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Non-homogeneous Poisson processes are used in a wide range of scientific disciplines, ranging
from the environmental sciences to the health sciences. Often, the central object of interest in
a point process is the underlying intensity function. Here, we present a general model for the
intensity function of a non-homogeneous Poisson process using measure transport. The model
is built from a flexible bijective mapping that maps from the underlying intensity function of
interest to a simpler reference intensity function. We enforce bijectivity by modeling the map as a
composition of multiple bijective maps that have increasing triangular structure, and show that
the model exhibits an important approximation property. Estimation of the flexible mapping is
accomplished within an optimization framework, wherein computations are efficiently done using
tools originally designed to facilitate deep learning, and a graphics processing unit. Point process
simulation and uncertainty quantification are straightforward to do with the proposed model.
We demonstrate the potential benefits of our proposed method over conventional approaches to
intensity modeling through various simulation studies. We also illustrate the use of our model
on a real data set containing the locations of seismic events near Fiji since 1964.

Keywords: Poisson Point Process, Intensity Estimation, Measure Transport, Deep Neural Net-
work.

1. Introduction

A non-homogeneous Poisson process (NHPP) is a Poisson point process that has
variable intensity in the domain on which it is defined. NHPPs are commonly used in
a wide range of applications, for example when modeling failures of repairable systems
(Lindqvist, 2006), earthquake occurrence (Hong and Guo, 1995), or the evolution of
customer purchase behavior (Letham et al., 2016).

A NHPP defined on S ⊂ Rd can be fully characterized through its intensity
function λ : S → [0,∞). The intensity function is usually of considerable scientific
interest, and both parametric and nonparametric methods have been proposed to
model it. A parametric approach assumes that the intensity function has a known
parametric form, and that the model parameters can be estimated using, for example,
likelihood-based methods (e.g., Zhao and Xie, 1996). The specified functional form is,
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however, often too restrictive an assumption in practice. Non-parametric techniques,
on the other hand, do not fix the functional form of the intensity function. Methods
in this class for modeling the intensity function include ones that are spline-based
(Dias et al., 2008), wavelet-based (Kolaczyk, 1999; Miranda and Morettin, 2011), and
kernel-based (Diggle, 1985). While non-parametric methods offer greater modeling flexi-
bility, they often do not scale well with the number of observed points or the dimension d.

Bayesian methods can be adopted for intensity function estimation if one has
prior knowledge (e.g., on the function’s smoothness) that could be used. This prior
knowledge is often incorporated by treating the intensity function as a latent stochastic
process; the resulting model is called a doubly-stochastic Poisson process, or Cox process
(Møller et al., 1998). One popular variant of the Cox process is the trans-Gaussian Cox
process, where a transformation of the intensity function is a Gaussian process (GP).
Inference for such models typically requires Markov chain Monte Carlo methods (Adams
et al., 2009), which scale poorly with the number of observed points and dimension d.
Approximate Bayesian methods such as variational inference (Zammit Mangion et al.,
2011; Lloyd et al., 2015), or Laplace approximations (Illian et al., 2012), often impose
severe, and sometimes inadequate, restrictions on the functional form of the posterior
distributions.

The models for the intensity function discussed above either place assumptions
on the intensity function that are overly restrictive, or require computational methods
that are inefficient, in the sense that they do not scale well with data size and/or the
dimension d. Here, we present a new model for the intensity function that overcomes
both limitations. The model finds its roots in transportation of probability measure
(Marzouk et al., 2016), an approach that has gained popularity recently for its ability
to model arbitrary probability density functions. The basic idea of this approach is
to construct a “transport map” between the complex, unknown, intensity function of
interest, and a simpler, known, reference intensity function.

We use a map that is sufficiently complex for it to approximate arbitrary inten-
sity functions on subsets of Rd, and one that is easy to fit to observational data.
Specifically, we construct a transport map through compositions of several simple
increasing triangular maps (Marzouk et al., 2016), in a procedure sometimes referred to
as map stacking (Papamakarios et al., 2017). Our model has the “universal property”
(Hornik et al., 1989), in the sense that a large class of intensity functions can be
approximated arbitrarily well using this approach. We estimate the parameters in
the map using an optimization framework wherein computations are carried out
efficiently on graphics processing units using software libraries created to facilitate deep
learning. We also develop a technique to efficiently generate a realization from the fitted
point process, and a nonparametric bootstrap approach (Efron, 1981) to quantify un-
certainties on the estimated intensity function via the stack of increasing triangular maps.

The article is organized as follows. Section 2 establishes the notation and the re-
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quired theoretical background on transportation of probability measures, while Section 3
presents our proposed method for intensity function modeling and estimation of NHPPs,
and also a theorem relating to the universal approximation property of our model.
Results from simulation and real-application experiments are given in Section 4. Section
5 concludes. Additional technical material is provided in Appendix A.

2. Transportation of Probability Measure

Our methodology for intensity function modeling in Section 3 is based on measure trans-
port, and techniques that enable it for density estimation. In Section 2.1 we briefly
describe measure transport and increasing triangular maps. In Section 2.2 we discuss
parameterizations of increasing triangular maps and the one we choose in our approach
to modeling the intensity function, while in Section 2.3 we briefly discuss the composition
of such maps in a deep learning framework.

2.1. Measure Transport and Increasing Triangular Maps

Consider two probability measures µ0(·) and µ1(·) defined on X and Z, respectively. A
transport map T : X → Z is said to push forward µ0(·) to µ1(·) (written compactly as
T#µ0

(·) = µ1(·)) if and only if

µ1(B) = µ0(T
−1(B)), for any Borel subset B ⊂ Z. (1)

The inverse T−1(·) is treated in the general set valued sense, that is, x ∈ T−1(z) if
T (x) = z. If T (·) is injective, then the relationship in (1) can also be expressed as

µ1(T (A)) = µ0(A), for any Borel subset A ⊂ X . (2)

A transport map satisfying (1) represents a deterministic coupling of the probability
measures µ0(·) and µ1(·). An alternative interpretation of the transport map T (·) is
that if v is a random vector distributed according to the measure µ0(·), then T (v) is
distributed according to µ1(·).

Suppose X ,Z ⊆ Rd, and that both µ0(·) and µ1(·) are absolutely continuous
with respect to the Lebesgue measure on Rd, with densities dµ0(x) = f0(x)dx and
dµ1(z) = f1(z)dz, respectively. Furthermore, assume that the map T (·) is bijective
differentiable with a differentiable inverse T−1(·) (i.e., assume that T (·) is a C1

diffeomorphism), then (2) is equivalent to

f0(x) = f1(T (x))|det(∇T (x))|, x ∈ X . (3)
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The conditions under which the map T#µ0
(·) = µ1(·) exists are established in Brenier

(1991) and McCann (1995). Of particular note is that T (·) is guaranteed to exist when
both µ0(·) and µ1(·) are absolutely continuous. There may exist infinitely many transport
maps that satisfy (1). One particular type of transport map is an increasing triangular
map, that is,

T (x) = (T (1)(x(1)), T (2)(x(1), x(2)), . . . , T (d)(x(1), . . . , x(d)))′, x ∈ X , (4)

where, for k = 1, . . . , d, one has that T (k)(x(1), . . . , x(k)) is monotonically increasing in
x(k). In particular, the Jacobian matrix of an increasing triangular map, if it exists, is
triangular with positive entries on its diagonal. Increasing triangular maps have a deep
connection with the optimal transport problem (Villani, 2009) which seeks to choose a
transport map such that the total cost of transportation is minimized. Due to its connec-
tion with optimal transport, and because of its structure that leads to efficient compu-
tations, we will be exclusively considering this class of maps in the following sections.

2.2. Parameterization of Increasing Triangular Maps

Various approaches to parameterize an increasing triangular map have been proposed
(see, for example, Germain et al., 2015; Dinh et al., 2015, 2017). One class of parame-
terizations is based on the so-called “conditional networks” (Papamakarios et al., 2017;
Huang et al., 2018). Consider for now a map comprising just one increasing triangular
map, which we denote as T1(·) (we will later consider many of these in composition), and
let x ≡ (x(1), . . . , x(d))′. The increasing triangular map T1(·) we use has the following
form:

T
(1)
1 (x(1)) = S

(1)
1 (x(1); θ11),

T
(k)
1 (x(1), . . . , x(k)) = S

(k)
1 (x(k); θ1k(x

(1), . . . , x(k−1);ϑ1k)), k = 2, . . . , d, (5)

for x ∈ X , where θ1k(x
(1), . . . , x(k−1);ϑ1k), k = 2, . . . , d, is the kth “conditional network”

that takes x(1), . . . , x(k−1) as inputs and is parameterized by ϑ1k, and S
(k)
1 (·) is generally

a very simple univariate function of x(k), but with parameters that depend in a relatively
complex manner on x(1), . . . , x(k−1) through the network. Therefore, a conditional
network is just a multivariate mapping that takes input x(1), . . . , x(k−1) and returns an

output in Rmk , where mk is the number of parameters that parameterize S
(k)
1 (·). We

hence have that θ1k : Rk−1 → Rmk . It is often the case that feedforward neural networks
are used as the conditional networks (Fine et al., 1999). For ease of exposition, from
now on we will slightly abuse the notation and denote θ1k(x

(1), . . . , x(k−1);ϑ1k) simply
as θ1k, thereby omitting the explicit dependence on the inputs and the parameters ϑ1k.

One class of maps using conditional networks is that of masked autoregressive
flows (Papamakarios et al., 2017). In this class, mk = 2, k = 1, . . . , d, and the output of

the conditional network θ1k ≡ (θ
(1)
1k , θ

(2)
1k )

′ ∈ R2 parameterizes S
(k)
1 (·) as

S
(k)
1 (x(k); θ1k) = θ

(1)
1k + x(k) exp(θ

(2)
1k ), x(k) ∈ X (k). (6)
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In (6), the univariate function S
(k)
1 (·) is a linear function of x(k) with location parameter

θ
(1)
1k and scale parameter exp(θ

(2)
1k ). Monotonicity of S

(k)
1 (·), and hence of T

(k)
1 (·), is en-

sured since exp(θ
(2)
1k ) > 0. Another class of such maps is the class of inverse autoregressive

flows, proposed by Kingma et al. (2016). In this class, mk = 2, k = 1, . . . , d, and

S
(k)
1 (x(k); θ1k) = σ(θ

(2)
1k )x

(k) + (1− σ(θ
(2)
1k ))θ

(1)
1k , x(k) ∈ X (k), (7)

where σ(·) is the sigmoid function. In this class of maps, each S
(k)
1 (x(k)) outputs the

weighted average of x(k) and θ
(1)
1k , with the weights given by σ(θ

(2)
1k ) and 1 − σ(θ

(2)
1k ),

respectively. Monotonicity of S
(k)
1 (·), and hence of T

(k)
1 (·), is ensured since σ(θ

(2)
1k ) > 0.

Both (6) and (7) are generally too simple for modeling density functions or, in
our case, intensity functions. In this work we therefore focus on the class of neural
autoregressive flows, proposed by Huang et al. (2018), which are more flexible. In this
class, mk = 3M for k = 1, . . . , d, and M ≥ 1, and the k-th component of the map has
the form

S
(k)
1 (x(k); θ1k) = σ−1

( M∑
i=1

w1kiσ(a1kix
(k) + b1ki)

)
, (8)

where σ−1(·) is the logit function, a1ki ≡ exp(θ
(2i)
1k ), b1ki ≡ θ

(3i)
1k , and w1ki ≡ exp(θ

(1i)
1k )

is subject to the constraint
∑M

i=1 w1ki = 1. As with the other two maps discussed above,

monotonicity of S
(k)
1 (·), and hence of T

(k)
1 (·), is ensured through this construction. The

Jacobian of the neural autoregressive flow can be computed using the chain rule since
the gradient of both σ(·) and σ−1(·) are analytically available; this is important for
computational purposes since such formulations can easily be handled using automatic
differentiation libraries.

Each univariate function S
(k)
1 (·) in the neural autoregressive flow comprises two

sets of smooth, nonlinear transforms: M sigmoid functions that map from R to the
unit interval, and one logit function that maps from the unit interval to R. The

complexity/flexibility of S
(k)
1 (·) is largely determined by M . Note that the neural

autoregressive flow has a very similar form to the conventional feedforward neural
network with sigmoid activation functions.

It is straightforward to see that each component of the increasing triangular map con-

structed above is differentiable. Indeed, S
(k)
1 (x(k); θ1k) in (8) is obviously differentiable

with respect to x(k). Also, S
(k)
1 (x(k); θ1k), when treated as a function of θ1k, is clearly

differentiable with respect to θ1k, while the conditional network θ1k(x
(1), . . . , x(k−1);ϑ1k)

is also differentiable with respect to the input x(1), . . . , x(k−1) if it itself is a feedforward
neural network with sigmoid activation functions, which we will assume from now on.

Therefore, T
(k)
1 (x(1), . . . , x(k)) = S

(k)
1 (x(k); θ1k(x

(1), . . . , x(k−1);ϑ1k)) is also differentiable

imsart-bj ver. 2014/10/16 file: PoisProPaper_final.tex date: November 2, 2023



6 Ng, T.L.J. and Zammit-Mangion, A.

with respect to x(1), . . . , x(k−1) for k = 1, . . . , d.

A natural question to ask is how well an arbitrary density function can be ap-
proximated by a density constructed using the neural autoregressive flow. It has been
shown that the neural autoregressive flow satisfies the ‘universal property’ for the set of
positive continuous probability density functions, in the sense that any target density
that satisfies mild smoothness assumptions can be approximated arbitrarily well (Huang
et al., 2018). We provide a universal approximation theorem for the case of the process
density of a Poisson process in Section 3.3.

2.3. Composition of Increasing Triangular Maps

It is well known that a neural network with one hidden layer can be used to approximate
any continuous function on a bounded domain arbitrarily well (Hornik et al., 1989;
Cybenko, 1989; Barron, 1994). However, the size of a single layer network (in terms of the
number of parameters) that may be required to achieve a desired level of function approx-
imation accuracy may be prohibitively large. This is important as, despite the universal
property of the neural autoregressive flow, both the conditional network and the univari-

ate function S
(k)
1 (·) in (8) may need to be made very complex in order to approximate a

target density up to a desired level of accuracy. Specifically, M , as well as the number
of parameters appearing in the conditional networks, {ϑ1k}, might be prohibitively large.

Neural networks with many hidden layers, known as deep nets, tend to have faster con-
vergence rates to the target function compared to shallow networks (Eldan and Shamir,
2016; Weinan and Wang, 2018). In our case, layering several relatively parsimonious
triangular maps through composition is an attractive way of achieving the required
representational ability while avoiding an explosion in the number of parameters.
Specifically, we let T (·) = TN ◦ · · · ◦ T1(·), where Tl(·), l = 1, . . . , N , are increasing
triangular maps of the form given in (5), parameterized using neural autoregressive flows.

The composition does not break the required bijectivity of T (·), since a bijective
function of a bijective function is itself bijective. Computations also remain tractable,
since the determinant of the gradient of the composition is simply the product of the
determinants of the individual gradients. Specifically, consider two increasing triangular
maps T1(·) and T2(·), each constructed using the neural network approach described
above. The composition T2 ◦ T1(·) is bijective, and its gradient at some x ∈ X has
determinant,

det(∇T2 ◦ T1(x)) = (det(∇T1(x)))(det(∇T2(T1(x)))).

Further, since the maps have a triangular structure, the Jacobian at some point x is a
triangular matrix, for which the determinant is easy to compute. The determinant of the
composition evaluated at x is hence also easy to compute.
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3. Intensity Modeling and Estimation via Measure
Transport

Consider a NHPP P defined on a bounded domain X ⊂ Rd, and let N(·) be the stochastic
process characterizing P, where N(B) is the number of events in B ⊆ X . A NHPP P
defined on X is completely characterized by its intensity function λ : X → [0,∞), such
that N(B) ∼ Poisson(µλ(B)), where µλ(B) =

∫
B
λ(x)dx is the corresponding intensity

measure. If λ(·) = λ is constant, the Poisson process is homogeneous. In this section we
present our approach for modeling and estimating λ(·) from observational data.

3.1. The Optimization Problem

The density of a Poisson process does not exist with respect to the Lebesgue measure.
It is therefore customary to instead consider the density of the NHPP of interest with
respect to the density of the unit rate Poisson process, that is, the process with λ(·) = 1.
We denote the resulting density as fλ(·). Let |B| denote the Lebesgue measure of a
bounded set B ⊂ Rd, and let X ≡ {x1, . . . , xn}, where xi ∈ X , i = 1, . . . , n, and n ≥ 1,
be a realization of P. The density function fλ(·) evaluated at X is given by,

fλ(X) = exp(|X | − µλ(X ))
∏
x∈X

λ(x)

= exp
(
−

∫
X
(λ(x)− 1)dx+

∑
x∈X

log λ(x)
)
. (9)

Our objective is to estimate the unknown intensity function λ(·) that generates the data
X. A commonly employed strategy is to estimate λ(·) using maximum likelihood. It is well
known that maximizing the likelihood is equivalent to minimizing the Kullback–Leibler
(KL) divergence between the true density and the estimate. For two probability densities
p(·) and q(·), the KL divergence is defined as DKL(p||q) =

∫
p(x) log(p(x)/q(x))dx. We

therefore estimate the unknown intensity function λ(·) by λ̂(·), as follows,

λ̂(·) = argmin
ρ(·)∈A

{
DKL(fλ||fρ)

}
, (10)

where A is some set of intensity functions, and fρ(·) is the density of a NHPP with
intensity function ρ(·) taken with respect to the density of the unit rate Poisson process.

To solve the optimization problem defined in (10), we first derive the following
expression for the KL divergence between two arbitrary densities.

Proposition 3.1. Consider two Poisson processes P1, P2 on X with intensity functions
ρ1(·) and ρ2(·), respectively. Denote the corresponding densities with respect to the unit
rate Poisson process as fρ1

(·) and fρ2
(·), where the probability measure corresponding to
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the density fρ1
is absolute continuous with respect to the probability measure correspond-

ing to fρ2
. The Kullback-Leibler divergence DKL(fρ1

||fρ2
) is:

DKL(fρ1
||fρ2

) =

∫
X
(ρ2(x)− ρ1(x))dx+

∫
X
ρ1(x) log

ρ1(x)

ρ2(x)
dx.

provided that the integrals on the right hand side exist.

We give a proof for Proposition 3.1 in Appendix A.1.

In order to apply the measure transport approach to intensity function estima-
tion, we first define ρ̃(·) = ρ(·)/µρ(X ) and λ̃(x) = λ(x)/µλ(X ), so that ρ̃(·) and λ̃(·) are
valid density functions with respect to Lebesgue measure. In particular, ρ̃(·) and λ̃(·) are
termed process densities by Taddy and Kottas (2010), which can be modeled separately
from the integrated intensities µρ(X ) and µλ(X ), respectively. The KL divergence
DKL(fλ||fρ) can be written in terms of process densities as follows,

DKL(fλ||fρ) = µρ(X )− µλ(X )

∫
X
λ̃(x) log ρ̃(x)dx− µλ(X ) logµρ(X ) + const., (11)

where “const.” captures other terms not dependent on µρ(X ) or ρ̃(·). This formulation
allows us to model the integrated intensity µρ(X ), and the density fρ(·) separately. The
same approach was also adopted by Taddy and Kottas (2010) where they developed a
nonparametric Dirichlet process mixtures framework for intensity function estimation.
The integral

∫
X λ̃(x) log ρ̃(x)dx and µλ(X ) are not analytically available since the true

intensity function λ(·) is unknown. However, treating this integral as an expectation, we
see that, for reasonably large n, it can be approximated by∫

X
λ̃(x) log ρ̃(x)dx ≈ 1

n

n∑
i=1

log ρ̃(xi), (12)

where recall that X ≡ {x1, . . . , xn} is the (observed) point-process realization under the
true intensity function λ(·). Similarly, by Poissonicity of the NHPP, n is sufficient for
µλ(X ), and therefore we approximate the integrated intensity as

µλ(X ) ≈ n. (13)

Using the process-density representation of the intensity function, and the Monte Carlo
approximations (12) and (13), we re-express the optimization problem (10) in terms of

the estimate of the integrated intensity, µ̂λ(X ), and the estimated process density
ˆ̃
λ(·),

{µ̂λ(X ),
ˆ̃
λ(·)} = argmin

µρ(X )∈R+

ρ̃(·)∈Ã

{
µρ(X )−

n∑
i=1

log ρ̃(xi)− n logµρ(X )

}
, (14)
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where now Ã is some set of process densities, which we will establish in Section 3.2. It
is easy to see that setting µρ(X ) = n minimizes the objective function in (14). Fixing
µρ(X ) = n leads us to the optimization problem

ˆ̃
λ(·) = argmin

ρ̃(·)∈Ã

{
−

n∑
i=1

log ρ̃(xi)

}
, (15)

which is equivalent to maximizing the likelihood of observing X.

3.2. Modeling the Process Density via Probability Measure

We model the process density ρ̃(·) using the transportation of probability measure ap-
proach described in Section 2. Specifically, we seek a diffeomorphism T : X → Z, where
Z need not be the same as X , such that

ρ̃(x) = η(T (x))|det∇T (x)|, x ∈ X ,

where η(·) is some simple reference density on Z, and |det∇T (·)| > 0. Popular choices
of η(·) include the standard normal distribution if Z is unbounded, and the uniform
distribution if Z is bounded.

While the domain and the range of the map T (·) can be arbitrary subsets of Rd,
it is generally easier to construct transport maps from Rd to Rd. The domain X is
bounded, and therefore we can assume, without loss of generality, that X = (0, 1)d,
and we first apply an element-wise logit transform to each coordinate of the vec-
tor x = (x(1), . . . , x(d))

′
to obtain the vector y ≡ (y(1), . . . , y(d))′ ∈ Rd, where

y(k) = σ−1(x(k)), k = 1, . . . , d. The Jacobian of this transformation is given by∏d
k=1((x

(k))−1 + (1 − x(k))−1). We subsequently construct the transport map T (·) as
a composition of N increasing triangular maps TN ◦ TN−1 ◦ · · · ◦ T1(·) (see Section
2.3). Each triangular map Tj(·), j = 1, . . . , N, in the composition is parameterized using
a conditional network approach as detailed in Section 2.2. Specifically, we adopt the
neural autoregressive flow where the kth component of each triangular map is modeled
as in (8).

Denote the parameters appearing in the kth conditional network associated with the
jth layer as ϑjk and let Θ ≡ {θj1 : j = 1, . . . , N} ∪ {ϑjk : k = 2, . . . , d; j = 1, . . . , N}.
The optimization problem (15) reduces to the optimization problem:

Θ̂ = argmin
Θ

{
−

n∑
i=1

(
log η(T (yi)) + log det∇T (yi)

)}
. (16)

The optimization problem can be solved efficiently using automatic differentiation li-
braries, stochastic gradient descent, and graphics processing units for efficient compu-
tation. We used PyTorch for our implementation (Paszke et al., 2017) and adapted the
code provided by Huang et al. (2018).
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3.3. Universal Approximation

The increasing triangular maps constructed using neural autoregressive flows (8) satisfy
a universal property in the context of probability density approximation. This universal
approximation property naturally applies to the process density of a Poisson process.
One need only prove this property for the case of one triangular map since, if two maps
have the universal property, their composition also has the universal property.

Theorem 3.1. Let P be a non-homogeneous Poisson process with positive continuous
process density λ̃(·) on X ⊂ Rd. Suppose further that the weak (Sobolev) partial deriva-
tives of λ̃ up to order d+ 1 are integrable over Rd. There exists a sequence of triangular

mappings (Ti(·))i wherein the kth component of each map T
(k)
i (·) has the form (8), and

wherein the corresponding conditional networks are universal approximators (e.g., feed-
forward neural networks with sigmoid activation functions), such that

η(Ti(·))det(∇Ti(·)) → λ̃(·),

with respect to the sup norm on any compact subset of Rd.

We provide a sketch of the proof of Theorem 3.1 here and defer the complete proof to
Appendix A.2.

Sketch of proof of Theorem 3.1

1. We first establish in Lemma A.1 in Appendix A.2 that any process den-
sity λ̃(·) that satisfies the conditions in Theorem 3.1 can be expressed as
λ̃(·) = η(T̃ (·))det(∇T̃ (·)), where T̃ (·) is some increasing continuous differentiable
triangular map.

2. Lemmas A.2 and A.3 in Appendix A.2 establish that, for any increasing continu-
ously differentiable triangular map T̃ (·) and for any ϵ > 0,

|T̃ (k)(x(1), . . . , x(k))− S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))| < ϵ/2,

|∇kT̃
(k)(x(1), . . . , x(k))−∇S(k)(x(k); θ̃k(x

(1), . . . , x(k−1)))| < ϵ/2,

for k = 2, . . . , d, where ∇k denotes the derivative with respect to the k-th
component of the input, and θ̃k(·) is some arbitrary continuous mapping from
(x(1), . . . , x(k−1)) to the set of parameters aki, bki, wki, i = 1, . . . ,M .

3. By the universality of feedforward neural networks with sigmoid activation func-
tions, and uniform continuity of S(k)(·) and ∇S(k)(·), we have that

|S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))− S(k)(x(k); θ̂k(x

(1), . . . , x(k−1)))| < ϵ/2,

|∇S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))−∇S(k)(x(k); θ̂k(x

(1), . . . , x(k−1)))| < ϵ/2,
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for k = 2, . . . , d, where θ̂k(·) is a feedforward neural network with sigmoid
activation functions.

4. An application of the triangle inequality yields

|T̃ (k)(x(1), . . . , x(k))− S(k)(x(k); θ̂(k)(x(1), . . . , x(k−1)))| < ϵ,

|∇kT̃
(k)(x(1), . . . , x(k))−∇S(k)(x(k); θ̂k(x

(1), . . . , x(k−1)))| < ϵ,

for k = 2, . . . , d. Therefore, for an arbitrary increasing continuous differentiable
triangular map T̃ (·), there exists a triangular map T (·) where the k-th component

of T (·) is S(k)(x(k); θ̂k(x
(1), . . . , x(k−1))) such that

|T (k)(x(1), . . . , x(k))− T̃ (k)(x(1), . . . , x(k))| < ϵ,

|∇kT
(k)(x(1), . . . , x(k))−∇kT̃

(k)(x(1), . . . , x(k))| < ϵ,

for k = 2, . . . , d. We naturally also have that

|T (1)(x(1))− T̃ (1)(x(1))| < ϵ,

|∇1T
(1)(x(1))−∇1T̃

(1)(x(1))| < ϵ,

where T (1)(x(1)) = S(1)(x(1); θ̂1).

5. Finally, since det(∇T (x)) =
∏d

k=1 ∇kT
(k)(x), and the target density η(·) is smooth,

both |det(∇T (x))−det(∇T̃ (x))|, and |η(T (x))− η(T̃ (x))|, can be made arbitrarily
small for all x ∈ X . This implies that

|η(T (x))det(∇T (x))− η(T̃ (x))det(∇T̃ (x))|,

can be made arbitrarily small for all x ∈ X , which completes the proof.

3.4. Simulating from the fitted point process

An attraction of using measure transport is that one can readily simulate data based on
the estimated intensity function without resorting to methods like thinning, which can
be inefficient when the Poisson process is highly non-homogeneous. Here, one simulates
from the simple, known reference density η(·), and then pushes back the points through
the inverse map. Since the maps we use are triangular, their inverse can be found in a
relatively straightforward manner.

Consider a point z = (z(1), . . . , z(d))
′
in the reference domain. We give an algorithm

for computing T−1(z), where T (·) is a (single) increasing triangular map, in Algorithm
1. Note that inversion under the increasing triangular map involves solving d univariate
root-finding problems. These problems can be efficiently solved since each component of
the map is continuous and increasing.

Now, when we haveN triangular maps in composition, TN ◦TN−1◦· · ·◦T1(·) say, we can
compute the inverse by iteratively applying Algorithm 1 using TN (·), TN−1(·), . . . , T1(·).
Algorithm 2 gives an algorithm for simulating from the fitted point process for the case
when the reference probability measure is the standard multivariate normal distribution.
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Algorithm 1 Triangular Map Inversion
Input: z ∈ Rd, triangular map T (·)
Output: y ∈ Rd

Find y(1) such that T (1)(y(1)) = z(1)

for k = 2, . . . , d do
Find y(k) such that T (k)(y(1), . . . , y(k−1), y(k)) = z(k)

end for
Return: y = (y(1), . . . , y(d))

′

Algorithm 2 Point Process Simulation
Input: number of points n, maps TN (·), . . . , T1(·)
Output: simulated points x1, . . . , xn ∈ Rd

for i = 1, . . . , n do
Draw zi ∼ N (0, Id)
Apply Algorithm 1 to compute the inverse yi of zi under TN ◦ · · · ◦ T1(·)
Set x

(k)
i = σ(y

(k)
i ), k = 1, . . . , d

end for
Return: {x1, . . . , xn}

3.5. Standard Error Estimation

The intensity function is fitted by solving the problem given in (16). The standard error
of the fitted intensity function can be estimated using a non-parametric bootstrapping
approach (Efron, 1981). We construct B bootstrap samples by drawing the number of
points nb, b = 1, . . . , B, from a Poisson distribution with rate parameter n. For each
b = 1, . . . , B we then randomly sample nb points from the observed points X with
replacement, and fit the process density to each of these bootstrap samples, to obtain

B estimated process densities
ˆ̃
λb(·), b = 1, . . . , B. The standard error of the intensity

function evaluated at any point x ∈ X is then obtained by finding the empirical standard

deviation of {nb
ˆ̃
λb(x) : b = 1, . . . , B}. Algorithm 3 gives a summary.

Standard error estimation can also be performed using a parametric bootstrap
approach (Efron, 1979), where bootstrap samples are obtained from the fitted intensity
function. However, this would require running Algorithms 1 and 2 B times, which would
be considerably more computationally demanding. We therefore do not consider this
bootstrap strategy here.

4. Illustrations

In this section we illustrate the application of our proposed method through simulation
experiments (Section 4.1) and in the context of earthquake intensity modeling (Sec-
tion 4.2). The purpose of the simulation experiments is to demonstrate the validity of
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Algorithm 3 Standard Error Estimation Using Non-Parametric Bootstrapping
Input: observational data X, bootstrap sample size B
Output: bootstrap estimates of the intensity function

for b = 1, . . . , B do
Draw nb ∼ Poisson(n)
Sample nb points with replacement from X to obtain Xb ≡ {x1, . . . , xnb}
Estimate the triangular map, and consequently the process density,

ˆ̃
λb(·) using the

bootstrap sample Xb.
end for

Return: Bootstrap samples of the intensity function, {nb
ˆ̃
λb(·)}Bb=1

our approach and to explore the sensitivity of the estimates to the conditional networks’
structure. All our illustrations are in a one or two dimensional setting, as these cover
the majority of applications, but our method is scalable to higher dimensions due to the
map’s triangular structure should this be needed.

4.1. Simulation Experiments

In this section we illustrate our method on simulated data in both a one dimensional
and a two dimensional setting. Our method requires one to specify the number of
compositions of triangular maps, the width of the neural network in the triangular
maps, the number of layers in the conditional networks (feedforward neural networks),
and the width of each layer in each conditional network. In neural networks and deep
learning literature, choosing the optimal network structure is an open problem. For
shallow feedforward neural networks, that is, neural networks with one or two hidden
layers, information criteria based methods (Fogel, 1991) and heuristic algorithms (Leung
et al., 2003; Jinn-Tsong Tsai et al., 2006) have been proposed to determine the optimal
width of the network. However, to the best of our knowledge, analogous methods are
not available for deep neural networks and neural networks with complicated structure.
In higher dimensional problems, there is theoretical support for adopting a very deep
neural network structure due to its representational power (Eldan and Shamir, 2016;
Raghu et al., 2017). However, since point process realizations typically lie in lower
dimensional space, such results are less relevant.

We found that in low-dimensional settings our estimates did not change consider-
ably with the number of layers in the conditional network and therefore, here, we fix

the number of layers to one. That is, we let each θ
(i)
jk (·) be the output of a neural

network of one layer. In both simulation experiments we set the widths of the neural
networks in both the triangular maps (i.e., M) and the conditional networks, to 64. We
set this number by successively increasing the network widths in powers of two until the
intensity-function estimate was not improved. We also used network widths of 64 in the
application case study of Section 4.2. The learning rate for the optimization is set to
10−4 in all our experiments.
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Table 1. Average and empirical standard deviation of the L2 distance between the true and the fitted
intensity functions in the one dimensional simulation experiment with intensity function

λ(x(1)) = 500 + 300 sin(10x(1)), 0 < x(1) < 1.

No. of compositions of triangular maps 1 2 3 4 5 KDE

Average L2 distance 77.5 77.4 76.5 77.6 78.3 101.2
Standard deviation of L2 distance 12.5 11.3 10.3 12.2 13.1 15.6

Table 2. Average and empirical standard deviation of the L2 distance between the true and the fitted
intensity functions in the one dimensional simulation experiment with intensity function

λ(x(1)) = 500, 0 < x(1) < 1.

No. of compositions of triangular maps 1 2 3 4 5 KDE

Average L2 distance 51.8 50.9 50.6 50.5 50.8 81.3
Standard deviation of L2 distance 12.9 13.0 13.0 13.3 13.1 9.9

For the one dimensional studies, we first simulated events (via thinning) from the
following two one-dimensional intensity functions,

λ1(x
(1)) = 500 + 300 sin(10x(1)), 0 < x(1) < 1, (17)

λ2(x
(1)) = 500, 0 < x(1) < 1. (18)

We then fitted several models to the simulated events, each with a different number of
compositions of triangular maps. The procedure of simulating and model fitting was
repeated 40 times in order to assess the variability in the estimated intensity functions.
Each model fitting required approximately two minutes on a graphics processing unit.

The average and empirical standard deviation of the L2 distance between the
true intensity function and the estimated intensity function are shown in Tables 1 and 2.
Reassuringly, we see that the estimates, and the variability thereof, are consistent across
different numbers of compositions of triangular maps for both cases. For reference,
we also provide the results from kernel density estimation, where the bandwidth of a
Gaussian kernel was chosen using Silverman’s rule of thumb (Silverman, 1986). In this
experiment we observe significant improvement in using deep compositional maps over
conventional kernel density estimation. For illustration, the estimated intensity functions
using four compositions of triangular maps for both intensity functions are shown in
Figure 1.

For the two-dimensional simulation studies, we simulated data from the following two
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Figure 1: The true intensity function (17) (left) and (18) (right) (blue) from which 40
point patterns were independently simulated from, and the corresponding 40 estimated
intensity functions using measure transport with four compositions of triangular maps
(black).

intensity functions:

λ3(x
(1), x(2)) = (30 + 10 sin(10x(1)))(30 + 10 cos(20x(2))),

0 < x(1) < 1, 0 < x(2) < 1, (19)

λ4(x
(1), x(2)) = 900, 0 < x(1) < 1, 0 < x(2) < 1. (20)

We used the same procedure as in the one dimensional case study whereby we fitted
each model to the events simulated from the intensity function. We again simulated and
fit 40 times to assess the variability of our estimates. For this experiment we slightly
enlarged the domain associated with the point process to reduce problems related to
boundary effects. Each model-fitting required approximately ten minutes on a graphics
processing unit.

The average and empirical standard deviation of the L2 distance between the
true intensity function and the estimated intensity function are shown in Table 3
and 4. As in the one dimensional case, we do not observe substantial differences in
the estimates when the number of compositions is varied, and also that the measure
transport approach substantially outperformed kernel density estimation. The true
intensity surface, together with the average and standard deviation of the estimated
intensity surfaces across the 40 simulations for the intensity functions (19) and (20),
for the case of four compositions of triangular maps, are shown in Figures 2 and 3,
respectively. We see from the plots that the proposed method manages to recover the
true intensity surface on average, and that the variability in the estimation is large
when the true intensity is large. This is expected since the variance of a Poisson random
variable is proportional to its mean.
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Table 3. Average and empirical standard deviation of the L2 distance between the true and the fitted
intensity functions in the two dimensional simulation experiment with intensity function
λ(x(1), x(2)) = (30 + 10 sin(10x(1)))(30 + 10 cos(20x(2))), 0 < x(1) < 1, 0 < x(2) < 1.

No. of compositions of triangular maps 1 2 3 4 5 KDE

Average L2 distance 271.4 267.1 272.2 273.4 278.3 438.7
Standard deviation of L2 distance 36.7 37.9 36.3 34.6 36.7 14.1

Table 4. Average and empirical standard deviation of the L2 distance between the true and the fitted
intensity functions in the two dimensional simulation experiment with intensity function

λ(x(1), x(2)) = 900, 0 < x(1) < 1, 0 < x(2) < 1.

No. of compositions of triangular maps 1 2 3 4 5 KDE

Average L2 distance 145.7 144.6 141.2 145.7 144.9 227.9
Standard deviation of L2 distance 7.5 7.2 7.1 8.4 7.3 14.2

Table 5. Average computational time when fitting the model using a GPU (NVIDIA GeForce GTX
1080Ti) and a CPU (Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz).

Intensity function λ1 λ2 λ3 λ4

GPU Time (seconds) 39.95 39.42 57.74 58.23
CPU Time (seconds) 80.92 57.33 146.72 137.48

In summary, these experiments illustrate that our method based on measure transport
is computationally efficient, and that it does not overfit as the number of compositions
of triangular maps increases. We have also observed substantial improvement over kernel
density estimation for intensity function estimation. Choosing the number of composi-
tions using a formal model selection approach is desirable; however, as quantifying the
complexity of the proposed model is difficult, various information criteria such as the
Bayesian Information Criterion (BIC) are not applicable. We also compare the running
times when fitting the models using a mid-end graphics processing unit (GPU) and a
high-end CPU; see Table 5. It is clear that there is a substantial computational benefit
to using a GPU when training these models.

4.2. Modeling Earthquake Data

In this section we apply our method for intensity function estimation to an earthquake
data set comprising 1000 seismic events of body-wave magnitude (MB) over 4.0. The
data set is available from the R datasets package. The events we analyze are those that
occurred near Fiji from 1964 onwards. The left panel of Figure 4 shows a scatter plot of
locations of the observed seismic events.

We fitted our model using a composition of five triangular maps. The estimated
intensity surface and the standard error surface obtained using Algorithm 3 are shown in

imsart-bj ver. 2014/10/16 file: PoisProPaper_final.tex date: November 2, 2023



17

Figure 2: Top-left panel: The true intensity surface (19) used to generate 40 point patterns
in the two dimensional experiment. Top-right panel: Average estimated intensity surface.
Bottom panel: Empirical standard deviation of the estimated intensity surfaces.

the middle and right panels of Figure 4, respectively. As was observed in the simulation
experiments, we see that the estimated standard error is large in areas where the
estimated intensity is high. The probability that the intensity function exceeds various
threshold can also be estimated using non-parametric bootstrap resampling; some
examples of these exceedance probability plots are shown in Figure 5.

A ubiquitous model used in such applications is the log-Gaussian Cox process
(LGCP). For comparative purposes, here we fit an LGCP using the package inlabru

(Bachl et al., 2019), with the latent Gaussian process equipped with a constant
(unknown) mean and a Matérn covariance function with smoothness parameter
ν = 1. The Gaussian process was approximated via a stochastic partial differential
equation (Lindgren et al., 2011) on a mesh comprising 2482 vertices. Approximate in-
ference and prediction required about two minutes on a fine grid comprising 15262 pixels.

For both our intensity-function estimate, and the posterior median intensity func-

imsart-bj ver. 2014/10/16 file: PoisProPaper_final.tex date: November 2, 2023



18 Ng, T.L.J. and Zammit-Mangion, A.

Figure 3: Top-left panel: The true intensity surface (20) used to generate 40 point patterns
in the two dimensional experiment. Top-right panel: Average estimated intensity surface.
Bottom panel: Empirical standard deviation of the estimated intensity surfaces.

tion from the LGCP, we compute a QQ-plot. In this QQ-plot we use the horizontal
axis to represent the fitted quantiles from the density estimate and the vertical axis to
represent the empirical quantiles obtained from the observational data; the identity line
is used to denote perfect agreement. We see from Figure 6 that the intensity function
estimates using both models are reasonable, with that obtained using measure transport
slightly better. The Kolmogorov-Smirnov statistic for our approach is 0.039 while that
from the LGCP is 0.048.

5. Conclusion

This paper develops a general and scalable approach to the problem of modeling and
estimating the intensity function of a non-homogeneous Poisson process. We leverage
the measure transport framework through compositions of triangular maps to model
the unknown intensity function, and utilize software libraries originally created for deep
learning for efficient inference. The developed model is shown to have the universal
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Figure 4: Top-left panel: Scatter plot of earthquake events with body-wave magnitude
greater than 4.0 near Fiji since 1964. Top-right panel: Estimated intensity function ob-
tained using measure transport. Bottom panel: Estimated standard error of the intensity
surface obtained using Algorithm 3.

property whereby any positive continuous intensity function can be approximated
arbitrarily well.

Our experiments clearly demonstrate the practical advantage of the measure transport
approach over simpler methods such as KDE. The performance of the proposed method is
also competitive as compared to the use of LGCPs. Furthermore, the measure transport
approach has other amenable properties. Notably, the use of a simple reference density
allows one to easily simulate point processes, and back transform the coordinates to the
original space, with little effort. This leads to an efficient simulation algorithm, as well
as an efficient bootstrap algorithm for uncertainty quantification. Second, our approach
has the potential to recover spatial properties (such as anisotropy and nonstationarity),
that would require additional modeling effort with models such as the LGCP, or more
sophisticated kernels with KDE. Finally, our approach is highly scalable, and can be
extended to higher dimensional spaces with no modification to the underlying software.

imsart-bj ver. 2014/10/16 file: PoisProPaper_final.tex date: November 2, 2023



20 Ng, T.L.J. and Zammit-Mangion, A.

Figure 5: Top-left panel: Estimated exceedance probability P (λ(·) > 1). Top-right panel:
Estimated exceedance probability P (λ(·) > 5). Bottom panel: Estimated exceedance
probability P (λ(·) > 10).

There are several possible avenues for future work. First, in this work we have
only considered low-dimensional spatial problems. However, the measure transport
approach naturally extends to higher-dimensional spaces. For spatio-temporal point
processes, for example, one could simply add an additional, temporal, dimension to
the two-dimensional spatial model. Second, a simple way to incorporate covariate
information, which is not as straightforward as in an LGCP, say, will be important for
the approach to find wide applicability in a practical setting.

Code to reproduce the results in the simulation and real-data illustrations is available
as supplementary material.
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Figure 6: QQ-plot comparing the fitted quantiles (from the intensity function estimates)
to the observed empirical quantiles. The blue line corresponds to the intensity function
estimate obtained from measure transport, the red line to the posterior median from an
LGCP fitted using inlabru. The black line denotes perfect fit.
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Appendix A: Proof of Results

A.1. Proof of Proposition 3.1

Proof. By definition of the KL divergence,

DKL(fρ1
||fρ2

) = Eρ1

{
log

fρ1(x)

fρ2
(x)

}
,

where Eρ1{·} is the expectation taken with respect to the density fρ1(·). By Campbell’s
theorem, we have that

Eρi

{ ∑
x∈Pi

log ρj(x)
}
=

∫
X
(log ρj(x))ρi(x)dx, i, j = 1, 2.
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Therefore, from (9),

Eρ1
{log fρ1

(x)} = −
∫
X
(ρ1(x)− 1)dx+

∫
X
(log ρ1(x))ρ1(x)dx,

Eρ1
{log fρ2

(x)} = −
∫
X
(ρ2(x)− 1)dx+

∫
X
(log ρ2(x))ρ1(x)dx.

Combining these two equalities completes the proof.

A.2. Proof of Theorem 3.1

The first lemma we need is Lemma 2.6 of Bogachev et al. (2005) stated in a slightly
different form.

Lemma A.1. Suppose the probability measures µ(·) and ν(·) on Rd are given by contin-
uous positive densities ρµ(·) and ρν(·), respectively, whose weak (Sobolev) partial deriva-
tives up to order d+1 are integrable over Rd. Then there exists an increasing continuously
differentiable triangular mapping T̃#µ(·) such that

T̃#µ(·) = ν(·).

Lemma A.1 implies that it is sufficient to consider the space of increasing continuous
differentiable triangular maps when one is seeking to push forward the measure µ(·) to
another, usually simpler, reference measure ν(·). In this work, we fix the reference measure
ν(·) to be standard multivariate Gaussian distribution. The following two lemmas show
that the triangular maps constructed using the neural autoregressive flows are indeed
dense in the space of increasing continuous differentiable triangular maps.

Lemma A.2. The set of functions{
h : R → (0, 1), h(x) =

M∑
i=1

wiσ(aix+ bi)

∣∣∣∣M ∈ N; ai > 0 ∀i; bi ∈ R ∀i; wi > 0 ∀i;
M∑
i=1

wi = 1

}
,

is dense in the space of monotonically increasing continuous differentiable functions f :
R → (0, 1) with f(t) → 0 as t → −∞ and f(t) → 1 as t → ∞ with respect to the norm

||f ||C1(I) := max
k=0,1

max
t∈I

|f [k](t)|,

on compact intervals I = [I0, I1] ⊂ R.

Proof. Fix a sufficiently small ϵ > 0. Let f : R → (0, 1) be a monotonically increasing
C1 function with f(t) → 1 as t → ∞ and f(t) → 0 as t → −∞. Therefore, f ′(t)
is a positive continuous probability density function on R. Now, for any ai > 0 and

imsart-bj ver. 2014/10/16 file: PoisProPaper_final.tex date: November 2, 2023



23

bi ∈ R, σi(t) := σ(ait + bi) satisfies σi(t) → 1 as t → ∞ and σi(t) → 0 as t → −∞.
Therefore, σ′

i(t) is a positive continuous density on R. Therefore, by standard results in
approximation theory (see, e.g., Section 4 of Nestoridis and Stefanopoulos (2007)), for
any ϵ′ > 0 and any compact interval K ⊂ R, there exists

h(t) =

N∑
i=1

wiσ(ait+ bi),

for some ai > 0, bi ∈ R, i = 1, . . . , N, such that

|f ′(t)− h′(t)| < ϵ′,

for any t ∈ K. In particular, the above result follows from Lemma 3.1 of Nestoridis and
Stefanopoulos (2007), and we note that for positive continuous probability density h,

the weights wi can be chosen such that
∑N

i=1 wi = 1.

Fix s0, s1 such that f(s0) = ϵ and f(s1) = 1 − ϵ. For ϵ sufficiently small we have
that I ⊂ [s0, s1]. Let ϵ

′ = ϵ/(s1 − s0), we have that |f ′(t)− h′(t)| < ϵ′ for all t ∈ [s0, s1].
Therefore, ∣∣∣∣ ∫ s1

s0

f ′(s)− h′(s)ds

∣∣∣∣ ≤ ∫ s1

s0

|f ′(s)− h′(s)|ds < ϵ.

Using the inequality above along with f(s1) − f(s0) = 1 − 2ϵ, it is straightforward to
deduce that f(s0) < 3ϵ. Now, for any t ∈ I, we have

|f(t)− h(t)| =

∣∣∣∣ ∫ t

−∞
f ′(t)− h′(t)dt

∣∣∣∣
≤

∣∣∣∣ ∫ s0

−∞
f ′(t)− h′(t)dt

∣∣∣∣+ ∣∣∣∣ ∫ s

s0

f ′(t)− h′(t)dt

∣∣∣∣
≤ 2ϵ+ ϵ′(s− s0)

≤ 3ϵ.

Therefore, we have that ∥f(·)− h(·)∥C1(I) ≤ 3ϵ.

Lemma A.3. The set of functions{
g : R → R, g(x) := σ−1

( M∑
i=1

wiσ(aix+ bi)
)∣∣∣∣M ∈ N, ai > 0 ∀i; bi ∈ R ∀i; wi > 0 ∀i;

M∑
i=1

wi = 1

}
,

is dense in the space of monotonically increasing continuous differentiable functions f :
R → R with f(t) → ∞ as t → ∞ and f(t) → −∞ as t → −∞ with respect to the norm

||f ||C1(I) = max
k=0,1

max
t∈I

|f [k](t)|,

on compact intervals I = [I0, I1] ⊂ R.
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Proof. Fix any interval I = [I0, I1], and sufficiently small ϵ > 0. Choose cmin ∈ (0, σ ◦
f(I0)), and cmax ∈ (σ ◦ f(I1), 1). Since σ−1(·) ∈ C2, there exists K1,K2 > 0 such that

sup
y∈[cmin,cmax]

|∇σ−1(y)| < K1 < +∞,

sup
y∈[cmin,cmax]

|∇2σ−1(y)| < K2 < +∞.

Since σ◦f(·) is C1 and monotonic increasing with σ◦f(t) → 1 as t → ∞ and σ◦f(t) → 0
as t → −∞, we have by Lemma A.2, there exists a function h(·) with the form h(t) =∑N

i=1 wiσ(ait+ bi), such that

|σ ◦ f(t)− h(t)| < ϵ/K,

|(σ ◦ f)′(t)− h′(t)| < ϵ/K,

where K = max{K1,K2}. Therefore, for t ∈ I we have

|f(t)− σ−1 ◦ h(t)| = |σ−1 ◦ σ ◦ f(t)− σ−1 ◦ h(t)|
≤ sup

y∈[cmin,cmax]

|∇σ−1(y)||σ ◦ f(t)− h(t)|

≤ K
ϵ

K
= ϵ,

where the first inequality follows from the mean value theorem. Similarly,

|f ′(t)− (σ−1 ◦ h)′(t)| = |(σ−1 ◦ σ ◦ f)′(t)− (σ−1 ◦ h)′(t)|
≤ |(σ−1 ◦ σ ◦ f)′(t)− (σ−1)′(σ ◦ f(t))h′(t)|+ |(σ−1)′(σ ◦ f(t))h′(t)− (σ−1 ◦ h)′(t)|

≤
{
sup
t∈I

|(σ−1)′(σ ◦ f(t))|
}
|(σ ◦ f)′(t)− h′(t)|+

{
sup
t∈I

|h′(t)|
}
|(σ−1)′(σ ◦ f(t))− (σ−1)′(h(t))|

≤ Cϵ

for some constant C, since supt∈I |(σ−1)′(σ ◦ f(t))| is a constant and h′(t) is uniformly
close to (σ ◦ f)′(t). The result follows since ϵ is arbitrary.

By Lemma A.2 and A.3, for any ϵ > 0 and k = 2, . . . , d, we have that for all x in
some compact subset of Rd, there exists θ̃k(·) ∈ Rmk where θ̃k(·) depends continuously
on x(1), . . . , x(k−1) such that

|T̃ (k)(x(1), . . . , x(k))− S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))| < ϵ/2,

and
|∇kT̃

(k)(x(1), . . . , x(k))−∇S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))| < ϵ/2.

To see that θ̃k(·) can be chosen to depend continuously on (x(1), . . . , x(k−1)), we note
that the approximation of ∇kT̃

(k)(x(1), . . . , x(k)) (considered as a function of x(k))
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can be obtained through Riemann sums by construction (Lemma 3.1 of Nestoridis
and Stefanopoulos (2007)), and by continuity of ∇kT̃

(k)(x(1), . . . , x(k)), the distance
∥θ̃k(x(1), . . . , x(k−1))− θ̃k(y

(1), . . . , y(k−1))∥ can be made arbitrarily small if the distance
∥(x(1), . . . , x(k−1))′ − (y(1), . . . , y(k−1))′∥ is arbitrarily small. This also implies that
the dimension of θ̃k(·) must be locally bounded. That is, for any (x(1), . . . , x(k−1)),
there exists some δ such that the dimension of θ̃k(y

(1), . . . , y(k−1)) is upper bounded if
∥(x(1), . . . , x(k−1))′ − (y(1), . . . , y(k−1))′∥ < δ. Now, for any compact subset K ⊂ Rk−1,
we can construct an open cover {Uα}α of K where the dimension of θ̃k(·) is upper
bounded on each Uα. Then, there exists a finite subcover {Uαj

}Jj=1 of K, and therefore

the dimension of θ̃k(·) is upper bounded on K. We note that requiring wi > 0 does not
cause additional difficulty since they can be made arbitrarily small.

Now, by the universality of feedforward neural networks with sigmoid activation
functions, for any δ > 0, we can find a conditional network θ̂k(x

(1), . . . , x(k−1);ϑk)
parameterized by ϑk such that

∥θ̃k(x(1), . . . , x(k−1))− θ̂k(x
(1), . . . , x(k−1);ϑk)∥ < δ.

Since both S(k) and ∇S(k) have bounded derivatives in any compact inteval, they are
uniformly continuous. Therefore, we can choose δ sufficiently small so that

∥θ̃k(x(1), . . . , x(k−1))− θ̂k(x
(1), . . . , x(k−1);ϑk)∥ < δ,

implies that

|S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))− S(k)(x(k); θ̂k(x

(1), . . . , x(k−1);ϑk))| < ϵ/2,

|∇S(k)(x(k); θ̃k(x
(1), . . . , x(k−1)))−∇S(k)(x(k); θ̂k(x

(1), . . . , x(k−1);ϑk))| < ϵ/2.

By the triangle inequality we then have that

|T̃ (k)(x(1), . . . , x(k))− S(k)(x(k); θ̂k(x
(1), . . . , x(k−1);ϑk))| < ϵ,

|∇kT̃
(k)(x(1), . . . , x(k))−∇S(k)(x(k); θ̂k(x

(1), . . . , x(k−1);ϑk))| < ϵ,

uniformly for all x a compact subset of Rd. We conclude that the triangular maps
constructed using neural autoregressive flows are dense in the space of continuous
differentiable increasing triangular maps.

In particular, for any ϵ > 0 and any compact set K, there exists an increasing
triangular map T (·) wherein the kth component of each map T (k)(·) has the form (8),
and wherein the corresponding conditional networks are universal approximators (e.g.,
feedforward neural networks with sigmoid activation functions), such that

|T (k)(x(1), . . . , x(k))− T̃ (k)(x(1), . . . , x(k))| < ϵ,

|∇kT
(k)(x(1), . . . , x(k))−∇kT̃

(k)(x(1), . . . , x(k))| < ϵ,
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for k = 2, . . . , d. Using similar arguments we obviously also have that

|T (1)(x(1))− T̃ (1)(x(1))| < ϵ,

|∇1T
(1)(x(1))−∇1T̃

(1)(x(1))| < ϵ,

where T (1)(x(1)) = S(1)(x(1); θ̂1).
Thanks to the triangular structure of the map, these imply that

|det(∇T (x))− det(∇T̃ (x))|,

can be made arbitrarily small. By smoothness and boundedness of the target density
η(·), we have that

|η(T (x))− η(T̃ (x))|,

can also be made arbitrarily small. Thus, we have that

|η(T (x))det(∇T (x))− η(T̃ (x))det(∇T̃ (x))|
≤ η(T (x))|det(∇T (x))− det(∇T̃ (x))|+ det(∇T̃ (x))|η(T (x))− η(T̃ (x))|,

where the right-hand-side of the above inequality is arbitrarily small as ϵ is made abi-
trarily small. This concludes the proof of the theorem.
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