the GPP fluxes are negative, so the positive correlation parameters
indicate that adjustments to these two flux fields are anti-correlated, which is to be expected.
The adjustments to the trend and seasonality of the components may be more correlated than
the residuals because they are averaged over longer periods and are driven by similar processes
such as the temperature and insolation of Earth’s surface. The posterior median temporal
correlation between the monthly basis-function coefficients for the residual fluxes for GPP and
respiration (κεbio) is 0.52.

Posterior quantiles for the error-budget scaling factors (γZOCO-2 land)−1, (γZAircraft)
−1, (γZShipboard)−1,

(γZSurface)
−1, and (γZTower)

−1 are also shown in Table 1. These are all around 1.3–1.5, indicating
that our prescribed error budgets are too small.

5 Conclusions

The WOMBAT v2.0 framework allows for the estimation of changes to the natural cycles
of the fluxes of a greenhouse gas during a time when the impacts of climate change are be-
coming increasingly apparent. In WOMBAT v2.0, fluxes are modelled using the spatially
varying time-series decomposition in (2), which includes terms for the trend, seasonal cy-
cle, and inter-annual variability (called the residual) of the fluxes. The statistical distribu-
tions of the terms in the decomposition are constructed using bottom-up estimates of the
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same quantities, and posterior estimates of the flux decomposition are derived from observa-
tions of trace-gas mole fractions. Component flux fields with physical constraints (e.g., non-
negativity) are dealt with in a fully-Bayesian manner using a constrained prior and an HMC
sampling scheme. Software that implements the WOMBAT v2.0 method is available online at
https://github.com/mbertolacci/wombat-v2-workflow.

Sections 3 and 4 discussed how we applied WOMBAT v2.0 to estimate global CO2 fluxes
from remote sensing, in situ, and flask mole-fraction data. We found substantial trends in
the fluxes, including that the tropics trend from a net source to a net sink of CO2 over the
2015–2020 time period. The 2015/16 El Niño event was found to have been associated with
anomalous net CO2 emissions over tropical South America. We found that the amplitude of
the global seasonal cycle of CO2 fluxes is increasing, and that there are phase shifts in different
directions in different regions.

Adjustments to the bottom-up estimates in WOMBAT v2.0 are made for the flux trend and
seasonality over a spatial partition, and for the residual over a space–time partition. For the
CO2 application described in this paper, the surface of Earth was partitioned into 23 regions,
and the time horizon in the study was partitioned into months. A similar partitioning is used
by Zammit-Mangion et al. (2022) for WOMBAT v1.0, which is relatively coarse compared to
some other flux-inversion systems. For example, Basu et al. (2013) use a latitude–longitude
grid of 6°×4° and a monthly time period, while Chevallier et al. (2005) use a latitude–longitude
grid of 3.75°× 2.5° and an 8-day time period; see Peiro et al. (2022) for several other examples
of how flux inversion systems are parameterised in practice. It is reasonable to expect better
estimates of fluxes at finer scales when using a model with a finer resolution, but studies that
achieve much higher dimensionality tend to use iterative techniques that (as it stands) preclude
full uncertainty quantification in a Bayesian hierarchical framework. The main barrier to using
a finer-resolution partition in WOMBAT is the impact on computation time from the resulting
increase in dimensionality. Exploring ways to deal with this in WOMBAT, such as through
the use of iterative techniques to draw samples from the posterior distribution of the flux
field (Chevallier et al., 2005), is a promising avenue for future work. The novel decomposition
into trend, seasonality, and residual at the core of WOMBAT v2.0 can also be applied to
parameterise fluxes outside of a Bayesian hierarchical setting; this approach would allow for
increased dimensionality, but possibly at the cost of some untenable modelling assumptions
and inaccurate uncertainty quantification.

The decomposition of the fluxes in (2) cleanly identifies the flux annual cycle. However, the
diurnal cycle was not modelled explicitly and, as noted in Section 2.1, it will show up in the
residual term. This limits the ability of WOMBAT v2.0 to identify patterns and changes to
the diurnal cycle. Incorporating an explicit diurnal cycle into the decomposition is challenging,
because the diurnal cycle itself may vary throughout the year (this is the case for CO2, for
example); accommodating this would appear to require many more parameters. Investigating
how to parameterise the diurnal cycle and its patterns in a parsimonious and interpretable way
would be a promising avenue for future work.

In our application to CO2 fluxes, we considered the partition of the NEE into components
of GPP and respiration. This is a strength of our work, since most CO2 flux-inversion systems
estimate NEE directly (e.g., Basu et al., 2013) and hence cannot determine how the net flux
arose. In our inversion, the mole-fraction field on which the data are taken depends on the
net flux rather than on the component fluxes directly. The decomposition of NEE into GPP
and respiration must therefore rely partly on other information, such as the sign constraints
on these fields and the bottom-up estimates of the spatio-temporal distribution of the fluxes.
A promising avenue to improve the decomposition is to incorporate ancillary data sources such
as remotely sensed observations of SIF or observations of the trace gas carbonyl sulfide (COS;
Ma et al., 2021), both of which can be directly linked to GPP. For example, SIF data were
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used by Liu et al. (2017) to estimate changes to GPP due to the 2015–2016 El Niño event,
while Hu et al. (2021) used COS for the boreal and arctic regions in North America. Both
SIF and COS are simulated by SiB4 (Kooijmans et al., 2021), facilitating their use in our
framework. However, one challenge to using SIF data is that its relationship to GPP appears
to vary between ecosystems (Magney et al., 2020).

Although we did not do so in Section 4, the trends in the fluxes may be projected either
backwards into the past, or forwards into the future. The former would be useful for validating
the bottom-up and posterior estimates, while the latter could provide some insights into future
change (with limited validity since the study period only spans six years). A related possible
extension is to expand the linear component of the decomposition to include some curvature,
such as through a quadratic term. If combined with a longer study period, this could identify
whether the increasing uptake of CO2 by the ocean and the land is speeding up or slowing
down.

Changes to seasonal cycles can take forms other than the phase shifts and amplitude changes
that we considered in Section 4.4. One form of change of scientific interest for CO2 is the length
of the growing season, a feature which corresponds roughly to the “width” of the trough of the
GPP seasonal cycle. This type of change can be accommodated in our framework, but it is
more difficult to produce metrics that identify when such a change has happened; producing
such metrics would be a valuable focus for future work.

We conclude the paper by emphasising that WOMBAT v2.0 could also be applied to infer
fluxes of other greenhouse gases such as methane or nitrous oxide. The borrowing-of-strength
induced by the spatially-varying time series decomposition of the fluxes is likely to be even
more beneficial for these gases, for which observations tend to be sparser than for CO2.

Code and data availability

Software that implements the WOMBAT v2.0 framework and reproduces the results in the
manuscript is available online at https://github.com/mbertolacci/wombat-v2-framework.
Instructions for acquiring the input data needed to reproduce the results are provided with
the software. The outputs of WOMBAT v2.0 for the application to CO2 are also available.
These comprise samples from the posterior distribution of the model parameters, bottom-up
estimates and samples from the posterior distribution of the fluxes, and bottom-up estimates
and samples from the posterior distribution of the trend/seasonality terms.
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Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (2021). Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, UK.

Michalak, A. M., Bruhwiler, L., and Tans, P. P. (2004). A geostatistical approach to surface
flux estimation of atmospheric trace gases. Journal of Geophysical Research: Atmospheres,
109(D14).

Nara, H., Tanimoto, H., Tohjima, Y., Mukai, H., Nojiri, Y., and Machida, T. (2017). Emission
factors of CO2, CO and CH4 from Sumatran peatland fires in 2013 based on shipboard
measurements. Tellus B: Chemical and Physical Meteorology, 69(1).

Nassar, R., Jones, D. B. A., Suntharalingam, P., Chen, J. M., Andres, R. J., Wecht, K. J.,
Yantosca, R. M., Kulawik, S. S., Bowman, K. W., Worden, J. R., Machida, T., and Matsueda,
H. (2010). Modeling global atmospheric CO2 with improved emission inventories and CO2

production from the oxidation of other carbon species. Geoscientific Model Development,
3(2):689–716.

Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel, F. R., and Deng, F.
(2013). Improving the temporal and spatial distribution of CO2 emissions from global fossil
fuel emission data sets. Journal of Geophysical Research: Atmospheres, 118(2):917–933.

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31:705–741.

Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford,
J., McCarthy, H. R., Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C., Karnosky,
D. F., Kubiske, M. E., Lukac, M., Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger,
W. H., and Oren, R. (2005). Forest response to elevated CO2 is conserved across a broad
range of productivity. Proceedings of the National Academy of Sciences, 102(50):18052–18056.

North, J. S., Schliep, E. M., and Wikle, C. K. (2021). On the spatial and temporal shift in
the archetypal seasonal temperature cycle as driven by annual and semi-annual harmonics.
Environmetrics, 32(6):e2665.

Oda, T. and Maksyutov, S. (2011). A very high-resolution (1 km × 1 km) global fossil fuel
CO2 emission inventory derived using a point source database and satellite observations of
nighttime lights. Atmospheric Chemistry and Physics, 11(2):543–556.

Oda, T., Maksyutov, S., and Andres, R. J. (2018). The Open-source Data Inventory for
Anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded
emissions data product for tracer transport simulations and surface flux inversions. Earth
System Science Data, 10(1):87–107.

O’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Franken-
berg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R.,
Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F.,
Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S.

30



M. R., Feng, L., Palmer, P. I., Dubey, M., Garćıa, O. E., Griffith, D. W. T., Hase, F., Iraci,
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(2018). Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon
Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote
Sensing of Environment, 209:808–823.

Tagesson, T., Schurgers, G., Horion, S., Ciais, P., Tian, F., Brandt, M., Ahlström, A.,
Wigneron, J.-P., Ardö, J., Olin, S., Fan, L., Wu, Z., and Fensholt, R. (2020). Recent
divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink.
Nature Ecology & Evolution, 4(2):202–209.

Tohjima, Y., Mukai, H., Machida, T., Nojiri, Y., and Gloor, M. (2005). First measurements of
the latitudinal atmospheric O2 and CO2 distributions across the western Pacific. Geophysical
Research Letters, 32(17).

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M.,
Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla,
P. S. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data,
9(2):697–720.

32

https://doi.org/10.25925/20201204
https://doi.org/10.25925/20201204


Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,
Schlesinger, W. H., and Tilman, D. G. (1997). Human alteration of the global nitrogen cycle:
Sources and consequences. Ecological Applications, 7(3):737–750.

Wikle, C. K., Berliner, L. M., and Cressie, N. (1998). Hierarchical Bayesian space-time models.
Environmental and Ecological Statistics, 5(2):117–154.

Wood, W. B. (1990). Tropical deforestation: Balancing regional development demands and
global environmental concerns. Global Environmental Change, 1(1):23–41.

Yantosca, B. (2019). geoschem/geos-chem: GEOS-Chem 12.3.2.
https://doi.org/10.5281/zenodo.2658178.

Yevich, R. and Logan, J. A. (2003). An assessment of biofuel use and burning of agricultural
waste in the developing world. Global Biogeochemical Cycles, 17(4):1095.

Zammit-Mangion, A., Bertolacci, M., Fisher, J., Stavert, A., Rigby, M., Cao, Y., and Cressie,
N. (2022). WOMBAT v1.0: A fully Bayesian global flux-inversion framework. Geoscientific
Model Development, 15(1):45–73.

Zhu, W., Tian, H., Xu, X., Pan, Y., Chen, G., and Lin, W. (2012). Extension of the growing
season due to delayed autumn over mid and high latitudes in North America during 1982–
2006. Global Ecology and Biogeography, 21(2):260–271.

A Remaining details of the hierarchical model

Section 2 describes the changes from WOMBAT v1.0 (Zammit-Mangion et al., 2022) to WOM-
BAT v2.0. In this appendix, we give the remaining details of the hierarchical model that
underlies WOMBAT v2.0. Appendix A.1 describes the structure of the covariance matrix Σα,
and Appendix A.2 and Appendix A.3 give the details of the mole-fraction process and data
models, respectively.

A.1 Structure of the covariance matrix of α

As in WOMBAT v1.0, the covariance matrix Σα in (9) induces correlations between a com-
ponent’s residual basis-function coefficients over time. In WOMBAT v2.0 we generalise this
to also allow for correlations between the basis-function coefficients of different components.
Specifically, we structure the submatrices of Σα that correspond to the trend and seasonality
as follows:

var(αc,j,r) = 1/τβc ; c ∈ C; j = 0, 1; r = 1, . . . , R,

var(αc,j,k,r) = 1/τβc ; c ∈ C; j = 2, . . . , 5; k = 1, . . . , Kc; r = 1, . . . , R,

corr(αc,j,r, αc′,j,r) = ρβc,c′ ; c, c′ ∈ C; j = 0, 1; r = 1, . . . , R

corr(αc,j,k,r, αc′,j,k,r) = ρβc,c′ ; c, c′ ∈ C; j = 2, . . . , 5; k = 1, . . . ,min(Kc, Kc′); r = 1, . . . , R,

(A.1)

where τβc > 0, −1 < ρβc,c′ < 1, and all other unspecified correlations are fixed to zero. The pre-

cision parameter τβc governs how different the trend and seasonality can be from the bottom-up
estimate, and the correlation parameter ρβc,c′ models dependencies between any two components
c and c′. For example, with CO2 we expect the adjustments to the seasonal cycle of respiration
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to be anti-correlated with those to the seasonal cycle of GPP. Because the fluxes from these
components have opposite signs, this would correspond to a value of ρβc,c′ close to one.

The submatrices of Σα corresponding to the residual are structured similarly, but they also
account for temporal dependence:

var(αc,6,r,q) = 1/τ εc ; c ∈ C; r = 1, . . . , R; q = 1, . . . , Q,

corr(αc,6,r,q, αc,6,r,q′) = (κεc)
|q−q′| ; c ∈ C; r = 1, . . . , R; q, q′ = 1, . . . , Q,

corr(αc,6,r,q, αc′,6,r,q) = ρεc,c′ ; c, c′ ∈ C; r = 1, . . . , R; q = 1, . . . , Q,

(A.2)

where τ εc > 0, 0 < κεc < 1, −1 < ρεc,c′ < 1, and all other unspecified correlations are fixed to
zero. Temporal dependence within a component is captured through the parameter κεc, and
dependence between pairs of components is captured through the parameter ρεc,c′ .

Since all off-diagonal entries of Σα not associated with (A.1) and (A.2) are zero, the basis-
function coefficients are assumed to be uncorrelated across the regions D1, . . . , DR. This is a
reasonable assumption when the regions are large. For example, almost all the spatial regions
in our CO2 case study in Section 3 are large relative to the spatial variability of the process.
If small regions were used, one would need to explicitly model spatial correlation through Σα;
one option would be a classical geostatistical model (e.g., Michalak et al., 2004).

If all the C components used to construct (1) are assumed to be unknown, and if correla-
tions between all component processes are modelled, then there are 3C + C(C − 1) unknown
parameters that parameterise Σα. We assign independent priors to these parameters as follows:

τβc ∼ Gamma(νβτ , ω
β
τ,c), τ εc ∼ Gamma(νετ , ω

ε
τ,c),

ρβc,c′ ∼ Beta(aβρ , b
β
ρ), ρεc,c′ ∼ Beta(aερ, b

ε
ρ),

κεc ∼ Beta(aεκ, b
ε
κ),

for c, c′ ∈ C, where Gamma(ν, ω) is the gamma distribution with shape parameter ν and rate
parameter ω, and Beta(a, b) is the beta distribution with shape parameters a and b. In some
cases it may be reasonable to assume known values for some of these parameters; for example,
in Section 3, we assume that both ρβc,ocean and ρεc,ocean are zero when c corresponds to one of the
terrestrial biosphere components of flux.

A.2 Mole-fraction process model

While the flux process is of primary interest in flux inversion, inference on the flux is made using
data on the trace-gas mole fraction. In what follows, we use the notation of Zammit-Mangion
et al. (2022). Denote by Y (s, h, t) the mole-fraction field at location s ∈ S2, geopotential height
h ≥ 0, and time t ∈ T . Let Tt = [t0, t] for t0 ≤ t ≤ t1 be the set of all time points in the study
period up to time t. The mole-fraction field at time t, Y (·, ·, t), depends on the mole-fraction
field at time t0, denoted by Y (·, ·, t0) and also known as the “initial condition,” and on the
fluxes that occur over the period Tt, which we denote by X(·, Tt). The relationship between
the flux and mole-fraction fields is expressed through,

Y (s, h, t) = H(Y (·, ·, t0), X(·, Tt); s, h, t), s ∈ S2, t ∈ T , h ≥ 0. (A.3)

The operator H represents the solution to the underlying chemical transport equations that
describe the movement of the trace gas. This transport operator is very close to linear for
long-lived trace-gas species like CO2, and therefore (A.3) can be split up as

Y (s, h, t) = H(Y (·, ·, t0), 0; s, h, t) +H(0, X(·, Tt); s, h, t), s ∈ S2, t ∈ T , h ≥ 0; (A.4)
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that is, the field at time t is an additive combination of the impact of the initial condition and
the impact of the fluxes over Tt. Equation (A.4) cannot be used directly because the initial
condition is not known exactly, and the exact transport operator H is not available. Instead,
we use an estimate of the initial condition, Ŷ (·, ·, t0), and an approximate transport operator
Ĥ, which is also approximately linear and is computed by running a chemical transport model.
In Section 3, we use the chemical transport model GEOS-Chem. Both of these approximations
introduce the potential for error, which we accommodate by adding an error term to (A.4):

Y (s, h, t) = Ĥ(Ŷ (·, ·, t0), 0; s, h, t) + Ĥ(0, X(·, Tt); s, h, t) + v(s, h, t), s ∈ S2, t ∈ T , h ≥ 0,
(A.5)

where v(·, ·, ·) is a space-height-time process that accommodates potential errors.
Since Ĥ is linear, equation (8) and equation (A.5) can be combined to yield a basis-function

representation in mole-fraction space that is of the same form as the basis-function representa-
tion of the flux field:

Y (s, h, t) = Y 0(s, h, t) + ψ̂(s, h, t)′α+ v(s, h, t), s ∈ S2, t ∈ T , h ≥ 0, (A.6)

where Y 0(s, h, t) ≡ Ĥ(Ŷ (·, ·, t0), 0; s, h, t) + Ĥ(0, X0(·, Tt); s, h, t) for s ∈ S2, t ∈ T , h ≥ 0, and
ψ̂(·, ·, ·) is a (2CR+ 4R

∑
c∈CKc +CQR)-dimensional vector of basis functions. The entries of

ψ̂(·, ·, ·) and φ(·, ·) have a one-to-one correspondence through

ψ̂l(s, h, t) = Ĥ(0, φl(·, Tt); s, h, t), s ∈ S2, t ∈ T , h ≥ 0,

where ψ̂l(·, ·, ·) and φl(·, ·) are the lth entries of ψ̂(·, ·, ·) and φ(·, ·), respectively.

A.3 Mole-fraction data model

We denote by Zi the ith observation of the mole-fraction field, where i = 1, . . . , N . Mole-fraction
observations used in flux inversion are generally either point-referenced or column-averaged.
Point-referenced observations are made at a specific location si and height hi, usually involve
a degree of time averaging (say, over three hours), and are not subject to substantial biases or
correlated measurement errors. Column-averaged observations are made at a specific location
si and time ti, represent a weighted average of the vertical mole-fraction field at that time
and location, and are typically affected by both bias and correlated measurement errors. The
mole-fraction data model is therefore given by

Zi =

{
Ai(Y (si, hi, ·)) + εi, if Zi is from a point-referencing instrument,

Ai(Y (si, ·, ti)) + bi + vZi
+ εi, if Zi is from a column-averaging instrument,

(A.7)

where Ai is the observation operator for the ith observation, bi is a bias term, vZi
is a mean-

zero spatio-temporally correlated random error, and εi is a mean-zero uncorrelated random
error independent of vZi

. For point-referenced observations, Ai represents averaging over time,
while for column-averaged observations it represents averaging over the vertical dimension, h.

Equations (A.6) and (A.7) can be combined to give a basis-function representation of the
data model:

Zi = Z0
i + ψ̂′iα+ bi + ξi + εi, i = 1, . . . , N, (A.8)

where Z0
i ≡ Ai(Y 0(si, ·, ·)); ψ̂i ≡ Ai(ψ̂(si, ·, ·)), in which the operator is applied element-wise;

bi = 0 for point-referenced observations; and

ξi ≡

{
Ai(v(si, hi, ·)) if Zi is from a point-referencing instrument,

Ai(v(si, ·, ti) + vZi
) if Zi is from a column-averaging instrument.
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All sources of correlated random error are grouped into one term, ξi. The overall model can be
written in matrix-vector form as

Z = Z0 + Ψ̂α+ b + ξ + ε, (A.9)

where Z ≡ (Z1, . . . , ZN)′; Ψ̂ is a matrix with N rows for which the ith row is equal to ψ̂′i;
b ≡ (b1, . . . , bN)′; ξ ≡ (ξ1, . . . , ξN)′; and ε ≡ (ε1, . . . , εN)′.

In both WOMBAT v1.0 and WOMBAT v2.0, the dataset Z is split into disjoint groups
indexed by g = 1, . . . , G, where the observations within a group have similar bias and error
properties. The bias term b, and the properties of the error terms ε and ξ, are therefore
modelled separately for each group. The biases are assigned linear models of the form bg =
Agηg, where bg is the vector of bias terms for group g, Ag is a group-specific design matrix
in which the columns have been standardised by dividing by their standard deviation, and
ηg is a corresponding vector of coefficients. In flux inversions, it is common to pre-determine
for each observation Zi an overall “error budget” or variance, Vi, that comprises the total
measurement-error variance plus model-error variance associated with the observation. To
reflect this, for observations in group g, we let var(ξi + εi) = (γZg )−1Vi, where γZg > 0 is an
unknown parameter that rescales the error budgets in group g as needed. To apportion the
total error budget between ξi and εi, we let var(ξi) = ρZg (γZg )−1Vi and var(εi) = (1−ρZg )(γZg )−1Vi,
where 0 < ρZg < 1. The correlations between the elements of ξ in group g are specific to the
application. For example, with some groups in our application to CO2, these elements are
divided into subgroups (in our case, each subgroup is a time series; see Appendix B.3). There
are correlations between elements in each sub-group, but elements in different sub-groups are
assumed to be mutually independent. The correlations, where present, are governed by a
common length-scale parameter, which we denote by `Zg .

The unknown parameters in the data model are η ≡ (η′1, . . . ,η
′
G)′, γZ ≡ (γZ1 , . . . , γ

Z
G)′,

ρZ ≡ (ρZ1 , . . . , ρ
Z
G)′, and `Z ≡ (`Z1 , . . . , `

Z
G)′. We assign independent priors to these parameters

as follows. For η, we let η ∼ Gau(0, σ2
ηI), where σ2

η = 100 and I is the identity matrix
(recall that Ag is column-standardised). For the overall variance and the relative-contribution
proportions, we assign the priors

γZg ∼ Gamma(νγ, ωγ) and ρZg ∼ Unif(0, 1); g = 1, . . . , G,

respectively, where Unif(a, b) is the uniform distribution on the interval [a, b]. For the length
scales, we assign `Zg ∼ Gamma(ν`, ω`,g), g = 1, . . . , G. All hyperparameters are fixed to reason-
able values, as detailed in Appendix B.5 for the application to CO2.

B CO2 application details

This section gives extra details of how WOMBAT v2.0 was configured for the application to
CO2 fluxes.

B.1 Additional prior information used to improve flux estimation

As mentioned in Section 3.3, the 11 predominantly ocean regions and the New Zealand region
have small land areas. For this reason, observations are unable to reliably separate their
influence from those of other regions through the spatio-temporal distribution of the mole-
fraction field (i.e., the trend and seasonality in these small land areas is weakly identifiable). In
preliminary investigations, when the trend and seasonality of land fluxes in these regions were
left to vary, the inferred fluxes in these 12 regions were found to be unrealistic. We address
this by fixing the trend and seasonality in these regions to be known, and equal to that of the
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bottom-up estimate; data-driven inferences on land fluxes in these regions are therefore done
through the residual component.

For a similar reason, we also fix the trend and seasonality to the bottom-up estimate for the
ocean component in all 23 regions. When they were allowed to vary in preliminary investiga-
tions, the estimated annual cycles of ocean fluxes tend to be implausible, with fluxes attributed
to ocean regions that clearly should have been attributed to land regions. Therefore, it appears
that the observations, the majority of which are made over land, are unable to reliably con-
strain the ocean trend and seasonality. However, the trend and seasonality of the ocean fluxes is
considered to be captured fairly accurately by bottom-up methods (Landschützer et al., 2016),
so the practical impact of assuming they are known should be small.

We also found it necessary to introduce extra information to reliably constrain the ocean
residual fluxes. These are also weakly identifiable because they are comparably small in mag-
nitude when compared to land fluxes. We do this by fixing the precision of the coefficients
associated with the residual component of the ocean fluxes to a very uninformative value,
τ εocean = 1/100, and then incorporating a multivariate pseudo observation as described below.
The pseudo observation implicitly establishes the covariance matrix of the basis-function coef-
ficients for the ocean residual fluxes in a way that constrains the scale of the residual fluxes and
induces spatio-temporal correlations (i.e., smoothness), while leaving the process-model mode
equal to the bottom-up estimate. Constraints on ocean fluxes are often seen as necessary in
flux inversion (e.g., Crowell et al., 2019).

The ocean pseudo observation expresses the prior belief that deviations from the ocean flux
prior mean will be spatio-temporally correlated. To construct it, we aggregate the ocean flux
field, Xocean(·, ·), in the same manner as for the terrestrial biosphere fields in Section 3.4. This
gives xocean, the aggregated fluxes, and x0

ocean, the bottom-up estimate (and prior mean) of
xocean. As in (13), we can write

xocean = x0
ocean + Φx,oceanαocean. (B.1)

Recall from Section 3.3 that we assume known trend and seasonality for the ocean flux field.
This amounts to assuming that the elements of αocean that correspond to the trend and season-
ality are equal to zero. Thus, (B.1) simplifies to xocean = x0

ocean + Φε
x,oceanα

ε
ocean where Φε

x,ocean

and αεocean are equal to Φx,ocean and αocean, respectively, but with the columns/elements for the
trend and seasonality basis-function coefficients omitted.

We next introduce the pseudo observation as x̃ocean = x0
ocean, and take its distribution to be

(x̃ocean | αεocean) ∼ Gau(xocean,Σx̃,ocean). The covariance matrix Σx̃,ocean is constructed using a
stationary and separable space-time exponential covariance function with a marginal standard
deviation of 1.47 × 10−8 kgCO2/m

2/s, a spatial e-folding length of 1000 km, and a temporal
e-folding length of one month (these choices match those of the system “CAMS” in Crowell
et al., 2019). The pseudo observation is equal to its conditional mean given αεocean, so (by
design) it does not inform the mean of αεocean. However, its covariance matrix, Σx̃,ocean, informs
the covariance of αεocean. This can be seen through the conditional distribution of αεocean given
x̃ocean, which is

(αεocean | x̃ocean) ∼ Gau(0, Σ̃ε
α,ocean),

where
Σ̃ε
α,ocean ≡

[
(Φε

x,ocean)′Σ−1x̃,oceanΦ
ε
x,ocean + (1/100)I

]−1
. (B.2)

Note that the term (1/100)I corresponds to the precision matrix for αεocean under the assump-
tions given in Section 3.3. Equation (B.2) shows that the covariance matrix Σx̃,ocean encodes
information about the covariance of αεocean, and therefore informs the length scales and spatio-
temporal magnitudes of the inferred fluxes.
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B.2 Details of mole-fraction observations

The CO2 mole-fraction observations used for our inversion include retrievals of column-averaged
CO2 mole-fraction by NASA’s OCO-2 satellite (Eldering et al., 2017), and point-referenced in
situ and flask measurements of CO2 mole-fraction from a variety of sources described below.
Both of these data sets are prescribed in the OCO-2 v10 MIP protocol.

The OCO-2 satellite measures radiances in three near-infrared spectral bands that corre-
spond to absorbance spectra for CO2 and O2. These radiance measurements are used to retrieve
the column-average CO2 mole-fraction using an optimal estimation algorithm, and the result-
ing retrievals are then bias-corrected using external validation data (O’Dell et al., 2018). It
takes 16 days for the orbit of the satellite to give global coverage of its retrievals, and adjacent
orbital tracks are around 150 kilometres apart. Retrievals are made over both land and ocean,
but the ocean retrievals are considered by many inversion modellers to have undesirable biases
(Peiro et al., 2022), so in this study we only use land retrievals; due to atmospheric transport,
ocean fluxes can still be inferred from these data. The OCO-2 v10 MIP protocol mandates
the use of post-processed column-average CO2 retrievals that are constructed by averaging the
retrievals in 10-second bands. The post-processing steps are described by Peiro et al. (2022) for
the previous round of the OCO-2 MIP that used version 9 OCO-2 data (the OCO-2 v9 MIP).
When using retrieved column-average CO2 mole fractions in an inversion, the influence of the
retrieval process has to be accounted for in the observation operator of the ith observation, Ai,
in (A.7); more details are given by Zammit-Mangion et al. (2022), Appendix B. The 530,201
retrievals used in this study range were obtained from September 6, 2014 to March 31, 2021.

The in situ and flask measurements used for our inversion are also part of the OCO-2
v10 MIP protocol and come from three collections in ObsPack format (Masarie et al., 2014).
These are the obspack co2 1 NRT v6.1.1 2021-05-17 (Schuldt et al., 2021a) collection, the ob-
spack co2 1 GLOBALVIEWplus v6.1 2021-03-01 collection (Schuldt et al., 2021b), and the
obspack co2 1 NIES Shipboard v3.0 2020-11-10 collection (Tohjima et al., 2005; Nara et al.,
2017). The data include measurements from surface sites, from towers that have multiple sam-
pling inlets at different altitudes, and from research and commercial ships and aircraft. There
are 1,054,928 in situ and flask measurements in total, comprising 15,577 aircraft measurements,
218,613 shipboard measurements, 408,083 surface measurements, and 412,655 tower measure-
ments. The chosen measurements are a subset of those available that are deemed suitable for
use in flux-inversion systems and, in most cases, are temporally averaged into 3-hour intervals.
The details of how these choices were made for the OCO-2 v10 MIP are essentially the same
as for the OCO-2 v9 MIP, which is described by Peiro et al. (2022).

B.3 Error budgets, measurement groups, and bias correction

The prescribed OCO-2 and in situ/flask observations for the OCO-2 v10 MIP come with
suggested error variances, which we term error budgets, and which are calculated following
the approach described in Peiro et al. (2022) for the OCO-2 v9 MIP. We set our error bud-
gets/variances Vi, for i = 1, . . . , N , equal to the v10 MIP suggestions. Recall from Appendix A.3
that observations in WOMBAT are split into groups indexed by g = 1, . . . , G. Observations
within a group g share the parameters ηg, γ

Z
g , ρZg , and `Zg , and they are therefore assumed

to have identical biases and error properties. We divide the CO2 mole-fraction observations
into G = 5 groups: (1) OCO-2 land observations, (2) aircraft observations, (3) shipboard ob-
servations, (4) surface observations, and (5) tower observations. The OCO-2 observations are
treated separately because they come from an instrument that is very different from the others;
the aircraft and shipboard observations because they are from instruments that are moving and
at different speeds; and the surface and tower observations because they are from instruments
that are stationary and that give readings at different heights.
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The OCO-2 version 10 column-averaged observations are already bias-corrected using an
offline algorithm (see Appendix B.2), and Zammit-Mangion et al. (2022) found that estimating
additional biases for an earlier version of these observations (version 7) made little difference
when estimating fluxes. As described in Appendix A.3, the point-referenced in situ and flask
observations are already assumed to be unbiased. Consequently, although our model is capable
of working with the raw non-bias corrected OCO-2 data and estimating bias, for this application
we let the bias term bi = 0 for all observations i = 1, . . . , N (see (A.7)), and omit the bias-
correction terms {ηg : g = 1, . . . , G}.

The parameters {ρZg : g = 1, . . . , G} apportion the error budgets between the correlated error
term and the uncorrelated error term. For groups g = 2, . . . , 5, which are the in situ and flask
observations, we assume that ρZg = 1. This sets the variance of the uncorrelated component
of the error equal to zero, which is appropriate because these observations have negligible
measurement error but are still affected by misrepresentation of transport (a correlated source
of error). For group g = 1, which contains the OCO-2 observations, ρZg is left unknown and
non-negative.

To specify the covariance of the vector of correlated error term, ξ, we split the data from
each group into separate time series that each come from a single location or instrument. We
let the OCO-2 land data be one time series, the observations from a single ship or aircraft be
one time series, and the observations from a single surface site or tower inlet be one time series.
This yields 192 time series. Let group g contain Sg time series, and let ξg,s, s = 1, . . . , Sg,
be the vector containing the elements of ξ belonging to time series s in group g. Following
Zammit-Mangion et al. (2022), we let the correlation between elements of ξg,s be governed by an
exponential function of temporal separation, with e-folding time scale `Zg . All other correlations
between elements of ξ are set equal to zero.

B.4 Transport and initial condition

We implement the approximate transport operations in Ĥ using the GEOS-Chem global 3-
D chemical transport model, version 12.3.2 (Bey et al., 2001; Yantosca, 2019), driven by the
MERRA-2 meteorological fields (Bosilovich et al., 2015). We use the offline GEOS-Chem CO2

simulation (Nassar et al., 2010) with a transport time step of 10 minutes and a flux time step
of 20 minutes. For computational efficiency, we aggregate the spatial field for the simulations
to 2°×2.5° (latitude × longitude) and 47 vertical levels from the native horizontal resolution of
0.25°×0.3125° and 72 vertical levels, respectively. All fluxes are supplied to GEOS-Chem using
the HEMCO emissions component (Keller et al., 2014). The approximate initial condition,
Ŷ (·, ·, t0), which gives the value of the mole-fraction field at September 1, 2014, is the same as
that in Zammit-Mangion et al. (2022). GEOS-Chem can allow for a 3-D chemical source of
CO2 due to oxidation of other trace gases, but this source was omitted for compatibility with
the OCO-2 MIP.

B.5 Hyperparameters

Priors on the process-model parameters for the basis-function coefficients (see Section 2.3)
follow Zammit-Mangion et al. (2022), where the choices νβτ = νετ = 0.354, ωβτ,c = ωετ,c = 0.0153,
νγ = 1.62702, and ωγ = 2.171239 are explained. We assume that κεgpp = κεresp ≡ κεbio, so that
temporal dependencies in the residual of the GPP and respiration components are captured by
the single parameter κεbio. We let aβρ = bβρ = aερ = bερ = aεκ = bεκ = 1. For the prior distribution
on the length scales in the data model (see Appendix A.3), we let ν` = 1, ω`,1 = 1 min−1 (for
the OCO-2 data), and ω`,g = 1 day−1 for g = 2, 3, 4, and 5.
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B.6 Computation

Computation of the basis functions took several weeks on the Gadi supercomputer at the Aus-
tralian National Computational Infrastructure. Once these were finished, the MCMC sampler
that performs the inversion was run for 5,000 iterations, 1,000 of which were discarded as warm
up. This took two days on a high-performance computing machine with 56 computing cores.
Figure D4 in Appendix D shows traceplots for the parameters of the process models, as well as
those for four basis-function coefficients. The effective sample size (Gelman et al., 2013) is at
least 1,000 for all parameters, and is greater than 3,500 for 95% of the parameters.

C Markov chain Monte Carlo algorithm

As discussed in Section 2.5, the first stage of inference finds estimates ρ̂Z and ˆ̀Z of the param-
eters ρZ and `Z , respectively, and the second stage uses an MCMC algorithm to sample from
the full posterior distribution of the remaining unknown parameters. This appendix gives the
details of the MCMC algorithm.

Define ρβ ≡ (ρβc1,c2 , ρ
β
c1,c3

, . . . , ρβcC−1,cC
)′, τ β ≡ (τβc1 , . . . , τ

β
cC

)′, κε ≡ (κεc1 , . . . , κ
ε
cC

)′, ρε ≡
(ρεc1,c2 , ρ

ε
c1,c3

, . . . , ρεcC−1,cC
)′, and τ ε ≡ (τ εc1 , . . . , τ

ε
cC

)′. Let Zg, g = 1, . . . , G, be a vector containing

the elements of Z that correspond to group g. We split α into αβ and αε, vectors which contain
the elements of α corresponding to the trend/seasonality basis functions and to the residual
basis functions, respectively. With this notation, the posterior distribution of the unknown
parameters is p(α,η,ρβ, τ β,κε,ρε, τ ε,γZ | ρ̂Z , ˆ̀Z ,Z). We use a Gibbs sampling scheme to
sample from this distribution, which iteratively samples from the full conditional distributions
of the unknown parameters in the following order:

1. p(ρβc,c′ | αβ, τ β) for c, c′ ∈ C;

2. p(τβc | αβ,ρβ) for c ∈ C;

3. p(κεc | αε, τ ε,ρε) for c ∈ C;

4. p(ρεc,c′ | αε, τ ε,κε) for c, c′ ∈ C;

5. p(τ εc | αε,κε,ρε) for c ∈ C;

6. p(γZg | α, ρ̂Zg , ˆ̀Z
g ,Zg) for g = 1, . . . , G;

7. p(α,η | Σα,γ
Z , ρ̂Z , ˆ̀Z ,Z).

In the above, variables that do not alter the full conditional distributions are omitted from the
conditioning, and Σα in step 7 depends on ρβ, τ β,κε,ρε and τ ε. The details of each step follow.

Steps 1 and 2: The conditional distributions in steps 1 and 2 are proportional to

p(αβ,ρβ, τ β) ∝ p(αβ | ρβ, τ β)p(ρβ)p(τ β)

= |Σβ
α|−1/2(αβ)′(Σβ

α)−1αβ
∏

c,c′∈C,c 6=c′
p(ρβc,c′)

∏
c∈C

p(τβc ), (C.1)

where Σβ
α is the submatrix of Σα corresponding to the entries of αβ (Σβ

α depends on ρβ and
τ β), and the prior densities for ρβc,c′ and τβc are described in Appendix A.1. We perform steps
1 and 2 by using a slice sampler (Neal, 2003) for each unknown parameter in turn, with the
target density calculated using (C.1).

Steps 3, 4, and 5: The conditional distributions in steps 3, 4, and 5 are proportional to

p(αε,κε,ρε, τ ε)

∝ p(αε | κε,ρε, τ ε)p(κε)p(ρε)p(τ ε)

= |Σε
α|−1/2(αε)′(Σε

α)−1αε
∏
c∈C

p(κεc),
∏

c,c′∈C,c 6=c′
p(ρεc,c′)

∏
c∈C

p(τ εc ),
(C.2)
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where Σε
α is the submatrix of Σα corresponding to the entries of αε. As in steps 1 and 2, we

use slice sampling to perform steps 3, 4, and 5.
Step 6: The full conditional distribution for step 6 is available in closed form, so we sample

from it directly. The distribution is

(γZg | α, ρ̂Zg , ˆ̀Z
g ,Zg) ∼ Gamma(ν∗γ,g, ω

∗
γ,g), g = 1, . . . , G, (C.3)

where ν∗γ,g ≡ νγ + 1
2
Ng and ω∗γ,g ≡ ωg + 1

2
(Zg −Ψgα)′D−1g (Zg −Ψgα). Here, Ng is the number

of observations in group g; Ψg is a matrix that contains the rows of Ψ corresponding to
observations in group g; and

Dg ≡ V1/2
g

[
ρ̂Zg Rξg + (1− ρ̂Zg )I

]
V1/2
g , (C.4)

where Vg is a diagonal matrix containing the error budgets Vi for group g on its diagonal,

Rξg ≡ corr(ξg | ρ̂Zg , ˆ̀Z
g ), and ξg is a vector containing the elements of ξ that belong to group g.

Step 7: Define θ ≡ (α′,η′)′; Σθ ≡ bdiag(Σα, σ
2
ηI), where bdiag(·) constructs a block-

diagonal matrix from its arguments; H ≡ bdiag(Ψ,A1, . . . ,Ag); ΣZ ≡ var(Z | γZ , ρ̂Z , ˆ̀Z);
and Fθ = {θ : α ∈ Fα}, the extension of the constraint region Fα to the domain of θ. The
conditional distribution in step 7 is

(θ | Σα,γ
Z , ρ̂Z , ˆ̀Z ,Z) ∼ ConstrGau(µ∗θ,Σ

∗
θ, Fθ), (C.5)

where Σ∗θ = (H′Σ−1Z H + Σθ)
−1 and µ∗θ = Σ∗θH

′Σ−1Z Z. In Section 3.4, we describe a system of
linear constraints Fα that approximate the physical constraints relevant to the CO2 application.
Following Stell et al. (2022), we use the method described by Pakman and Paninski (2014)
to sample from (C.5). This method can sample from a multivariate Gaussian distribution
under both linear and quadratic constraints. It uses a HMC sampling scheme with exact
Hamiltonian dynamics, which accommodates constraints along a trajectory by reflecting the
trajectory off the constraint boundary; Pakman and Paninski show how reflections can be
performed while preserving the target distribution. The algorithm is computationally efficient
for sparse constraint matrices such as the matrix Φ in Section 3.4, and we find it mixes well
for our application.
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D Additional tables and figures
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Figure D1: Monthly-average global total fluxes for the bottom-up estimates for all the flux
components. The bottom-up estimate of the biofuel fluxes has spatial but not temporal vari-
ability, so its global total is a constant.
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Figure D2: Estimated ocean fluxes from Landschützer et al. (2016), X0
ocean(·, ·). From left

to right, fluxes are shown, respectively, for a grid cell in the eastern tropical Pacific Ocean
(coordinates 10.5° S, 90.5° W), a grid cell in the northern Atlantic Ocean (37.5° S, 28.5° W),
and the global total ocean fluxes. The first row gives the total fluxes, the second row the linear
component of the fluxes, the third row the seasonal component, and the last row gives the
residual fluxes, ε0c(·, ·). Only the last 10 years of fluxes, which span 38 years, are shown. For
the grid-cell fluxes, the scale is in kgCO2/m

2/year, while the global total ocean flux is given in
PgC/month.
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Figure D3: Map of the 22 TransCom3 regions (T01–T22) and the New Zealand region (NZ)
used to create basis functions. The full names of these regions are given in Table D1. The
white parts of the map correspond to areas assumed to have zero CO2 surface flux.
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Figure D4: Traceplots for the parameters of the process models, as well as for four basis-
function coefficients, following the MCMC warm-up phase of 1000 iterations.

Code Name Type Code Name Type
T01 North American Boreal Land T12 North Pacific Temperate Ocean
T02 North American Temperate Land T13 West Pacific Tropical Ocean
T03 Tropical South America Land T14 East Pacific Tropical Ocean
T04 South American Temperate Land T15 South Pacific Temperate Ocean
T05 Northern Africa Land T16 Northern Ocean Ocean
T06 Southern Africa Land T17 North Atlantic Temperate Ocean
T07 Eurasia Boreal Land T18 Atlantic Tropical Ocean
T08 Eurasia Temperate Land T19 South Atlantic Temperate Ocean
T09 Tropical Asia Land T20 Southern Ocean Ocean
T10 Australia Land T21 Indian Tropical Ocean
T11 Europe Land T22 South Indian Temperate Ocean
NZ New Zealand Land

Table D1: The code, name, and type of the 22 TransCom3 regions and the New Zealand
region used in our study. A map showing these regions is given in Figure D3.
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Figure D5: As in Figure 3, but for the northern boreal latitudes (50°N–90°N, top four plots),
and for the northern temperate latitudes (23°N–50°N, bottom four plots).
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Figure D6: As in Figure 3, but for the northern tropical latitudes (0°–23°N, top four plots),
and for the southern tropical latitudes (23°S–0°, bottom four plots).
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Figure D7: As in Figure 3, but for the tropics (23°S–23°N, top four plots), and for the southern
extratropical latitudes (90°S–23°S, bottom four plots).
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Amplitude change of GPP from
January 2015 to December 2020
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Figure D9: As in Figure 6, but for the GPP component.
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Amplitude change of respiration from
January 2015 to December 2020

23°S

23°N

50°N

Bottom−up

23°S

23°N

50°N

<−0.25 −0.15 −0.05 0.05 0.15 >0.25

∆Aresp,1(s) [kgCO2/m
2/year]

Posterior median

23°S

23°N

50°N

0.01 0.02 0.03 0.04 >0.05

Posterior IQR of ∆Aresp,1(s) [kgCO2/m
2/year]

Posterior IQR

Phase shift in respiration from
January 2015 to December 2020
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Figure D10: As in Figure 6, but for the respiration component.
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