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Earth’s CO2 battle: a view from space  
 
Earth’s environment is undergoing rapid change as greenhouse 
gases warm the planet. Noel Cressie, Andrew Zammit-
Mangion, Josh Jacobson, and Michael Bertolacci use 
WOMBAT, a Bayesian hierarchical statistical framework, to infer 
the spatio-temporal distribution of CO2 surface fluxes.   
 
Greenhouses trap heat and, with ample water and fertile soil, they allow us to eat our favourite fruits and 

vegetables all year round. But could we live in one? We are about to find out, with our planet’s 

atmosphere accumulating more and more of the gases that trap energy in the lower atmosphere after being 

reflected from Earth’s surface. The main human-induced greenhouse gases are carbon dioxide (CO2), 

methane, nitrous oxide, and fluorinated gases in order of their effect on global warming. Scientists have 

known about the greenhouse effect for a long time (Foote, 1856; Aarhenius, 1896) but, in the last 60 

years, atmospheric measurements of both meteorology and greenhouse gases have revealed its extent.  

 

About three quarters of the global warming potential of all emitted greenhouse gases comes from CO2. 

Emissions of CO2 are dominated by the burning of fossil fuels (80%), but land use (in the form of 

clearing/burning of forests, grasslands, and savannas, and poorly practiced agriculture) represents a 

significant contribution as well (15%). A lot is known about these human-induced emissions, including 

that they result in an increase of about a 0.5% per year of atmospheric CO2. In a geological blink of an 

eye (250 years, since the beginning of the industrial era), the atmospheric concentration of CO2 has 

increased by about 50% and, in the last 60 years alone, emissions have risen from almost 10 billion 

tonnes/year of CO2 to 40 billion tonnes/year of CO2. Since 1 tonne of CO2 contains 3/11 tonnes of carbon, 

every year our atmosphere is now receiving about 11 billion tonnes of carbon from human-induced CO2 

emissions! About half of it stays in the atmosphere, but where does the rest go?  

 

Beginning in 1988, there ha been a series of United Nations (UN) assessment reports from the 

Intergovernmental Panel on Climate Change (IPCC) that have offered warnings about global warming 

due to greenhouse-gas emissions, the starkest coming from the latest report in 2021-2022. According to 

this Sixth Assessment Report (Working Group I –  The Physical Science Basis; IPCC, 2021), “…limiting 

human-induced global warming to a specific level requires limiting cumulative CO2 emissions, reaching 

at least net zero CO2 emissions”; and following on (Working Group II –  Impacts, Adaptation and 

Vulnerability; IPCC, 2022), “Widespread, pervasive impacts to ecosystems, people, settlements, and 

infrastructure have resulted from observed increases in the frequency and intensity of climate and weather 

extremes, including hot extremes on land and in the ocean, heavy precipitation events, drought and fire 

weather… Impacts in natural and human systems from slow-onset processes such as ocean acidification, 

sea level rise or regional decreases in precipitation have also been attributed to human induced climate 

change” 

 

In December 2015, 196 countries and territories around the world participated in the UN’s 21st 

Conference of the Parties (in Paris, France) and signed an agreement (COP21, 2015) to limit global 

warming to below 2-degrees and preferably 1.5-degrees Celsius, compared to pre-industrial global 

temperatures. Achieving this target requires a worldwide reduction in greenhouse-gas emissions, 

especially those of CO2. It was agreed that a global stocktake of carbon stocks and emissions would 



happen every five years and would take two years to complete; the first stocktake began in 2021 at 

COP26 in Glasgow, Scotland, and it will conclude in 2023 at COP28 in the United Arab Emirates.  

 

While fossil-fuel usage leads to emissions of CO2, there are natural processes that both absorb and emit 

the gas. This is fortunate: As the human-induced sources have increased from 10 to 40 billion tonnes/year 

of CO2, our planet’s carbon cycle has adapted by increasing its natural land and ocean sinks and has 

managed to absorb about half of the CO2 that humans emit (Crisp et al., 2022), but for how long? 

Quantifying the locations and times of natural sources and sinks (collectively, natural fluxes) of CO2 at 

Earth’s surface is therefore important, and even more so because human activities such as land usage are 

modifying the natural fluxes. However, while efforts to quantify fossil-fuel emissions can rely on well 

measured quantities such as power-plant emissions and ship/aircraft activity, such “bottom-up” 

approaches are more difficult and less accurate for estimating natural fluxes. An alternative is to use 

observations of atmospheric CO2 concentrations, an approach known as flux inversion, which works 

backwards from the observed concentrations to estimate the temporal and geographical distribution of 

Earth’s CO2 sources and sinks.  

 

The atmosphere is a connected system, and CO2 molecules are constantly moving with the wind. This 

means that when CO2 is emitted or absorbed in one region, it later affects CO2 concentrations at other 

locations and altitudes around the globe. At the same time, natural fluxes are spatially and temporally 

heterogeneous: temperate forests occupy large parts of the terrestrial biosphere and transition from sinks 

to sources during the year, while volcanoes are local sources with sporadic and unpredictable emissions of 

CO2. Although we have measurements of the atmospheric concentrations with global coverage, there are 

almost none on the fluxes themselves. Together, these features make CO2 flux inversion (that will tell us 

how much, where, and when CO2 is exchanged at Earth’s surface) an ill-posed problem with inherent 

uncertainties in its solution. In this article we look at this problem through the eyes of WOMBAT, a 

Bayesian statistical flux-inversion framework that produces flux estimates as well as their uncertainties 

(Zammit-Mangion et al., 2022). WOMBAT uses statistical methods to identify and account for different 

sources of variability and uncertainty in the fluxes and the atmospheric concentrations, and it is designed 

to help scientists and policymakers make decisions about CO2 mitigation in the presence of uncertainty.  

 

WOMBAT: A fully Bayesian global flux-inversion framework 

WOMBAT stands for WOllongong Methodology for Bayesian Assimilation of Trace-gases, named for 

the Australian marsupial, shown in Image 1.   

 

 



 
Image 1: A wombat pictured near Cradle Mountain in Tasmania, Australia. [Photo by Meg Jerrard] 

 

We start by simulating the processes and measurements using an Observing System Simulation 

Experiment (OSSE). In an OSSE the true latent processes (here, the fluxes and the atmospheric CO2 

concentrations) are assumed known, and measurement error and missingness are also known. Then we are 

able to simulate synthetic observations from the latent processes at the same locations and times as the 

real observations. For example, to obtain Figure 1 we simulated the effect of additional CO2 emissions 

(i.e., sources) over parts of North America using what is known as a chemical transport model. The left 

panel shows these emissions, and the right panel is a snapshot of how the extra CO2 spreads around the 

globe. By adding together hundreds of such simulated changes in different parts of the globe, we can 

build a picture of how atmospheric transport works. In fact, CO2 moves around the globe quite quickly 

and becomes part of the background concentration in the hemisphere where it is emitted within several 

months, compounding the difficulty of carrying out CO2 flux inversions.  

 

 

Figure 1: Estimated changes in atmospheric-column CO2 concentrations (XCO2) on 1 February 2016, in response to CO2 

emissions (fluxes) over January 2016 in North America. Left panel: Fluxes. Right panel: CO2 concentrations. 

 



Recall that while CO2 flux is the key quantity, it is the downstream effect of fluxes, namely atmospheric 

CO2 concentrations, that can be measured. Figure 2 shows an OSSE simulation of CO2 concentrations 

(in parts per million) on the right, simulated from the corresponding fluxes (in kilograms per square metre 

per year) on the left. Our OSSE then samples from the global map on the right to obtain satellite-like 

observations of CO2 concentrations. Thus, our Observing System produces realistic simulations of CO2 

satellite data from which flux-inversion experiments can be carried out.    

 

With an understanding of atmospheric transport, WOMBAT takes observations of CO2 concentrations 

and works backwards in a computationally efficient manner to estimate the CO2 fluxes along with their 

uncertainties. The chemical transport model used by WOMBAT is called GEOS-Chem (e.g., Yantosca, 

2019). Although geophysicists would like to get a perfect estimate of the CO2 fluxes, the complexities of 

the atmosphere make this impossible. The WOMBAT framework quantifies uncertainties in the data and 

the geophysical processes in terms of conditional probabilities. This statistical framework is called a 

Bayesian hierarchical model (BHM), and the statistical model in WOMBAT is a geophysical example 

of a BHM. In what is to follow, we give an intuitive explanation of the BHM for flux inversion, followed 

by a more technical one that makes use of Bayes’ Rule. The bottom line is that WOMBAT produces a 

full posterior distribution of all unknown quantities but particularly the unknown fluxes.  

 

 
Figure 2: Left panel: Fluxes (in kilograms of CO2 per square metre per year) for December 2015. Right panel: CO2 

concentrations (in parts per million) for a 3-hour period on 1 January 2016.  

 

 

WOMBAT’s CO2 flux-inversion framework consists of a hierarchy of layers, similar in idea to the 

hierarchy of Russian nesting dolls, such as those shown in Image 2.  

 



 
Image 2: Russian nesting dolls. [Photo by Sofia Boulamrach] 

 

Like an intricate, connected machine, the uncertainty in one layer of the hierarchy can affect the 

uncertainty and estimates in another layer through a series of conditional-probability models. The 

outermost layer, the layer we “see,” is made up of the data itself (call it Z). Atmospheric CO2 

concentrations can be measured indirectly from remote-sensing measurements, with good global 

coverage, or directly from in situ parcels of air collected from the atmosphere, but with sparse global 

coverage. Each of these measurement techniques is subject to some level of error, which is accounted for 

statistically. The second layer of WOMBAT’s hierarchy is the latent process of CO2 concentrations across 

the globe (call it Y; an example is shown in the right panel of Figure 2). This layer is dynamic, as the gas 

moves around through atmospheric transport, and its concentrations are modified by fluxes (the third 

layer). A chemical transport model is used to simulate these dynamics, and uncertainty in the second layer 

comes from imperfect information about the winds and the physics of atmospheric mixing. The third layer 

is the latent CO2 flux process across the globe (call it X; an example is shown in the left panel of Figure 

2), and it is the target of all our efforts. Like many other physical processes, fluxes at times and locations 

that are close together are more alike than those far apart. WOMBAT models this spatio-temporal 

dependence statistically to obtain valid flux estimates as well as their uncertainties. The fourth and 

innermost layer of WOMBAT’s hierarchy describes the scientific knowledge and assumptions about the 

set of parameters (call it θ) that inform and control each of the other layers. These four layers together 

define a hierarchy that is shown in Figure 3.  

 



 

Figure 3: Diagram outlining WOMBAT’s hierarchy of connected layers that incorporates atmospheric-concentration information 

from remote-sensing data, resulting in flux estimates and their uncertainties. 

 

The layers are connected using conditional-probability models, as follows: Let [A] denote the probability 

distribution of variable A; [A, B] denote the joint probability distribution of the variables A and B; and  

[A | B] denote the conditional distribution of A given B. Using this notation, the four layers of WOMBAT 

are connected by the following probability distributions:  

 

            (1) [Z | Y, θ]  

            (2) [Y | X, θ]  

            (3) [X | θ]   

            (4) [θ].  

Bayes’ Rule says that the posterior distribution, written as ‘[unknowns | data]’, is proportional to  

‘[data | unknowns]’ x ‘[unknowns]’. That is, Bayes’ Rule updates the prior, here written as ‘[unknowns]’, 

using the likelihood, here written as ‘[data | unknowns]’, to yield the posterior, here written as 

‘[unknowns | data]’. In WOMBAT, X, Y, and θ are the unknowns, and Z is the data. Hence, from Bayes’ 

Rule, the posterior distribution [X, Y, θ | Z] is proportional to (1) x (2) x (3) x (4).  

 

What distinguishes WOMBAT from other flux inversions (e.g., those presented in Crowell et al., 2019) is 

the presence of (4) (i.e., the prior distribution, [θ]) and the consequent Markov Chain Monte Carlo 

(MCMC) method used to obtain thousands of samples from [X, Y, θ | Z]. WOMBAT’s MCMC is 

necessarily complex given the very large quantities of data and unknowns (details can be found in 

Zammit-Mangion et al., 2022). Once the MCMC samples are obtained, estimates of CO2 fluxes and 

uncertainties are obtained straightforwardly from [X | Z] by extracting the posterior samples 

corresponding to the flux process X. 



NASA’s OCO-2 satellite data 

Moving on from the simulation with our OSSE, we now present flux inversion through the eyes of 

WOMBAT, using remote-sensing data from the Orbiting Carbon Observatory-2 (OCO-2) satellite. 

Launched in July 2014 by the US National Aeronautics and Space Administration (NASA), it is NASA’s 

first remote-sensing mission with primary science objective to understand the global geographic 

distribution of CO2. Crisp et al. (2004) gives details on the remote-sensing instrument, which was 

designed to “ensure … space-based XCO2 [i.e., column-averaged CO2 concentration] measurements have 

precisions of ∼0.3% (1 ppm) on regional scales.” Atmospheric-concentration data from OCO-2 are 

available dating back to late 2014, and they cover much of each hemisphere, depending on the time of 

year. Because the instrument relies on reflected sunlight, it is not able to retrieve XCO2 measurements in 

the higher latitudes during that hemisphere’s winter months. Figure 4 shows an example of these data, 

representing the observations accumulated over the course of one week in January 2016 – notice that the 

satellite’s orbital path can be seen in the spatial pattern of the observations. The analysis given here 

focuses on OCO-2 data (Version 7) for the two-year period from January 2015 to December 2016, which 

is the same data set featured in Crowell et al. (2019) and Zammit-Mangion et al. (2022).  

 

 

Figure 4: OCO-2 measurements of atmospheric column-averaged CO2 concentrations (XCO2, in ppm) from 1 January 2016 to 7 

January 2016, inclusive. 

 

Monthly estimated fluxes for 2015-2016 

The CO2 concentrations from in situ and satellite observations measure the downstream effect of the total 

fluxes. Because the fossil-fuel sources are well known, subtracting them from the flux-inversion estimate 

of total fluxes yields an estimate of the CO2 natural fluxes. WOMBAT features spatio-temporal 

correlations in its latent-process model and measurement bias in its data model; the posterior distribution 

is obtained through MCMC, and its mean and variance gives estimated fluxes and uncertainties, 

respectively. Figure 5 shows these for the month of January 2016 across the globe. Fluxes were inferred 

for 2015 and 2016 from OCO-2 observations taken using an instrument mode called ‘Land Glint’ (LG). 

The left panel shows a map of the natural fluxes (posterior mean in each grid cell) in January 2016 over 

Earth’s surface, in kilograms per metre squared per year. The right panel shows a map of the 



corresponding posterior standard deviation in each grid cell, which we use as a quantification of the 

uncertainties of the estimated fluxes shown in the left panel.  

 

 

Figure 5: Left panel: Estimated monthly CO2 natural fluxes (posterior mean) in January 2016. Right panel: Corresponding 

uncertainties (posterior standard deviation). Units are kg/m2/year. 

 

From studying all 24 monthly maps from January 2015 to December 2016, it can be seen that the tropics 

are relatively constant in their fluxes, while the temperate zones are very seasonal. This seasonal cycle of 

CO2 is mostly driven by the vast forest areas in the Northern Hemisphere. Earth is breathing! In autumn 

and winter, trees drop their leaves, which decompose and release CO2 into the atmosphere; in the spring 

and summer, leaves grow back and begin drawing down CO2 through the process of photosynthesis; and 

the cycle repeats. Flux activity over the oceans is less intense at any given time and location but, because 

oceans cover two-thirds of Earth’s surface area, the total contribution of the ocean fluxes is not negligible. 

 

Figure 6 shows WOMBAT’s yearly and monthly estimates of ‘Global Land’, ‘Global Oceans’, and 

‘Global’ (the sum of the first two). It is seen that these largely agree with the flux estimates from the 

OCO-2 Model Intercomparison Project (MIP) described by Crowell et al. (2019), where nine groups 

performed flux inversion using the same data. Importantly, to quantify uncertainty the MIP relies on the 

variability of the nine estimates, whereas WOMBAT has an internally consistent quantification through 

the posterior variance. WOMBAT’s estimate in the first row of Figure 6 shows that the combined effect 

of land and ocean fluxes leads to Earth’s surface absorbing almost 4 Petagrams (4 billion tonnes) of 

carbon per year (PgC yr- 1). This sink is a yearly necessity, since humans are emitting almost 11 PgC yr- 1 

into the atmosphere (CarbonTracker, 2019). However, this yearly discrepancy means that CO2 

concentrations in the atmosphere will only keep increasing, baking in climate change until we decrease 

our sources and enhance our sinks.  

 



 

Figure 6: Annual (left column) and monthly (right column) CO2 natural fluxes for the globe (first row), land (second row), and 

oceans (third row). The panels show the flux estimates and 95% prediction intervals from WOMBAT and summaries of flux 

estimates from the model intercomparison project (MIP), for OCO-2 Land Glint (LG) inversions. Also shown are WOMBAT’s 

prior mean fluxes. [Figure modified from Zammit-Mangion et al. (2022)]  

Conclusions and future work 

To control and reduce the build-up of atmospheric CO2 over the next century and uphold the urgent 

commitments of COP21 and later agreements, it is essential to understand where carbon is being 

exchanged with the atmosphere, how these regions vary through time, and whether there are ways to 

decrease the sources and enhance the sinks. As a framework for determining where CO2 is emitted and 

absorbed across Earth’s surface, and with its internally consistent uncertainty quantification, WOMBAT 

can separate out real signal from noise. To improve inferences from WOMBAT’s BHM, there remain 

problems to solve: These include more flexible characterisation of the errors due to the chemical transport 

model, lower uncertainties for regional-scale, country-scale, or even finer-scale flux inversions, and an 

explicit modelling of the flux climatology.  



 

In summary, separating the signal from the noise will help COP participants and policy makers reach 

consensus about greenhouse-gas stocktakes and make wise decisions about mitigation strategies. 

WOMBAT is specifically designed to aid scientists in evaluating the contribution of natural sinks to the 

CO2 emission targets of countries and territories, and to understand their long-term viability. This may in 

turn lead to strategies that can replicate characteristics of CO2 (and other greenhouse-gas) sinks over new 

regions of Earth’s surface.  
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