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Abstract:  

We have been looking up at the stars for millennia, trying to figure out our place in space, 

making small steps out and sending probes out even further. We are space travelers and, for 

the foreseeable future, Earth is our “mother ship.” To sustain our voyage through space, we 

need to look out for stressors, overheating and, particularly, new energy sources for our 

ship. We need to monitor its integrity, repair components that are broken, and establish 

long-term maintenance protocols. That is, mitigation is needed at scale, and we need to 

plan and action it now! We have scientific knowledge about different parts of the ship with 

differing degrees of certainty, but the message is clear that it is in peril from overheating. 

Unfortunately, there are many captains to report to, with different priorities. While they 

demur, deflect, and disagree, Earth is rapidly approaching a waypoint where mitigation will 

not be enough, and adaptation for a fast-changing climate will be part of our future. 

 

Introduction 

Carbon is the fourth most abundant element in the universe. Earth's carbon cycle is 

a closed system, with carbon moving in and out of different “pools.” Carbon causes no harm 

while it stays in the ground (terrestrial pool) but, once extracted and burned as a fossil fuel, 

it is released into the atmosphere (atmospheric pool) to bond with oxygen and become a 



greenhouse gas. Carbon dioxide (CO2) is an odorless, tasteless, and invisible gas; 

nevertheless, it can be measured from in situ flasks or remote sensing instruments on 

planes and satellites, in units of parts per million (ppm) molecules in the atmosphere. 

Currently, the CO2 concentration in Earth’s atmosphere is about 420 ppm, which doesn’t 

seem like a lot, but the last time it was at that level is estimated to be 3.6 million years ago 

during the middle Pliocene period. We are just 200 years into the Anthropocene period 

(judged to have started at the beginning of the industrial revolution), and we have seen an 

unprecedented 50% increase of atmospheric CO2 concentration during that time. 

 

 The Earth system has ‘cycles’ (e.g., the carbon cycle, the water cycle, the nitrogen cycle) 

that are in motion. The complexities of the carbon cycle are illustrated in a figure given in a 

2013 United Nations Intergovernmental Panel on Climate Change (IPCC) report.  



 

Source: IPCC 2013, Working Group I, Ch. 6, Fig. 6.1 (see Further Reading)  

 

In pre-industrial times, there was balance in the carbon cycle, when about as much carbon 

was being removed from the atmosphere as was being added. However, in this century, the 

net increase of atmospheric CO2 was about four gigatonnes (Gt) per year (and growing), 

which is huge – it represents about half of what was produced by humans during the year. 

This excess CO2 is transported around the planet by weather systems, mixes within just 

months, and adds to an ever-increasing background level. The rate of increase is increasing 

too; over the last 20 years, increases went from about 2 ppm per year to about 3 ppm per 

year.  



 

How can we reverse the rate of increase and lower the level? ‘Net zero by 2050’ attempts to 

drop the rate of increase to 0 ppm per year, but that does not address the high level already 

in place. Global heating is baked in until CO2 can be extracted from the atmosphere. We are 

currently relying on natural processes to hold back the CO2 flood, but of 100 CO2 molecules 

emitted today, as many as 50 remain in the atmosphere over time scales of centuries to 

millennia! 

 

Global atmospheric CO2 and global near-surface temperatures are in a very close dance, 

best explained through their incremental effects. When CO2 leads upwards this year, 

temperatures follow about a decade later. The climate anomalies we see this year may be 

due to natural variation or they may be attributable to the anthropogenic indulgences of ten 

years earlier. When many more extreme anomalies are observed in a short amount of time 

than expected from natural variation, statistical methodology can be used to attribute them 

to human-induced change. Droughts, bushfires, floods, and tornadoes illustrated here are 

becoming all too familiar and more extreme in intensity. Five years ago, scientists would 

describe Climate as being like your personality and Weather as being like your mood. Now it 

appears that Climate has a ‘Mr Hyde’ side to its personality and its Weather can be volatile 

and deadly.  

 



 

Sources: (a) API Images, (b), iStock, (c) Getty Images, (d) iStock 

 

In this written version of my presentation at the American Statistical Association’s IDEA 

Forum in November 2022, my message is that many species on the planet are rather slow-

adapting organisms (including Homo sapiens). Superimposing this with a comparatively fast-

changing environment can have dire consequences for Earth and all who travel in her. We 

are moving from a mitigation paradigm to an adaptation paradigm as it is becoming clear 

that our ‘built Earth’ was built for a different climate.  

 

Mitigation and adaptation to outrace a fast-changing climate 



‘If you can’t measure it, then you can’t manage it,’ a principle that addresses what society 

must do when faced with mitigation or adaptation decisions – measure, but not any 

measurement will do! The measurement process (how much, where, and when), which 

comes from scientific knowledge (why), can in turn be 

used to improve that knowledge. Bayesian learning is a 

way to move from prior knowledge to posterior 

knowledge by incorporating the measurements into a 

Bayesian statistical model of the hidden scientific 

processes (‘unknowns’) and applying Bayes’ Rule. 

 

Bayes’ Rule updates prior scientific knowledge, here 

written as the probability distribution, [unknowns]. It 

uses this prior distribution and the measurement 

probability model, [measurements | unknowns], to 

obtain the posterior distribution, [unknowns | 

measurements]; the formula for Bayes’ Rule is given in 

the side bar.  Importantly, the uncertainties in both 

scientific knowledge and measurement errors are captured through conditional-probability 

distributions. How can this help society make decisions about mitigation and adaptation?  

 

The knowledge pyramid is an abstraction of the levels needed. The peak of the knowledge 

pyramid is where decisions are made, and statistical science is usually involved at lower 

levels: At the base of the pyramid are measurements (think, exploratory data analysis); at 

the next level up is information obtained by exploring the measurements for structure 

 Bayes’ Rule 

Let [A] denote the probability 

distribution of variable A, [A, B] 

denote the joint probability 

distribution of the variables A 

and B, and [A | B] denote the 

conditional distribution of A 

given B. Using this notation, 

Bayes’ Rule says that posterior 

scientific knowledge after 

measurement, written as 

[unknowns | measurements], is 

given by:  

[unknowns | measurements]  ∝  

[measurements | unknowns] x 

[unknowns].  



(think, summary statistics); the information is then converted into knowledge at the next 

level by modeling the uncertainty/variability and inferring the etiology of the phenomenon 

(think, inference); and finally, at the peak, decisions are made. Uncertainty quantification 

should be involved at all levels, and the consequences of ignoring it in environmental 

problems can be serious. Decision makers cannot keep communities safe ‘on average,’ but 

they should consider the distribution and degree of loss from a mitigation or an adaptation 

decision. I have written about this in an Opinion piece in the journal, Environmetrics, and it 

is included in Further Reading.  

 

More attention should also be given to the foundations of the knowledge pyramid. 

Underneath “measurements,” a design level should be 

recognised that provides support to the levels above. A 

strong design is needed before measurements are taken, 

and this will depend on prior scientific knowledge or will 

need an investment in a pilot study to inform the prior. 

That study could be done on a ‘digital twin,’ built from 

code by scientists and software engineers to act like the 

physical world. Observational studies based on ‘found’ 

measurements have value but are not able to provide 

the type of causal link available from a scientific study.  

 

In the previous century, statistical science concentrated on the measurement process. In 

this new century, uncertainty in the scientific process has been recognized, and statistical 

scientists have developed incredible skill in developing physical-statistical models that are 

Design 

A design, also called an  

experimental design, sets  

out the planning and   

execution of a scientific  

experiment. It generally  

follows the three principles  

given by R.A. Fisher, of 

Blocking (or Stratification),  

Randomisation, and  

Replication.  

Fisher.  

 



flexible and complex, yet computationally feasible. More recently, machine- and deep-

learning methodologies have made a huge impact on predictive inference but have 

eschewed uncertainty modeling for computability; the importance of both is seen in an area 

known as statistical learning.  

 

yyyyy-statistical models 

The last 10 – 15 years have seen statistical scientists involved in substantial collaborations 

with climate scientists and meteorologists to measure, summarize, and infer various aspects 

of climate change. Temperature is but one dimension; precipitation, humidity, air pressure, 

and so forth are all part of the big picture, both near Earth’s surface and in different parts of 

the atmosphere. There are spatial, temporal, and multivariate relationships to exploit, not 

only physical ones but statistical ones as well. The hierarchical statistical model presented in 

the previous section shows how the two may be bound together through conditional-

probability models of the inherent uncertainty in models and in measurements, leading to 

the paradigm of a ‘physical-statistical’ model.  

 

In climate science, there are highly complex, challenging, and fascinating problems where 

the answers are not only important for characterizing the where/when/how much/why of 

climate change, but also for designing mitigation strategies (e.g., planting more trees) or 

adaptation strategies (e.g., stratospheric aerosol scattering). Possible mitigation decisions 

should be weighed up against each other using notions from decision theory and its 

applications. For example, the agriculture sector is now at a stage where doing nothing in 

the face of climate change (a decision that is easy to make but has consequences like any 



other decision) can lead to costs that are a factor of three to four times more than the cost 

of mitigation.  

 

Clearly, the so-called ‘climate problem’ comes to us in many guises, because weather’s 

moods are such an important part of our environment. There is a need for uncertainty 

modeling in all these guises, hence we can imagine yyyyy-statistical modelling, where yyyyy 

could be any one of, meteorological, ecological, engineering, defense, agricultural, 

hydrological, financial, medical, sociological, and so forth. We need to be able to understand 

the effect of climate change on weather, biodiversity, energy/construction/infrastructure, 

national defense, food security, water, wealth distribution, physical/mental health and, 

importantly, their interactions. Hierarchical conditional-probability modeling of these large 

interacting systems allows information to be passed from one to another through causal 

networks.  

 

In 2021, before the Conference of the Parties 26 (COP26) met in Glasgow, the Royal Society 

(UK) developed a series of 12 Briefings under the heading, Climate Change: Science and 

Solutions, that addressed a variety of aspects of climate change, including some discussed 

above.  A 2022 report from the IPCC also addresses impacts, and a further example is the 

Lancet Countdown that is making global annual assessments of health and climate change 

through to 2030. These three guises are referred to in Further Reading. 

 

Conclusions 



Juggling with the carbon cycle is a high-risk act that trades off economic well-being, jobs, 

and growth (and the fossil fuels that power them) with global heating of our planet. Making 

this trade-off requires a decision space with costs and benefits specified. It also requires a 

careful characterization of the scientific models, the measurement models, the parameters 

guiding them, and a quantification of their uncertainties. Statistical science shows how to 

combine the scientific and measurement uncertainties into an integrative, hierarchical, 

geophysical/ecological/engineering/agricultural/hydrological/financial/sociological-

statistical model. It maps the path from design to measurements to information to 

knowledge, using a conditional-probability structure to quantify the uncertainty in the 

knowledge attained and to make wise decisions based on that knowledge.  

 

The devastation of Australia’s “black” Spring–Summer bushfires of 2019–2020 is but one of 

many illustrations of the enormous cost, ecological as well as financial, of taking little or no 

action. Our planet is overheating, and what our generation does or does not do now will 

deeply affect our children’s generation and those that follow.  
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