
National Institute for Applied Statistics Research
Australia

 University of Wollongong, Australia

Working Paper

01-23

Computational Implementation of Supernodal Variants for
Cholesky Factorization and Calculation of the SIS

Luke Mazur and Robin Thompson

Copyright © 2023 by the National Institute for Applied Statistics Research Australia, UOW.

Work in progress, no part of this paper may be reproduced without permission from the Institute.

National Institute for Applied Statistics Research Australia, University of Wollongong,

Wollongong NSW 2522, Australia T: +61 2 42215076. E: karink@uow.edu.au

mailto:karink@uow.edu.au

Computational implementation of supernodal

variants for Cholesky factorization and

calculation of the SIS

Luke Mazur, Robin Thompson

September 4, 2023

1. The AI algorithm

This chapter briefly discusses the various quantities required in the calculation
of the AI algorithm (Gilmour et al., 1995).

1.1 Introducing the general linear mixed model

If the ny-vector of observations is denoted by y, the linear mixed model can be
written as

y = Xτ +Zu+ e (1.1)

where τ is the nτ -vector of fixed effects, X is the ny × nτ design matrix that
associates observations with the appropriate combination of fixed effects, u is
the nu-vector of random effects, Z is the ny×nu design matrix which associates
observations with the appropriate combination of random effects, and e is the
ny-vector of residuals. The column rank of X is denoted dX and dX ≤ nτ . The
model, in Equation (1.1), is called a linear mixed model or linear mixed-effects
model. It is assumed [

u

e

]
∼ N

([
0

0

]
,

[
G 0

0 R

])
. (1.2)

The variance models given by the matrices G and R are called G-structures
and R-structures respectively. In this report the only the uni-variate case is
considered, however extensions to the multi-variate case are straightforward by
replacing y, τ , u and e by matrix equivalents, where each column corresponds
to a response variable.

Typically G and R are functions of parameters that need to be estimated

G = G(σ
G

) (1.3)

and
R = R(σ

R
). (1.4)

The vectors σG and σR are parameter vectors associated with the random effects
(u) and residuals (e) respectively.

1 Version: September 4, 2023

Then a matrix V is defined such that

V = R+ZGZ>,

so that
y ∼ N(Xτ ,V). (1.5)

1.1.1 Variance structures for the residuals

In many datasets the vector of residuals represents the residuals from a single
experiment and it is assumed that R is simply a scaled identity matrix, that is
R = σIny , where σ is the first and only element of the parameter vector σR
implying the the residuals were assumed independent and identically distributed.

In the datasets of interest in this report, that is MET datasets (Smith et al.,
2001), the vector e is a series of vectors indexed by a factor or factors. The sub-
vectors relate to sections of the data, each with their own associated variance
matrix. Thus in general it is written e = (e>1 , e

>
2 , . . . , e

>
s)>, so that ej repre-

sents the vector of residuals of the jth section of the data. The variance matrix
for each section may differ, but it is assumed that the residuals from different
sections are independent (if they are not then the dependent components can
be coalesced into a single component and hence the independence structure can
be maintained).

In matrix terms this gives
R = ⊕sj=1Rj ,

where ⊕ is the direct sum operator. In MET datasets usually the indexing
factor for a section is either Trial or Environment.

1.1.2 Variance structures for the random effects

The vector of random effects is often composed of φ sub-vectors u = (u>1 , u
>
2 , . . . , u

>
φ)>

where the sub-vectors ui are of length n
Gi

. These sub-vectors are assumed in-

dependent normally distributed with variance matrices Gi. Thus, as for R, this
leads to

G = ⊕φi=1Gi.

There is a corresponding partition in Z, namely Z = [Z1, Z2, . . . , Zφ].

1.2 Prediction in the linear mixed model

The general aim is the prediction of the linear combination ζ>1τ + ζ>2u of fixed
and random effects where ζ1 and ζ2 are known nτ - and nu-vectors respectively,
and further ζ>1τ is estimable, i.e. ζ>1 lies in the row space of X (Searle & Khuri,

2 Version: September 4, 2023

2017, p. 266). If V is known, implying σG and σR are known, the predictor
which has the minimum mean square error (MSE) among the class of linear
unbiased predictors is given by ζ>1 τ̂ + ζ>2ũ where

τ̂ = (X>V −1X)−X>V −1y, (1.6)

ũ = GZ>Py, (1.7)

P = V −1 − V −1X(X>V −1X)−X>V −1 and (X>V −1X)− is a generalised in-
verse of X>V −1X (Henderson, 1950).

These can be obtained by solving a system of equations known as the mixed
model equations (MMEs), as proposed by Henderson (1950, 1973). They can
be written in matrix-vector notation by:[

X>R−1X X>R−1Z

Z>R−1X Z>R−1Z +G−1

][
τ̂

ũ

]
=

[
X>R−1y

Z>R−1y

]
. (1.8)

Letting W = [X Z] , β̃
>

=
[
τ̂> ũ>

]
, b = W>R−1y,

C = W>R−1W +G∗,

G∗ =

[
0 0

0 G−1

]
,

leads to a more abbreviated representation of the MMEs

Cβ̃ = b. (1.9)

It can be shown that a specific solution to the MMEs is in fact equivalent to
the estimates τ̂ and ũ in Equations (1.6) and (1.7), known as empirical BLUEs
(E-BLUEs) and empirical BLUPs (E-BLUPs) respectively.

1.3 The REML log-likelihood function

The REML log-likelihood (Patterson & Thompson, 1971) for Equation (1.1) can
be written as

`R = −1

2

{
2 log |F | − log |X>0X0|+ log |V |+ log |X>0V

−1X0|+ y>P 0y
}

,

(1.10)
where the choice of F = I(ny−dX) and X0 refers to the linearly independent
columns of X, see Mazur (2022) for more information on that.

3 Version: September 4, 2023

1.4 Score equations and AI updating

Letting Ṙi = ∂R/∂σRi and qRi = ṘiP 0y, the REML score for a variance
parameter σRi associated with the residuals e, following Gilmour et al. (1995),
is given by

UR(σRi) = −1

2

{
tr
(
R−1Ṙi

)
− tr

(
C−1

0 W
>
0R
−1ṘiR

−1W 0

)
−

y>P 0qRi

}
, (1.11)

where C0 refers to C with all instances of X replaced by X0. Letting Ġi =
∂G/∂σGi , C

ZZ be the partition of C−1
0 which corresponds to u and qGi =

ZĠiZ
>P 0y, the REML score for a variance parameter σGi is given by

UR(σGi) = −1

2

{
tr
(
G−1Ġi

)
− tr

(
G−1ĠiG

−1CZZ
)
−

y>P 0qGi

}
. (1.12)

The elements of the average information matrix are given by:

IA(κi, κj) =
1

2

(
V̇ iP 0y

)>
P 0

(
V̇ jP 0y

)
. (1.13)

4 Version: September 4, 2023

2. Cholesky factorization and
calculation of the sparse
inverse subset by recursion

2.1 Defining the CF and the SIS

Typically C is a sparse matrix, meaning it has many zero elements, and the goal
is to exploit this as much as possible to minimize runtime by avoiding redundant
operations involving multiplication by zeroes. This report concentrates on the
two most computationally intensive steps of the algorithm, that is the Cholesky
factorization (CF) used in solving the MMEs and the calculation of the sparse
inverse subset (SIS) which is the set of elements of the inverse of C necessary
for the scores, i.e. the elements of C−1

0 corresponding to non-zeroes in C0. A
CF typically refers to the calculation of a lower triangular matrix L (L is the
convention in the literature as L stands for Lower) such that LL> = C. In
the algorithms present in this report, following Gilmour et al. (1995) and Meyer
(1989), an operator Factorize is defined such that L = Factorize(A) denotes
finding a lower triangular matrix L such that L>L = A for some SPD matrix
A. This could be considered an “inversely permuted” CF, and is simply referred
to as a CF where the meaning is clear from context. This can be viewed as a
form of extension of the

√
operator to matrices, and if Factorize is applied to

a 1× 1 matrix then it behaves as the
√

operator. For example, if A and L are

1× 1 matrices then L = Factorize(A) is equivalent to l11 =
√
a11 in this case.

CF of C can be used to transform a system of equations:

Cβ̃ = b (2.1)

to a triangular system:
Lβ̃ = (L>)−1b = h. (2.2)

The calculation of h is known as the back solution and this could occur after
the CF is complete, but it is shown how it can be performed as part of the CF
process.

5 Version: September 4, 2023

2.2 Recursion using multi-nodes

The recursion occurs by considering a multi-node at each level of the recursion.
The lower triangle of a symmetric matrix A can be partitioned such that:

A =

A11 ∗ ∗

...
. . .

...

Am1 . . . Amm

 .

Then it can be partitioned into m multi-nodes such that the ith multi-node
consists of all blocks ofA in the ith block row, i.e. [Ai1 Ai2 . . . Aii]. Each multi-
node consists of two parts: a diagonal part (of which only the lower triangle
is stored) and an off-diagonal part. The diagonal part of the ith multi-node
is simply the diagonal block Aii, while the off-diagonal part refers to all of
the off-diagonal blocks, i.e. Ai,1:i−1. The first multi-node only has a diagonal
part i.e. the off-diagonal part of the first multi-node has no columns. A visual
representation of the first two multi-nodes is shown in Figure 2.1.

Figure 2.1: A visual representation of the top two multi-nodes in terms of the
elements that need to be stored. First multi-node (red) with diagonal part
(yellow) and off-diagonal part (blue) of second multi-node.

In particular, the rows of C and L can be grouped into multi-nodes with m
denoting the number of such multi-nodes. Then {ri} denotes the set of rows
in the ith multi-node, numbering |ri|. Further [i] is denoted as a multi-node
comprised of the first i multi-nodes and {r[i]} = ∪{rj}, j ≤ i. Then the number
of rows associated with the first i multi-nodes is denoted by |r[i]| (so {r[m]}
refers to all the rows and |r[m]| = n is the total number of rows of C). As a
result, {ri} = {|r[i−1]|+ 1 : |r[i]|} Similarly {ci} denotes the columns of the off-
diagonal part of the ith multi-node, numbering |ci|. The columns of the diagonal
part correspond to {ri}.
There are two main advantages of multi-nodes. The first is that the off-diagonal
part can be treated as a dense rectangular matrix. The second is that the
diagonal part of a multi-node of C can be treated as a dense symmetric matrix
while the diagonal part of a multi-node of L is treated as a dense triangular
matrix.

The recursive process is initialized such that:

C(m) = C, (2.3)

b(m) = b. (2.4)

6 Version: September 4, 2023

To denote the step of the recursion, k is used. Finally, in order to save memory
in computer implementations, a separate object for L is not created. Instead,
C is overwritten by its Cholesky factor, and then its SIS. This occurs using the
assignment operator := as the recursion moves ahead.

Additionally, there are situations where C of size n× n is stored in contiguous
memory but operations are only required on C :{A}{B}: of size |A| × |B| which is
not stored in contiguous memory, nor can it be treated as contiguous through
the use of a fixed offset. Such a memory structure that is unsuitable for BLAS
operations must be copied into a memory structure which is suitable, and this
is denoted by the subscript of the partition being pre- and post-ceded by “:”
symbols. Then for the sake of argument say it is desired to apply a function
Function to C :{A}{B}: but because it is not stored in contiguous memory they
are instead applied to A = C :{A}{B}:. This requires gathering C :{A}{B}: into the
shallow copy A, performing the function (or some other operation) and then
scattering A back into the relevant locations of C :{A}{B}:.

The function Gather gives a name to the targeted copying of rows ofC contained
in {A} and columns of C contained in {B} into A. Letting {Ai} be a set
containing only the ith element of {A} such that {A} = ∪{Ai} and similarly
letting {Bj} be a set containing only the jth element of {B}. Then:

Aij = C{Ai}{Bj}.

Similarly the function Scatter gives a name to the copying of A back into C
such that:

C{Ai}{Bj} := Aij .

The symbol :=: is used to refer to this procedure of gathering, assigning to and
scattering back (if a term on the right hand side is not stored in a convenient
memory structure this does not pose a problem, it is simply gathered and used
as necessary without a change in notation) and so equivalently:

C :{A}{B}: :=: Function(C :{A}{B}:).

2.3 Sparsity and supernodes

To incorporate sparsity, sets {zi} are defined such that a ∈ {zi} if a < i and cia =
0 after the CF is complete, i.e. the zeroes in the ith row of the Cholesky fac-
tor, with i taking values from 1 to n. Similarly sets {ci} are defined such that
a ∈ {ci} if a < i and cia 6= 0, i.e. the non-zeroes in the ith row of the Cholesky
factor. Supernodes are multi-nodes with the constraint that all of the rows in
the off-diagonal part of a supernode have the same non-zero structure. These
supernodes are discovered in a matrix using a supernodal symbolic factorization
which merges rows into sets {rk}, as well as the sets of non-zero columns for
the supernodes denoted by {ck} and the sets of zero columns for the supern-
odes denoted by {zk}. These are calculated using an elimination tree, see Liu

7 Version: September 4, 2023

(1990). Then another set of merging occurs through the supernodal symbolic
factorization such that if {zd} is sufficiently similar to {z(d+1)} then these two
supernodes are merged together, even if this means explicitly storing some zero
entries, as it was found to reduce runtime in the majority of cases (Ashcraft &
Grimes, 1989).

Prior to this symbolic factorization, typically a permutation is used to minimize
the number of structural non-zero entries in L, by reducing the number of fill-
in that occurs as zeroes are added to/subtracted from during the CF process:
turning them into non-zeroes. After this permutation, a post-ordering occurs
which permutes the children of each node in the elimination tree prior to its
parents. This ordering can be computed using a recursive depth first search,
where in each step it does a depth first search through all of the children of
the current node, until it encounters leaf nodes (nodes with no children). Then
it moves its way back up the stack of recursion, numbering the nodes in the
order they were visited, i.e. with children being numbered before the parents.
The procedure starts at the root, and the root is given its number once all
of its children have been visited, i.e. at the end. This post-ordering has no
impact on the number of non-zeroes in L but it means that children are typically
placed consecutively, and these are the most likely to be able to be merged into
supernodes as they are likely to have similar non-zero structures. In the following
it is assumed that both of these orderings have been applied to C prior to the
CF.

The code written by the author uses the supernodal amalgamation rules of
CHOLMOD (Chen et al., 2008) (an open source alternative discussed in Section
5.4), as it uses CHOLMOD for the entire symbolic factorization phase. The rules
are that two supernodes are merged if any of the following conditions:

• The number of rows in the merged supernode is less than some parameter
(by default 4)

• No new structural non-zeroes are formed by merging them

• The number of rows in the merged supernode is less than some parameter
(by default 16) and the ratio of stored explicit zeroes to total structural
non-zeroes in the merged supernode is less than some parameter (by de-
fault 0.8)

• The number of rows in the merged supernode is less than some parameter
(by default 48) and the ratio of stored explicit zeroes to total structural
non-zeroes in the merged supernode is less than some parameter (by de-
fault 0.1)

• The ratio of stored explicit zeroes to total structural non-zeroes in the
merged supernode is less than some parameter (by default 0.05)

are met.

8 Version: September 4, 2023

Then Equation (2.1) can be partitioned into: C(k)

{T(k)}{T(k)}
C(k)

{T(k)}{B(k)}

C(k)

{B(k)}{T(k)}
C(k)

{B(k)}{B(k)}

 β̃{T(k)}

β̃{B(k)}

 =

 b(k)
{T(k)}

b(k)
{B(k)}

 , (2.5)

with at the kth step of the algorithm {T(k)} = {r[k−1]}, {B(k)} = {rk}. Then
defining the following sets {Z(k)} = {z{rk}}, {S

(k)} = {ck} = {T(k)} − {Z(k)},
the relevant elements at the kth step can be accessed using {S(k)} and {B(k)}.
In the case where the matrix is entirely dense then there is only one supernode
with {r1} = {1 : n}, and this is equivalent to the multi-nodal case with one
multi-node.

A direct consequence of supernodal methods is that C{T(k)}{T(k)} is no longer
stored, as many of the elements within it would be zero. Rather, C

[F(k−1)]
is

stored such that at the kth step of the algorithm [F(k−1)] = ∪{a, b} for a ∈
{ri}, b ∈ {ci} for i < k, i.e. it is the union of all the elements present in the
first k − 1 supernodes. Similarly letting [F(k)] = ∪{a, b} for a ∈ {ri}, b ∈
{ci} for i <= k, i.e. it is the union of all the elements present in the first k
supernodes.

9 Version: September 4, 2023

3. Function notation

3.1 Cholesky factorization of the coefficient matrix of

the MMEs

First C{B(k)}{B(k)} is factorized then C{B(k)}{S(k)} and b{B(k)} are back-solved
for and finally C

:{S(k)}{S(k)}: and b
:{S(k)}: are updated using the back-solutions,

where the Schur complement is a specific case of a back-update.

C{B(k)}{B(k)} := Factorize(C{B(k)}{B(k)}),

C{B(k)}{S(k)} := ((C{B(k)}{B(k)})
−1)>C{B(k)}{S(k)},

b{B(k)} := ((C{B(k)}{B(k)})
−1)>b{B(k)},

C
:{S(k)}{S(k)}: :=: C

:{S(k)}{S(k)}:−

(C{B(k)}{S(k)})
>C{B(k)}{S(k)},

b
:{S(k)}: :=: b

:{S(k)}: − (C{B(k)}{S(k)})
>b{B(k)},

C{B(k)}{B(k)} := Factorize(C{B(k)}{B(k)}), (3.1)

C{B(k)}{S(k)} := Back-Solve(C{B(k)}{B(k)},C{B(k)}{S(k)}), (3.2)

b{B(k)} := Back-Solve(C{B(k)}{B(k)}, b{B(k)}),

C
:{S(k)}{S(k)}: :=: SchurComplement(C

:{S(k)}{S(k)}:,C{B(k)}{S(k)}), (3.3)

b
:{S(k)}: :=: Back-UpdateSCP(b

:{S(k)}:,C{B(k)}{S(k)}, b{B(k)}). (3.4)

3.2 Calculation of the sparse inverse subset of the co-

efficient matrix of the MMEs

The first Assignment forward-solves forA, while the second multipliesC{B(k)}{S(k)}
by a symmetric matrix. After this C{B(k)}{B(k)} is inverted then multiplied by
its transpose and finally C{B(k)}{B(k)} is forward-updated.

A := (C{B(k)}{B(k)})
−1C{B(k)}{S(k)},

C{B(k)}{S(k)} := −AC
:{S(k)}{S(k)}:,

C{B(k)}{B(k)} := (C{B(k)}{B(k)})
−1,

C{B(k)}{B(k)} := C{B(k)}{B(k)}(C{B(k)}{B(k)})
>,

C{B(k)}{B(k)} := C{B(k)}{B(k)} −C{B(k)}{S(k)}A
>,

A := Forward-Solve(C{B(k)}{B(k)},C{B(k)}{S(k)}), (3.5)

C{B(k)}{S(k)} := SymmetricMultiply(−A,C
:{S(k)}{S(k)}:), (3.6)

,

C{B(k)}{B(k)} := InvertCrossMultiply(I,C{B(k)}{B(k)}), (3.7)

C{B(k)}{B(k)} := Forward-UpdateInv(C{B(k)}{B(k)},C{B(k)}{S(k)},A). (3.8)

10 Version: September 4, 2023

There is an alternate formulation worth considering (after re-ordering Assign-
ments (3.5-3.8) and initializing S := C{B(k)}{B(k)}, A := C{B(k)}{S(k)} and

C{B(k)}{B(k)} := I) which first multiplies C{B(k)}{S(k)} by a symmetric matrix
then C{B(k)}{B(k)} is forward-updated. After this C{B(k)}{S(k)} is forward solved
for and finally C{B(k)}{B(k)} is pre- and post-multiplied by the inverse of S:

C{B(k)}{S(k)} := −AC
:{S(k)}{S(k)}:,

C{B(k)}{B(k)} := C{B(k)}{B(k)} −C{B(k)}{S(k)}A
>,

C{B(k)}{S(k)} := S−1C{B(k)}{S(k)},

C{B(k)}{B(k)} := S−1C{B(k)}{B(k)}(S
−1)>,

C{B(k)}{S(k)} := SymmetricMultiply(−A,C
:{S(k)}{S(k)}:), (3.9)

C{B(k)}{B(k)} := Forward-UpdateInv(C{B(k)}{B(k)},C{B(k)}{S(k)},A), (3.10)

A := Forward-Solve(S,C{B(k)}{S(k)}),

C{B(k)}{B(k)} := InvertCrossMultiply(C{B(k)}{B(k)},S). (3.11)

11 Version: September 4, 2023

4. Singularity-handling
supernodal AI algorithm

4.1 Literature review

While CF is typically thought to only work for SPD matrices, it can work
for SPSD (Symmetric Positive Semi-Definite) matrices in two main ways. The
first is known as a modified CF (Bunch, 1971; Schnabel & Eskow, 1990; Eskow
& Schnabel, 1991) where small numbers are added to the diagonal elements to
effectively make the matrix SPD. A block approach to this is discussed in Dayde
& Camichel (1995). If this matrix was the coefficient matrix for a linear system
then such a modification modifies the solution of the system and so will not be
discussed further herein.

The second way is to simply avoid the rows that have diagonal entries below
a certain threshold in some way. There are two methods to avoid singularities
when solving a linear system where the coefficient matrix is SPSD, without af-
fecting the solution. In the first method they are set to extremely large numbers
with off-diagonals set to zero and corresponding elements of the solution set to
zero, essentially “fixing” them so that they do not cause numerical instability. In
fact numerically they will have no impact on the remainder of the operations.
This method is denoted the “zeroing-out” method. The second method is to
mark them and avoid them entirely, such that they take no part in any future
computation, denoted the “avoiding” method. The first method is discussed in
detail in Gupta et al. (1997); Gupta (2000).

Of the two methods the avoiding should be more efficient as redundant oper-
ations are avoided, and this is the choice method in the dense linear algebra
space, and in some sparse single-nodal codes such as ASReml. This method has
also been applied for sparse unsymmetric nondefinite matrices and sparse sym-
metric indefinite matrices, but these problems are different as the tiny pivots
cannot immediately be flagged as singularities, as it is possible that a negative
pivot further in the matrix will modify the tiny pivot back to a suitable size. As
a result, dynamic permutation must occur of the matrix in order to delay this
pivot, and this typically causes fill-in to occur as it represents a departure from

12 Version: September 4, 2023

the original ordering scheme. As far as the author is aware there has not been
an implementation that avoids these singularities in a supernodal algorithm for
the factorization of an SPSD matrix, and this report presents such an algorithm
that while it features dynamic permutation, it does not lead to an increase in
fill-in, as rows within a supernode can be interchanged without introducing any
fill-in.

Since the software ASReml uses a CF that can handle singularities for every
iteration, a supernodal CF for an SPSD is demonstrated herein through an
adjustment to the Factorize operator, in Subsection 4.1.1. However, typically
in the AI algorithm the singularities are only present in C

XX
due to aliasing

in the fixed effects and so such a CF could simply be applied to this partition
of C, which is relatively small for most models used for plant variety trials.
The singularities could be detected, then a full rank parameterization could be
selected and used for all remaining iterations since the singularities are typically
the same for each iteration as they are independent of the variance parameters.
The time for this CF would be a relatively minor portion of the time required for
fitting most models, then the AI algorithm could proceed with an SPDC matrix.
Nevertheless, other applications such as chemical physics or linear programming
feature matrices that can have singularities throughout the coefficient matrix,
and only require one CF to be performed in their respective algorithms. In
these applications having a faster method to factorize an SPSD matrix could
potentially be quite useful.

For a more comprehensive review of the Cholesky factorization of SPSD matrices
see Mazur (2022).

4.1.1 Singularity-Handling Factorization Operator

The operator Factorize+ is defined to refer to a Factorize operation that can
handle a singular input matrix. While for example Factorize(C{B(k)}{B(k)})
only modifies C{B(k)}{B(k)},

Factorize+(C{B(k)}{B(k)}) may modify either C{B(k)}{B(k)} to make it non-

singular (as in the zeroing-out method), or modify {B(k)} to create a {B(k)+} to
ignore the linearly dependent rows of C{B(k)}{B(k)} (as in the avoiding method).
This is achieved by permuting all of the linearly dependent rows in the supernode
to the top of the supernode such that {B(k)+} remains a contiguous set, and keep-
ing track of their number denoted as ζ{B(k)}. As a result d{B(k)} = |rk| − ζ{B(k)}
denotes the rank of C{B(k)}{B(k)}. In either case Factorize+ denotes finding an

L{B(k)+}{B(k)+} = Factorize+(C{B(k)}{B(k)}) such that (L{B(k)+}{B(k)+})
>L{B(k)+}{B(k)+} =

C{B(k)+}{B(k)+}, sans potential modification of the linearly dependent rows,

and {B(k)+} = {B(k)} for the zeroing-out method (and thus ζ{B(k)} = 0 and

d{B(k)} = |B(k)|). In the SPD case Factorize and Factorize+ achieve the
same result.

13 Version: September 4, 2023

Further bookkeeping is required for the avoiding method, as all of the permuta-
tions are applied only within each supernode locally during the CF, and once the
CF has been completed for all supernodes, they can be “synchronised” such that
they all share the new matrix ordering, and the columns corresponding to lin-
early dependent rows can be avoided at the cost of some additional bookkeeping
which leads to a potential reduction in the size of {S(k)}.

14 Version: September 4, 2023

5. Computational
Implementation

5.1 Introduction

This chapter shows how the functions (defined in Chapter 3) are then imple-
mented in an efficient fashion, primarily through the use of highly optimized
third party library routines. These routines are first introduced in Section 5.2,
and then it is shown how with the use of some minor pre-processing steps (in-
cluding pre- and post-multiplication by permutation matrices see Appendix A),
the routines can be used to perform the computations necessary for the func-
tions (Section 5.3). Existing open source implementations of parts of the AI
algorithm based on some of these routines are also introduced in Section 5.4.
Concluding remarks are presented in Section 5.5.

5.2 Basic Linear Algebra Subprograms (BLAS), Lin-

ear Algebra PACKage (LAPACK) and BLAS-like

subroutines

The following is a brief alphabetically ordered list of Basic Linear Algebra Sub-
programs (BLAS), LAPACK and BLAS-like subroutines. Their purpose is to
implement some specific mathematical operation on a dense matrix which is
stored as a collection of some form of decimal number. The first letter of the
routine determines the type of decimal number the subroutine operates on (ex-
cept for TWOSIDEDTRSM because it is written in C++ and is templated, so it
automatically works for any of the various data types), in this work all sub-
routines work with double precision numbers, so all subroutines are preceded
with a “D” which is prepended when the subroutine is formally referred to. In
the following this first letter is omitted. The names are typically somewhat
informative regarding what the subroutine does but there is no fixed rule to
determine it. The following has the name and level of the subroutine (level 3

15 Version: September 4, 2023

is typically order n3 FLOPs: matrix-matrix operations while level 2 is typically
order n2 matrix-vector operations and level 1 is typically order n vector scalar
operations), followed by the purpose of the subroutine, followed by the algebra,
followed by roughly how many FLOPs it requires (many of the calculations are
of the form of the number of FLOPs per element multiplied by the number of
elements, for the derivation of the non-trivial FLOP results see Mazur (2022)),
and finally where it is used. The below are implemented in the Intel MKL and are
documented in Intel (2019), with the exception of TWOSIDEDTRSM is documented
in Poulson et al. (2013).

GEMM–3 “Computes a matrix-matrix product with general
matrices. C := α× op(A) × op(B) +β ×C, where
op(X) is one of op(X)= X, or op(X)= X>, α and
β are scalars, A, B and C are matrices: op(A) is
an m-by-k matrix, op(B) is a k-by-n matrix, C is
an m-by-n matrix”, roughly 2mkn FLOPs. Used in
back-updating and in updating the inverse.

GEMMT–3 “Computes a matrix-matrix product with general
matrices but updates only the upper or lower tri-
angular part of the result matrix. The operation is
defined as C := α× op(A) × op(B) +β×C, where
op(X) is one of op(X) = X, or op(X) = X>, α and
β are scalars, A, B and C are matrices: op(A) is an
n-by-k matrix, op(B) is a k-by-n matrix, C is an
n-by-n upper or lower triangular matrix”, roughly
n2k FLOPs. Used in forward-updating the inverse.

GEMV–2 “Computes a matrix-vector product using a general
matrix.”“The operation is defined as y := α×A×
x + β × y or y := α × A> × x + β × y where α
and β are scalars, x and y are vectors and A is
an m-by-n matrix.”, roughly 2mn FLOPs. Used in
forward-updating.

GER–2 “Performs a rank-1 update of a general matrix. A :=
α × x × y> + A where α is a scalar, x is an m-
element vector, y is an n-element vector, A is an
m-by-n general matrix”, roughly 2mn FLOPs. Used
in factorization.

LAUUM–3 “Computes the product [A :=] U × U> or [A :=]

L> ×L”, roughly n3/3 FLOPs where n is the order
of the matrix. Used in invert and cross multiply.

POTRF–3 “Computes the Cholesky factorization of a symmet-
ric (Hermitian) positive-definite matrix.” Finds the

16 Version: September 4, 2023

L (order n) such that A = LL> then A := L,
roughly n3/3 FLOPs. Used in factorization.

PSTRF–3 “Computes the Cholesky factorization with complete
pivoting of a real symmetric (complex Hermitian)
positive semi-definite matrix.” Finds the L (order
n) such that P>AP = LL> “where P is a permu-
tation matrix stored as vector piv” then A := L,
roughly n3/3 FLOPs. Used in factorization.

SCAL–1 “Computes the product of a vector by a scalar. x :=
a×x where a is a scalar, x is an n-element vector”,
roughly n FLOPs. Used in factorization.

SWAP–1 “Swaps a vector with another vector” x,y := y,x,
roughly 2n FLOPs where n is the size of the vector.
Used in factorization.

SYMM–3 “Computes a scalar-matrix-matrix product with one
symmetric matrix and add the result to a scalar-
matrix product . The operation is defined as C :=
α×A×B+β×C or C := α×B×A+β×C, where
where α and β are scalars, A is a symmetric matrix,
B andC arem-by-nmatrices”, roughlym2n FLOPs
in the first case. Used in symmetric multiplication.

SYRK–3 “Performs a symmetric rank-k update.”“The oper-

ation is defined as C := α ×A ×A> + β × C, or
C := α × A> × A + β × C, where α and β are
scalars, C is an n-by-n symmetric matrix, A is an
n-by-k matrix in the first case and a k-by-n matrix
in the second case”, roughly n2k FLOPs. Used in
back-updating.

TRSM–3 “Solves a triangular matrix equation” (and thus es-
sentially multiplies a matrix by the inverse of a tri-
angular matrix in a cheaper way) “op(A) × X =
α×B, or X × op(A) = α×B, where α is a scalar,
X and B are m-by-n matrices, A is a unit, or non-
unit, upper or lower triangular matrix, op(A) is one
of op(A) = A, or op(A) = A>”“The matrix B is
overwritten by the solution matrix X”, i.e. X := B,
roughly m2n FLOPs. Used in forward-solution and
back-solution.

TRTRI–3 “Computes the inverse of a triangular matrix”. A :=
A−1 where A is a triangular matrix, roughly n3/3
FLOPs where n is the order of the matrix. Used in
invert and cross multiply.

17 Version: September 4, 2023

TWOSIDEDTRSM–3 “Performs a two-sided triangular solves with mul-
tiple right-hand sides which preserves the symme-
try of the input matrix, either A := L−1AL−> or
A := U−>AU−1”, roughly n3 FLOPs where n is
the order of the matrix. Used in invert and cross
multiply.

5.3 BLAS implementations

In this section function names from Section 3 can be shown on the left with
their BLAS/LAPACK/BLAS-like implementations on the right.

5.3.1 Implementation of Factorize

5.3.1.1 LAPACK variant

This variant factorizes C{B(k)}{B(k)} using a LAPACK optimized routine built for
this purpose which achieves the factorization presumably via some recursively
blocked process, as used in the open source version. It is impossible to know ex-
actly how the Intel MKL implementation operates because it is not open source.
The subroutine DPOTRF computes the factorization LL> rather than L>L as
the CF described previously requires. The matrix T ≡ C{B(k)}{B(k)} is denoted

as the diagonal part of the kth supernode, where in this case there is no copying
as T is not actually formed, but it is purely for notational purposes and any
changes that occur to T occur to C{B(k)}{B(k)}—in other words a deep copy. Re-
verse permutations were used to create a F such that F = PRevTPRev. Then
{A(k)} = {|B(k)|− i+1}, {C(k)} = {|B(k)|−j+1}, {D(k)} = {j} and {E(k)} = {i}
with j iterating from |B(k)| to 1 and i iterating from 1 to j:

F {A(k)}{C(k)} := T {D(k)}{E(k)} F {A(k)}{C(k)} = T {D(k)}{E(k)}. (5.1)

Then F is factorized:

F := Factorize(F) DPOTRF(“L”, |B(k)|,F , |B(k)|, INFO), (5.2)

where INFO holds an error value that provides information in case something
went wrong. Finally F needs to be reversely permuted back into T :

T {A(k)}{C(k)} := F {D(k)}{E(k)} T {A(k)}{C(k)} = F {D(k)}{E(k)}. (5.3)

18 Version: September 4, 2023

5.3.2 Implementation of Factorize+

5.3.2.1 LAPACK variant with singularity handling

This variant is an alternative LAPACK variant that uses the avoiding method to
handle singularities, which works in the same way as the above except it uses
DPSTRF instead of DPOTRF.

F {A(k)}{C(k)} := T {D(k)}{E(k)}
F {A(k)}{C(k)} = T {D(k)}{E(k)}. (5.4)

The matrix T could have been permuted in place without the use of F but such
permutation requires some temporary space anyway, so F simplifies operations
in this regard. Then F is factorized:

F := Factorize+(F)
DPSTRF(“L”, |B(k)|,F , |B(k)|, PERM, d{B(k)}, 0.0001, WORK, INFO).

(5.5)

The subroutine DPSTRF factorizes the input matrix column by column starting
from the left and after each column it permutes the column with the largest
pivot value to be the next column factorized, as this is what the open source
version does. It is hard to know exactly what goes on in the Intel MKL imple-
mentation as it is closed source, but this is the best guess of the author. This
permutation is stored in PERM. Once none of the remaining pivots are greater
than the tolerance (0.0001 was chosen for this) then the rest of the columns are
classed as singular and then the rank of C{B(k)}{B(k)} is reported in d{B(k)}. The

vector WORK is just some extra memory (presumably to facilitate the permuta-
tions) and INFO holds an error value that provides information in case something
went wrong. Finally F needs to be reversely permuted back into T :

T {A(k)}{C(k)} := F {D(k)}{E(k)} T {A(k)}{C(k)} = F {D(k)}{E(k)}, (5.6)

then ζ{B(k)} = |B(k)| − d{B(k)} and finally {B(k)+} := {B(k)}
1+ζ
{B(k)}

:|B(k)|

5.3.2.2 Matrix variant with the zeroing-out method for singularity-handling

This variant factorizes C{B(k)}{B(k)} row by row with j iterating from |B(k)| to 1

and T is as above. Then defining {T∗} = {1 : (j − 1)}, {B∗} = {j},

T =

[
T :{T∗}{T∗}: (T {B∗}{T∗})

>

T {B∗}{T∗} t{B∗}{B∗}

]
. (5.7)

19 Version: September 4, 2023

If (t{B∗}{B∗} < 0.0001) Then

t{B∗}{B∗} := 100000000

T {B∗}{T∗} := 0

Else

t{B∗}{B∗} := t1/2{B∗}{B∗}

T {B∗}{T∗} := t−1
{B∗}{B∗}T {B∗}{T∗}

T :{T∗}{T∗}: := T :{T∗}{T∗}:−
(T {B∗}{T∗})

>T {B∗}{T∗}

End If

If (t{B∗}{B∗} < 0.0001) Then

t{B∗}{B∗} := 100000000 (5.8)

T {B∗}{T∗} := 0 (5.9)

Else

t{B∗}{B∗} := SQRT(t{B∗}{B∗}) (5.10)

DSCAL(j − 1, (t{B∗}{B∗})
−1,T {B∗}{T∗}, 1) (5.11)

DSYRK(“L”, “T”, j − 1, 1,−1.0,T {B∗}{T∗},

1, 1.0,T {1},{1}, |B(k)|) (5.12)

End If

and finally {B(k)+} := {B(k)}.

5.3.2.3 Matrix variant with the avoiding method for singularity-handling

This variant factorizes C{B(k)}{B(k)} row by row with j iterating from |B(k)|
to 1, and finishing prematurely if j = ζ{B(k)} as this means all the remain-
ing rows are linearly dependent. The matrix T is as above and denoting
S ≡ C{B(k)}({S(k)}∪{B(k)}) ≡ [C{B(k)}{S(k)}

C
{B(k)}{B(k)}] ≡ [R T] (i.e. S refers

to the entire supernode while R refers to the off-diagonal part) and f ≡ b{B(k)}.

Both S and f are dense. Then defining {T∗} = {(1 + ζ{B(k)}) : (j − 1)},
{B∗} = {j}. Finally denoting a temporary a and A that are meaningless and
serve only to temporarily store values due to swapping (the equivalent of WORK
in DPSTRF)

20 Version: September 4, 2023

If (t{B∗}{B∗} < 0.0001) Then

ζ{B(k)} := ζ{B(k)} + 1

A := T
1:|B(k)|,ζ

{B(k)}

T
1:|B(k)|,ζ

{B(k)}
:= T

1:|B(k)|,j

T
1:|B(k)|,j := A

A := S
j,1:(|B(k)|+|S(k)|)

S
j,1:(|B(k)|+|S(k)|) := S

ζ
{B(k)}

,1:(|B(k)|+|S(k)|)

S
ζ
{B(k)}

,1:(|B(k)|+|S(k)|) := A

a := f ζ
{B(k)}

f ζ
{B(k)}

:= f j

f j := a

Else

t{B∗}{B∗} := t1/2{B∗}{B∗}

T {B∗}{T∗} := t−1
{B∗}{B∗}T {B∗}{T∗}

T :{T∗}{T∗}: := T :{T∗}{T∗}:−
(T {B∗}{T∗})

>T {B∗}{T∗}

End If

If (t{B∗}{B∗} < 0.0001) Then

ζ{B(k)} := ζ{B(k)} + 1 (5.13)

DSWAP(|B(k)|,T
1:|B(k)|,ζ

{B(k)}
, 1,

T
1:|B(k)|,j , 1) (5.14)

DSWAP(|S(k)|,S
j,1:(|B(k)|+|S(k)|), 1,

S
ζ
{B(k)}

,1:(|B(k)|+|S(k)|), 1) (5.15)

SWAPDOUBLE(f ζ
{B(k)}

,f j) (5.16)

Else

t{B∗}{B∗} := SQRT(t{B∗}{B∗}) (5.17)

DSCAL(j − 1, (t{B∗}{B∗})
−1,T {B∗}{T∗}, 1) (5.18)

DSYRK(“L”, “T”, j − 1− ζ{B(k)}, 1,−1.0,T {B∗}{T∗},

1, 1.0,T {1+ζ
{B(k)}

},{1+ζ
{B(k)}

}, |B(k)|) (5.19)

End If

Where SWAPDOUBLE is a subroutine written by the author to swap two double
precision numbers rather than using any BLAS for that task. Finally {B(k)+} :=
{B(k)}

1+ζ
{B(k)}

:|B(k)|.

5.3.3 Implementation of Back-Solve

There is only one variant of this which uses the dense BLAS triangular solve to
do the solve. Then newly defining T+ ≡ C{B(k)+}{B(k)+}, R

+ ≡ C{B(k)+}{S(k)}
to be the off-diagonal part of the supernode :

C{B(k)+}{S(k)} := (C{B(k)+}{B(k)+})
−1)>C{B(k)+}{S(k)}DTRSM(“L”, “L”, “T”, “N”, |B(k)+|, |S(k)|, 1.0,

T+
{1},{1}, |B(k)|,R+

{1},{1}, |B(k)|) (5.20)

The implementation of Forward-Solve occurs in essentially the same way ex-
cept that the triangular matrix is not transposed.

21 Version: September 4, 2023

5.3.4 Implementation of Factorize and Back-Solve together
with the zeroing-out method for singularity-handling

This vector-vector variant achieves the Factorize and Back-Solve steps to-
gether row by row with j iterating from |B(k)| to 1. The matrices S and f are de-
fined as above. Then defining λ = (|S(k)|+j), ι = (|S(k)|+1), {T∗} = {1 : (j−1)},
{B∗} = {j}, {L∗} = {1 : (λ− 1)}, {R∗} = {λ}, {D∗} = {ι : (λ− 1)}.

Then the following partitioning can occur:

S =

[
S:{T∗}{L∗}: (s{B∗}{L∗})

>

s{B∗}{L∗} s{B∗}{R∗}

]
, (5.21)

f =

[
f{T∗}

f{B∗}

]
. (5.22)

If (s{B∗}{R∗} < 0.0001) Then

s{B∗}{R∗} := 100000000

f := 0

s{B∗}{L∗} := 0

Else

s{B∗}{R∗} := (s{B∗}{R∗})
1/2

f{B∗} := (s{B∗}{R∗})
−1f{B∗}

s{B∗}{L∗} := (s{B∗}{R∗})
−1s{B∗}{L∗}

f{T∗} := f{T∗}−
(s{B∗}{D∗})

>f{B∗}

S:{T∗}{L∗}: := S:{T∗}{L∗}:−
(s{B∗}{D∗})

>s{B∗}{L∗}

End If

If (s{B∗}{R∗} < 0.0001) Then

s{B∗}{R∗} := 100000000 (5.23)

f := 0 (5.24)

s{B∗}{L∗} := 0 (5.25)

Else

s{B∗}{R∗} := SQRT(s{B∗}{R∗}) (5.26)

DSCAL(1, (s{B∗}{R∗})
−1, f{B∗}, 1) (5.27)

DSCAL(λ− 1, (s{B∗}{R∗})
−1, s{B∗}{L∗}) (5.28)

DGER(j − 1, 1,−1.0, (s{B∗}{ι})
>, 1,

f{B∗}, 1, 1,f{T∗}, |B(k)|) (5.29)

DGER(j − 1, λ− 1,−1.0, (s{B∗}{ι})
>, 1,

s{B∗}{L∗}, 1,S{1}{1}, |B(k)|) (5.30)

End If

Finally {B(k)+} := {B(k)}.

5.3.5 Implementation of Factorize and Back-Solve together
with the avoiding method for singularity-handling

This vector-vector variant achieves the Factorize and Back-Solve steps to-
gether row by row with j iterating from |B(k)| to 1, and finishing prematurely if
j = ζ{B(k)} as this means all the remaining rows are linearly dependent. S and

22 Version: September 4, 2023

f are defined as above. Then defining λ = (|S(k)|+ j), ι = (|S(k)|+ 1 + ζ{B(k)}),

{T∗} = {(1 + ζ{B(k)}) : (j − 1)}, {B∗} = {j}, {L∗} = {1 : (λ− 1)}, {R∗} = {λ},
{D∗} = {ι : (λ− 1)}, while also defining a and A as meaningless temporaries.

If (s{B∗}{R∗} < 0.0001) Then

ζ{B(k)} := ζ{B(k)} + 1

s{B∗}{R∗} := 100000000

f := 0

s{B∗}{L∗} := 0

Else

s{B∗}{R∗} := (s{B∗}{R∗})
1/2

f{B∗} := (s{B∗}{R∗})
−1f{B∗}

s{B∗}{L∗} := (s{B∗}{R∗})
−1s{B∗}{L∗}

f{T∗} := f{T∗}−
(s{B∗}{D∗})

>f{B∗}

S:{T∗}{L∗}: := S:{T∗}{L∗}:−
(s{B∗}{D∗})

>s{B∗}{L∗}

End If

If (s{B∗}{R∗} < 0.0001) Then

ζ{B(k)} := ζ{B(k)} + 1 (5.31)

s{B∗}{R∗} := 100000000 (5.32)

f := 0 (5.33)

s{B∗}{L∗} := 0 (5.34)

Else

s{B∗}{R∗} := SQRT(s{B∗}{R∗}) (5.35)

DSCAL(1, (s{B∗}{R∗})
−1, f{B∗}, 1) (5.36)

DSCAL(λ− 1, (s{B∗}{R∗})
−1, s{B∗}{L∗}) (5.37)

DGER(j − 1− ζ{B(k)}, 1,−1.0, (s{B∗}{ι})
>, 1,

f{B∗}, 1, 1,f{T∗}, |B(k)|) (5.38)

DGER(j − 1− ζ{B(k)}, λ− 1,−1.0, (s{B∗}{ι})
>, 1,

s{B∗}{L∗}, 1,S{1+ζ
{B(k)}

}{1}, |B(k)|) (5.39)

End If

Finally {B(k)+} := {B(k)}
1+ζ
{B(k)}

:|B(k)|

5.3.6 Implementation of SchurComplement

The following establishes a right-looking scheme and as a result rather than up-
dating supernodes C{T(k)}{T(k)} all at once the updating process is split across

the various supernodes. Then denoting {T∗} = ({ck} ∩ {ri}), {L∗} = ({ck} ∩
{ci}) with i iterating in any order such that {T∗} 6= ∅ and letting R+ ≡
C{B(k)+}{T∗} and Q+ ≡ C{B(k)+}{L∗}, and a single copy A+ := (R+)> made

to avoid having to transpose R+ multiple times.

C :{T∗}{T∗}: :=: C :{T∗}{T∗}:−
(C{B(k)+}{T∗})

>C{B(k)+}{T∗}

C :{T∗}{L∗}: :=: C :{T∗}{L∗}:−
(C{B(k)+}{T∗})

> ∗C{B(k)+}{L∗}

DSYRK(“L”, “T”, |T∗|, |B(k)+|,−1.0,R+
{1}{1},

|B(k)|, 1.0,C :{T∗}{T∗}:, |T∗|,) (5.40)

DGEMM(“N”, “N”, |T∗|, |L∗|, |B(k)+|,−1.0,A+
{1}{1},

(|B(k)|+ |S(k)|),Q+

{1:|B(k)+|}{1:|L∗|}
, |B(k)+|, 1.0,C :{T∗}{L∗}:, |T∗|).

(5.41)

23 Version: September 4, 2023

Additionally the overhead in performing the gathering and scattering is reused
where possible in the performing of Back-UpdateSCP. In the case of updates to
r the overhead of gathering and scattering into copies can be avoided since it is
entirely dense.

5.3.7 Implementation of Back-UpdateSCP

Similarly updating the right hand side is split across the various supernodes,
letting {T∗} = ({ck} ∩ {ri}),with i iterating in any order such that {T∗} 6= ∅.
The matrix A+ and vector f+ are defined as above.

b{T∗} :=: b{T∗}−
(C{B(k)+}{L∗})

>b{B(k)+}

DGEMM(“N”, “N”, |T∗|, 1, |B(k)+|,−1.0,A+
{1}{1},

|B(k)|+ |S(k)|,f+

{1:|B(k)+|}
, |B(k)+|, 1.0, b{T∗}, |T∗|).

(5.42)

5.3.8 Implementation of SymmetricMultiply

This demonstration of SymmetricMultiply usesA = (C{B(k)+}{B(k)+})
−1C{B(k)+}{S(k)}

assuming that it has already been calculated in a previous Forward-Solve step.
Then letting T+ ≡ C{B(k)+}{B(k)+}, which needs to be gathered as it is not stored

in contiguous memory and also R+ is as before.

C{B(k)+}{S(k)} := −AC
:{S(k)}{S(k)}: DSYMM(“R”, “L”, |B(k)+|, |S(k)|,−1.0,T {1}{1}, |S(k)|,

A, |B(k)+|, 0,R+
{1}{1}, |B(k)|). (5.43)

5.3.9 Implementation of InvertCrossMultiply

There are multiple implementations of this step, the DTRTRI and DLAUUM method
which exploits symmetry and Intel MKL BLAS, a method based on twosidedtrsm
from the Elemental (Poulson et al., 2013) library which exploits symmetry in a
more general way and the standard two calls of TRSM (the way CHOLMOD-Extra
does it) which does not exploit symmetry.

5.3.9.1 Implementation using DTRTRI and DLAUUM

First C{B(k)}{B(k)} is inverted using DTRTRI then the final result is calculated

using DLAUUM, however because DLAUUM computes L>L rather than LL> then
reverse permutations must be used. With T+ ≡ C{B(k)+}{B(k)+} and F+ =

PRevT
+PRev. Then denoting {A(k)} = {|B(k)+|−i+1}, {C(k)} = {|B(k)+|−j+1},

24 Version: September 4, 2023

{D(k)} = {j} and {E(k)} = {i} with j iterating from |B(k)+| to 1 and i iterating
from 1 to j:

F+

{A(k)}{C(k)}
:= T+

{D(k)}{E(k)}
F+

{A(k)}{C(k)}
= T+

{D(k)}{E(k)}
. (5.44)

Then F+ is inverted and cross multiplied in place:

F+ := (F+)−1

F+ := F+(F+)>
DTRTRI(“L”, “N”, |B(k)+|,F+, |B(k)+|, INFO), (5.45)

DLAUUM(“L”, |B(k)+|,F+, |B(k)+|, INFO). (5.46)

where INFO holds an error value that provides information in case something
went wrong. Finally F+ needs to be reversely permuted back into T+:

T+

{A(k)}{C(k)}
:= F+

{D(k)}{E(k)}
T+

{A(k)}{C(k)}
= F+

{D(k)}{E(k)}
. (5.47)

5.3.9.2 Implementation based on twosidedtrsm

This implementation operates differently, and it requires a temporary S+ :=
C{B(k)+}{B(k)+} = L{B(k)+}{B(k)+}, set prior to the beginning of the SIS process

for the kth supernode, because twosidedtrsm cannot multiply a matrix by its
own inverse, instead it cross-multiplies a matrix by the inverse of another ma-
trix. Then T+ ≡ C{B(k)+}{B(k)+} is pre and post-multiplied by the inverse of S+

via the solution of triangular systems. An interface was written by the author
called forttwosidedtrsm that was used since Elemental is not written in FOR-
TRAN (the implementation of this is in Appendix C).

C{B(k)+}{B(k)+} := (S+)−1C{B(k)+}{B(k)+}((S
+)−1)> forttwosidedtrsm(|B(k)+|, |B(k)+|, |B(k)|,

S+

:,{1:|B(k)+|}
, |B(k)|,T+

:,{1:|B(k)+|}
, ζ{B(k)}). (5.48)

5.3.9.3 Implementation using two TRSM calls

This implementation is very similar to the implementation using twosidedtrsm
except it does this using two TRSM calls, which fails to exploit symmetry.

25 Version: September 4, 2023

C{B(k)+}{B(k)+} := (S+)−1C{B(k)+}{B(k)+}

C{B(k)+}{B(k)+} := C{B(k)+}{B(k)+}((S
+)−1)>

DTRSM(“L”, “L”, “N”, “N”, |B(k)+|, |B(k)+|, 1.0,
S+
{1}{1}, |B(k)|,T+

{1}{1}, |B(k)|), (5.49)

DTRSM(“R”, “L”, “T”, “N”, |B(k)+|, |B(k)+|, 1.0,
S+
{1}{1}, |B(k)|,T+

{1}{1}, |B(k)|). (5.50)

In theory the two TRSM calls could be executed in reverse order without conse-
quence, but for reasons unknown to the author calling them in this order was
faster by a non-trivial amount in preliminary tests.

5.3.10 Implementation of Forward-UpdateInv

5.3.10.1 Implementation to exploit symmetry DGEMMT

This version is very similar to Back-UpdateSCP, except that sinceC{B(k)+}{B(k)+}
is symmetric, only the lower triangle of it needs to be updated. There is an Intel
MKL subroutine DGEMMT that exploits this symmetry in the result matrix how-
ever, so this is used instead. Afterwards a subroutine called COMPLETESQUARE
written by the author is used to copy the lower triangle of the diagonal part
into the top triangle, which may be necessary for the invert and cross multiply
step. This is significantly cheaper than computing both triangles, to the point of
being completely dominated by the calculation of the lower triangle. Symmetry
is exploited using DGEMMT and COMPLETESQUARE. Using R+ and T+ as before,
with A = (C{B(k)+}{B(k)+})

−1C{B(k)+}{S(k)}:

C{B(k)+}{B(k)+} := C{B(k)+}{B(k)+}−

C{B(k)+}{S(k)}A
>

DGEMMT(“L”, “N”, “T”, |B(k)+|, |S(k)|,−1.0,

R+
{1}{1}, |B(k)|,A{1}{1}, |B(k)|, 1.0,T+

{1}{1}, |B(k)|), (5.51)

COMPLETESQUARE(T+

{1:|B(k)+|}{1:|B(k)+|}
). (5.52)

5.3.10.2 Implementation using DGEMM

This is the same as above, except that symmetry of C{B(k)+}{B(k)+} is not ex-
ploited:

C{B(k)+}{B(k)+} := C{B(k)+}{B(k)+}−

C{B(k)+}{S(k)}A
>

DGEMM(“N”, “T”, |B(k)+|, |B(k)+|, |S(k)|,−1.0,

R+
{1}{1}, |B(k)|,A{1}{1}, |B(k)|, 1.0,T+

{1}{1}, |B(k)|). (5.53)

5.3.11 Leading dimension

Many of the BLAS and LAPACK routines have arguments associated with the
dimensions of the matrices, as well as leading dimensions. When the matrix

26 Version: September 4, 2023

arguments are entire matrices, the latter are effectively redundant, however
when the matrices to be operated on are partitions of larger dense matrices
then these can be used to avoid unnecessary copying. Matrices are stored as
vectors in a computer, with additional information regarding the number of
rows and columns in order to treat this vector as a matrix. FORTRAN stores
matrices by columns, which means that all of the elements in the same column
are stored contiguously. As a result of this, partitioning a matrix by column
is very straightforward for the processor, the relevant columns can simply be
taken and put together in the partition since it knows how many elements there
are per column. In particular, taking the first however many columns of a
matrix requires no copying, one simply takes the elements associated with these
columns from the vector of memory. However, partitioning by row is not as
straight forward, if one wanted to take a number of rows of a matrix these
would have to be found and then copied into a new contiguous memory vector,
regardless where these rows are in the original matrix. The leading dimension
argument is a way that the user can supply a matrix with say b rows but only
take a partition of the first a ≤ b rows. In this case the processor takes the first
a elements in the first column, then skips the next b − a elements and moves
onto the next column and so on.

5.4 Existing open source alternatives

5.4.1 CHOLMOD and CHOLMOD-Extra

It is easiest to call the functions from C (ISO, 2011) as CHOLMOD (Chen et al.,
2008) and CHOLMOD-Extra (Luttinen, 2018) are written in C.

5.4.1.1 Symbolic factorization and reverse permutation

CHOLMOD computes a LL> rather than a L>L so reverse permutations need
to be applied, so letting CHOLMODPERM = n − 1, n − 2, . . . 0 (as CHOLMOD is
zero-indexed):

L := cholmod_l_analyze_p2(TRUE,C, CHOLMODPERM, NULL, 0,&CHOLMODCOMMON);
(5.54)

Where TRUE refers to a CF as opposed to an LDLT factorization, NULL is an
option to not subset the matrix and CHOLMODCOMMON (passed by reference hence
the &) stores auxiliary information at different steps in the process. This creates
the symbolic factorization and stores it in L.

5.4.1.2 Cholesky factorization

cholmod_l_factorize(C,L,&CHOLMODCOMMON); (5.55)

CHOLMOD uses a forward left-looking algorithm for the factorization.

27 Version: September 4, 2023

5.4.1.3 Forward-solving and back-solving

CHOLMOD does not do any solving in factorization, so both of these steps must
be applied, but this is all wrapped up in the following function. Curiously L
does not overwrite C but C can simply be deleted at this point.

β̃ := cholmod_l_solve(CHOLMOD_A,L, b,&CHOLMODCOMMON); (5.56)

CHOLMOD_A simply tells CHOLMOD to use C as the coefficient matrix rather
than CC> which is another option in the case of rectangular C. Similarly β̃
does not overwrite b but b can be deleted at this point.

5.4.1.4 Calculation of the sparse inverse subset

A := cholmod_l_spinv(L,&CHOLMODCOMMON); (5.57)

where in this caseA is used to store the SIS ofC. The software CHOLMOD-Extra
is used to compute the SIS as CHOLMOD in its base form does not have this
functionality. CHOLMOD-Extra uses a back left-looking algorithm to compute
the SIS.

5.4.1.5 Simplicial mode

Within CHOLMOD (and by extension CHOLMOD-Extra) there is the option to
run in either supernodal mode, or simplicial mode (which is single-nodal mode).
This is denoted as CHOLMOD-sn and CHOLMOD-Extra-sn respectively.

5.4.1.6 Key BLAS libraries

The factorization occurs using LAPACK variant (Subsubsection 5.3.1.1), Back-Solve
(Subsubsection 5.3.3) and SchurComplement (Subsubsection 5.3.6), while the
calculation of the SIS occurs using Forward-Solve (Subsubsection 5.3.3), SymmetricMultiply
(Subsubsection 5.3.8), two TRSM calls (Subsubsection 5.3.9.3) and DGEMM (Sub-
subsection 5.3.10.2).

5.4.2 CHOMPACK

It is easiest to call the various functions from Python (Van Rossum & Others,
2007) as CHOMPACK (Vandenberghe & Andersen, 2015) is written in Python.

28 Version: September 4, 2023

5.4.2.1 Symbolic factorization and reverse permutation

CHOMPACK computes a LL> rather than a L>L so reverse permutations need
to be applied, so letting CHOLMODPERM = n − 1, n − 2, . . . 0 (as CHOMPACK is
zero-indexed):

symb := symbolic(C, p = CHOMPACKPERM, merge_function = fmerge)
(5.58)

Where merge_function = fmerge is an option to add duplicate elements if
they appear, which doesn’t matter since they are not present. This creates the
symbolic factorization and stores it in symb.

5.4.2.2 Cholesky factorization

cholesky(C) (5.59)

CHOMPACK uses a forward multifrontal algorithm for the factorization.

5.4.2.3 Forward-solving and back-solving

CHOMPACK does not do any solving in factorization, so both of these steps
must be applied, but this is all wrapped up in the following function.

trsm(C, b) (5.60)

This trsm is not to be confused with the level 3 BLAS DTRSM.

5.4.2.4 Calculation of the sparse inverse subset

projected_inverse(C) (5.61)

CHOMPACK uses a back multifrontal algorithm for the calculation of the SIS.

5.4.2.5 Key BLAS Libraries

CHOMPACK uses an LDLT algorithm for the factorization, which means its
factorization has a forward solve and a backward solve, but its SIS calcu-
lation doesn’t have a backward solve component. Its factorization uses the
LAPACK variant (Subsubsection 5.3.1.1), Back-Solve (Subsubsection 5.3.3),
Forward-Solve (Subsubsection 5.3.3) and a scheme similar to SchurComplement
(Subsubsection 5.3.6) except that it does update C{T(k)}{T(k)} all at once (as

mentioned) using the level 3 BLAS DSYRK as it is multifrontal. For the SIS
it uses, SymmetricMultiply (Subsubsection 5.3.8), DTRTRI and DSYRK (tak-
ing the place of DLAUUM in Subsubsection 5.3.9.1) and DGEMM (Subsubsection
5.3.10.2).

29 Version: September 4, 2023

5.4.3 MUMPS

It is easiest to call the various functions from FORTRAN (Reid, 2008) as MUMPS
(Amestoy et al., 2000) is written in mainly FORTRAN.

5.4.3.1 Symbolic factorization and reverse permutation

MUMPS computes a LL> rather than a L>L so reverse permutations need to
be applied, so letting MUMPSPERM = n, n− 1, . . . 1 (as MUMPS is one-indexed):

mumps_par%JOB = 1 (5.62)

DMUMPS(mumps_par) (5.63)

Where mumps_par is a common object that stores everything related to the
matrix in question, i.e. C and b are parts of it and DMUMPS is the subroutine
that is called for each step, with mumps_par%JOB being used to select which
operation is to be performed, in this case it is the symbolic factorization due to
the value of 1. A value of 2 refers to CF and a value of 3 refers to one of the
types of solves.

5.4.3.2 Cholesky factorization

mumps_par%JOB = 2 (5.64)

DMUMPS(mumps_par) (5.65)

MUMPS uses a forward multifrontal algorithm for the factorization.

5.4.3.3 Forward-solving and back-solving

MUMPS has the capability to do forward solving in factorization but this feature
is used for a specific application, and is more likely to be less efficient in the
general case, so for that reason it is turned off. Therefore both of these steps
must be applied, but this is all wrapped up in the following function.

mumps_par%JOB = 3 (5.66)

DMUMPS(mumps_par) (5.67)

5.4.3.4 Calculation of the sparse inverse subset

mumps_par%ICNTL(30) = 1 (5.68)

mumps_par%JOB = 3 (5.69)

DMUMPS(mumps_par) (5.70)

30 Version: September 4, 2023

MUMPS does not have a true SIS interface, instead it has a selected inver-
sion interface where if it is provided with various indices of elements it will
find those elements of C−1. The relevant elements are placed into mumps_par
and the option mumps_par%ICNTL(30) must be set to 1 to enable this option.
MUMPS finds these elements via its forward-solve and back-solve routines, and
so mumps_par%JOB = 3. MUMPS does this by solving for a number of columns
of the identity matrix, and exploiting sparsity such that it only performs the
necessary calculations to find the selected elements of the inverse. This number
of columns is controlled by a blocking parameter mumps_par%ICNTL(27) and
for the remainder of this thesis the value of 4096 is chosen. This value was
chosen using some initial testing, and as the MUMPS user guide offers little
guidance in this matter this was what the author decided was sensible.

5.4.3.5 Key BLAS Libraries

MUMPS uses the LAPACK variant (Subsubsection 5.3.1.1), Back-Solve (Sub-
subsection 5.3.3), Forward-Solve (Subsubsection 5.3.3) and a scheme sim-
ilar to SchurComplement (Subsubsection 5.3.6) except that it does update
C{T(k)}{T(k)} all at once (as mentioned) using the level 3 BLAS DSYRK as it

is multifrontal. For the calculation of the SIS it uses only Back-Solve (Subsub-
section 5.3.3), Forward-Solve (Subsubsection 5.3.3) and DGEMM (Subsubsection
5.3.10.2).

5.5 Conclusions

This chapter introduced the Basic Linear Algebra Subprograms, as well as LA-
PACK and BLAS-Like routines, which are highly optimized dense linear algebra
libraries that can be used to perform various standard matrix operations very
efficiently in Section 5.2. The way that these routines could be used to perform
the various functions required for the AI algorithm was demonstrated in Section
5.3. Existing open source codes that could perform the most computationally
intensive steps of the AI algorithm were also introduced, in Section 5.4.

31 Version: September 4, 2023

Bibliography

Amestoy, Patrick R, Duff, Iain S, L’Excellent, Jean-Yves & Koster,
Jacko (2000). MUMPS: a general purpose distributed memory sparse solver.
In International Workshop on Applied Parallel Computing . Springer, Boston,
MA, 121-130.

Ashcraft, Cleve & Grimes, Roger (1989). The influence of relaxed su-
pernode partitions on the multifrontal method. ACM Transactions on Math-
ematical Software (TOMS) 15(4), 291–309.

Bunch, James R (1971). Analysis of the diagonal pivoting method. SIAM
Journal on Numerical Analysis 8(4), 656–680.

Chen, Yanqing, Davis, Timothy A, Hager, William W & Rajaman-
ickam, Sivasankaran (2008). Algorithm 887: CHOLMOD, supernodal
sparse Cholesky factorization and update/downdate. ACM Transactions on
Mathematical Software (TOMS) 35(3), 22.

Dayde, Michel J & Camichel, Rue (1995). A Block Version of the Eskow-
Schnabel Modified Cholesky Factorization.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
25.9977{&}rep=rep1{&}type=pdf

Eskow, Elizabeth & Schnabel, Robert B (1991). Algorithm 695: Software
for a new modified Cholesky factorization. ACM Transactions on Mathemat-
ical Software (TOMS) 17(3), 306–312.

Gilmour, A R (1998). ASREML, Technical Details. Technical report, NSW
DPI.

Gilmour, A R, Gogel, B J, Cullis, B R, Welham, S J & Thompson,
R (2015). ASReml User Guide Release 4.1 Functional Specification.
URL www.vsni.co.uk

Gilmour, Arthur R, Thompson, Robin & Cullis, Brian R (1995). Av-
erage information REML: An efficient algorithm for variance parameter esti-
mation in linear mixed models. Biometrics 51(4), 1440–1450.

32 Version: September 4, 2023

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.9977{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.9977{&}rep=rep1{&}type=pdf
www.vsni.co.uk

Gupta, Anshul (2000). WSMP: Watson sparse matrix package (Part-I: direct
solution of symmetric sparse systems). IBM TJ Watson Research Center,
Yorktown Heights, NY, Tech. Rep. RC 21886.

Gupta, Anshul, Joshi, Mahesh & Kumar, Vipin (1997). WSSMP: Watson
symmetric sparse matrix package. IBM TJ Watson Research Center.

Henderson, C R (1950). Estimation of genetic parameters (abstract). Annals
of Mathematical Statistics 21, 309–310.

Henderson, C R (1973). Sire Evaluation and Genetic Trends. Journal of
Animal Science 1973(Symposium), 10–41.
URL https://doi.org/10.1093/ansci/1973.Symposium.10

Intel (2019). Developer Reference for Intel Math Kernel Library - Fortran.
URL https://software.intel.com/en-us/
mkl-developer-reference-fortran

ISO (2011). IEC 9899: 2011 Information technology—Programming lan-
guages—C. International Organization for Standardization, Geneva, Switzer-
land 27, 59.

Liu, Joseph W H (1990). The role of elimination trees in sparse factorization.
SIAM Journal on Matrix Analysis and Applications 11(1), 134–172.

Luttinen, Jaakko (2018). cholmod-extra Documentation.
URL https://buildmedia.readthedocs.org/media/pdf/
cholmod-extra/stable/cholmod-extra.pdf

Mazur, Luke (2022). Computational Methods for the Fitting of Factor Analytic
Linear Mixed Models with Applications to Plant Variety Trials. Ph.D. thesis,
University of Wollongong.

Meyer, Karin (1989). Restricted maximum likelihood to estimate variance
components for animal models with several random effects using a derivative-
free algorithm. Genetics Selection Evolution 21(3), 317.

Patterson, H D & Thompson, R (1971). Recovery of interblock information
when block sizes are unequal. Biometrika 31, 545–554.

Poulson, Jack, Geijn, Robert A V A N D E & Bennighof, Jeffrey
(2012). (Parallel) Algorithms for Two-sided Triangular Solves and Matrix
Multiplication.
URL https://www.cs.utexas.edu/users/flame/pubs/
ElementalGenEig.pdf

Poulson, Jack, Marker, Bryan, de Geijn, Robert A, Hammond,
Jeff R & Romero, Nichols A (2013). Elemental: A new framework
for distributed memory dense matrix computations. ACM Transactions on
Mathematical Software (TOMS) 39(2), 1–24.

33 Version: September 4, 2023

https://doi.org/10.1093/ansci/1973.Symposium.10
https://software.intel.com/en-us/mkl-developer-reference-fortran
https://software.intel.com/en-us/mkl-developer-reference-fortran
https://buildmedia.readthedocs.org/media/pdf/cholmod-extra/stable/cholmod-extra.pdf
https://buildmedia.readthedocs.org/media/pdf/cholmod-extra/stable/cholmod-extra.pdf
https://www.cs.utexas.edu/users/flame/pubs/ElementalGenEig.pdf
https://www.cs.utexas.edu/users/flame/pubs/ElementalGenEig.pdf

Reid, John (2008). The new features of Fortran 2008. In ACM SIGPLAN
Fortran Forum. ACM New York, NY, USA, 27(2), 8-21.

Schnabel, Robert B & Eskow, Elizabeth (1990). A new modified
Cholesky factorization. SIAM Journal on Scientific and Statistical Computing
11(6), 1136–1158.

Searle, Shayle Roy & Khuri, Andre I (2017). Matrix Algebra Useful for
Statistics. John Wiley & Sons.

Smith, Alison B, Cullis, Brian R & Thompson, Robin (2001). Ana-
lyzing variety by environment data using multiplicative mixed models and
adjustments for spatial field trend. Biometrics 57(4), 1138–1147.

Van Rossum, Guido & Others (2007). Python Programming Language. In
USENIX annual technical conference. 41, 36.

Vandenberghe, Lieven & Andersen, Martin S (2015). Chordal Graphs
and Semidefinite Optimization. Foundations and Trends® in Optimization
1(4), 241–433.
URL http://www.nowpublishers.com/article/Details/OPT-006

34 Version: September 4, 2023

http://www.nowpublishers.com/article/Details/OPT-006

A. Permutation matrices

A brief notation introduction to the concept of a permutation matrix P ∗ (not to
be confused with P which is not a permutation matrix). A permutation matrix
is simply the identity matrix with some of the rows or columns rearranged. In
other words, it is a square matrix with exactly one 1 in each row and in each
column with the rest of the elements being 0. Pre-multiplying by a permuta-
tion matrix permutes the rows of a matrix for example P ∗A will have the rows
in a permuted order as compared to A while AP ∗ will have the columns rear-
ranged (except in the special case where P ∗ = I).An important property is that
P ∗(P ∗)> = P ∗I(P ∗)> = I. For the remainder of this report the superscript is
dropped from P ∗ where it is clear from context that P is a permutation matrix.

A special case of a permutation matrix is one that is anti-diagonal, i.e. it has
1s along the diagonal from the bottom left to the top right and 0s elsewhere.
Let this be denoted as PRev. A symmetric permutation using PRev produces
a matrix that is reversely permuted, i.e. the first diagonal element becomes the
last, second diagonal element becomes second last etc. Also PRev = P−1

Rev =
P>Rev. These are relevant because ASReml (See Gilmour et al. (2015) for a user
guide and Gilmour (1998) for technical details) implements absorption with k
iterating from n to 2 while conventional sparse and dense packages, including
the BLAS, expect the factorizations to occur with k iterating from 1 to n (or to
m in a supernodal setting).

35 Version: September 4, 2023

B. Calculation of FLOPs for
BLAS routines

In the following a supernode k is considered such that it has rows represented by
the set {B(k)} meaning that it has |B(k)| rows. It has columns in the off-diagonal
part represented by the set {S(k)} and thus has |S(k)| such columns. The FLOPs
performed by various subroutines are presented, in alphabetical order.

LAUUM–3 is used to multiply two matrices, the first upper triangular of order |B(k)|
and the second the transpose of the former, forming the symmetric result
matrix row by row. The number of multiplications and additions for the
jth element in the ith row of the resultant matrix are summed:

|B(k)|∑
i=1

i∑
j=1

(min(|B(k)| − i+ 1, |B(k)| − j + 1) + (min(|B(k)| − i+ 1, |B(k)| − j + 1)− 1))

=

|B(k)|∑
i=1

i∑
j=1

((|B(k)| − i+ 1) + (|B(k)| − i+ 1− 1))

=

|B(k)|∑
i=1

i∑
j=1

(2|B(k)| − 2i+ 1)

=

|B(k)|∑
i=1

(2|B(k)|i− 2i2 + i)

= 2|B(k)|(|B(k)|(|B(k)|+ 1)/2)− 2((2|B(k)|+ 1)|B(k)|(|B(k)|+ 1)/6) + |B(k)|(|B(k)|+ 1)/2

= |B(k)|2(|B(k)|+ 1)− (2|B(k)|+ 1)|B(k)|(|B(k)|+ 1)/3 + |B(k)|(|B(k)|+ 1)/2

≈ |B(k)|3 − 2|B(k)|3/3
= |B(k)|3/3.

POTRF–3 Dense Cholesky factorization of the diagonal block of size |B(k)|. The
number of multiplications and additions (Equation ??), divisions (Equa-
tion ??) and square roots (Equation ??) for the ith row respectively are

36 Version: September 4, 2023

summed below:

|B(k)|∑
i=1

(i(i− 1)/2 + i(i− 1)/2 + (i− 1) + 1)

= (|B(k)| − 1)|B(k)|(|B(k)|+ 1)/6 + (|B(k)| − 1)|B(k)|(|B(k)|+ 1)/6 + (|B(k)| − 1)|B(k)|/2 + |B(k)|
= (|B(k)| − 1)|B(k)|(|B(k)|+ 1)/3 + (|B(k)|+ 1)|B(k)|/2
≈ |B(k)|3/3.

PSTRF–3 As above, except that in the singular case for the diagonal block the
location of the singularities are not yet known, they are discovered in
this phase. If one were to assume that they are discovered last (worst
possible case) then the final ζ steps are not applied. The number of
multiplications, additions, divisions and square roots in the ith row not
applied as a result of this are summed below:

ζ
{B(k)}∑
i=1

(i(i− 1)/2 + i(i− 1)/2 + i− 1 + 1)

= (ζ{B(k)} − 1)ζ{B(k)}(ζ{B(k)} + 1)/6 + (ζ{B(k)} − 1)ζ{B(k)}(ζ{B(k)} + 1)/6 + (ζ{B(k)} − 1)ζ{B(k)}/2 + ζ{B(k)}

= (ζ{B(k)} − 1)ζ{B(k)}(ζ{B(k)} + 1)/3 + ζ{B(k)}(ζ{B(k)} + 1)/2

≈ ζ3
{B(k)}

/3.

So the final FLOPs for PSTRF in the singular case are ≈ (|B(k)|3 −
ζ3
{B(k)}

)/3.

TRSM–3 The number of multiplications and subtractions (Equation ??) and divi-
sions (Equation ??) for the ith row to solve for the corresponding elements
of the right hand side are summed below:

|B(k)|∑
i=1

((i− 1) + (i− 1) + 1)

= (|B(k)| − 1)|B(k)|/2 + (|B(k)| − 1)|B(k)|/2 + |B(k)|
= (|B(k)| − 1)|B(k)|+ |B(k)|
= |B(k)|2.

TRTRI–3 This can be considered as using the triangular part of the supernode
(post CF) of order |B(k)| to solve for the identity matrix order |B(k)|
taking advantage of the fact that the inverse of a lower triangular matrix
is lower triangular. The number of multiplications, subtractions and
divisions (Equation ??) in the ith row for the jth right hand side are

37 Version: September 4, 2023

summed below:

|B(k)|∑
j=1

|B(k)|∑
i=j

((i− 1) + (i− 1) + 1)

=

|B(k)|∑
j=1

|B(k)|∑
i=j

(2i− 1)

=

|B(k)|∑
j=1

(

|B(k)|∑
i=1

(2i− 1)−
j−1∑
i=1

(2i− 1))

=

|B(k)|∑
j=1

(2(|B(k)|(|B(k)|+ 1)/2)− |B(k)| − (2(j(j − 1)/2)− j + 1))

=

|B(k)|∑
j=1

(|B(k)|(|B(k)|+ 1)− |B(k)| − 2j(j − 1) + j − 1)

=

|B(k)|∑
j=1

(|B(k)|2 − 2j2 + 3j − 1)

= |B(k)|3 − 2((2|B(k)|+ 1)|B(k)|(|B(k)|+ 1)/6) + 3(|B(k)|(|B(k)|+ 1)/2)− |B(k)|
= |B(k)|3 − (2|B(k)|+ 1)|B(k)|(|B(k)|+ 1)/3 + 3|B(k)|(|B(k)|+ 1)/2− |B(k)|
≈ |B(k)|3 − 2|B(k)|3/3
= |B(k)|3/3.

TWOSIDED
TRSM–3

Poulson et al. (2012) claim that their variant 4 is the best one, so the
calculations of FLOPs herein pertain to that variant. There is a recursive
blocked algorithm at work such that the subscripts with a {C(k)} refer to
the current block, which splits the matrix into the top and bottom parts.
Therefore those with a {T∗} refer to those prior to the current block,
i.e. parts that have already been computed, while those with a {B∗} refer
to those after the current block. It is helpful to realise that L{C(k)}{C(k)}
and C{C(k)}{C(k)} are |C| by |C| matrices where |C| is the blocksize (and

thus there are |B(k)|/|C| blocks, assuming that |C| evenly divides |B(k)|,
for the sake of brevity), and so any {C(k)} subscript refers to a dimen-
sion of size |C|, and any variable with a {B∗} subscript has dimension
|C|(|B(k)|/|C|− i) = |B(k)|− i|C| where i refers to the current block. Simi-
larly anything with a {T∗} subscript has a dimension of (i−1)|C|. There
are two key components which are shaded that are considered. The first
of these:

C{B∗}{T∗} := C{B∗}{T∗} −L{B∗}{C(k)}C{C(k)}{T∗},

which becomes after ignoring subtraction (since this is lower order):

C{B∗}{T∗} := L{B∗}{C(k)}C{C(k)}{T∗}.

38 Version: September 4, 2023

The matrices L{B∗}{C(k)} and C{C(k)}{T∗} are standard rectangular ma-

trices of sizes (|B(k)| − i|C|) × |C| and |C| × (i − 1)|C| respectively. So
multiplying them together leads to the following number of multiplica-
tions and additions summed over blocks:

|B(k)|/|C|∑
i=1

((|B(k)| − i|C|)× |C| × (i− 1)|C|+ (|B(k)| − i|C|)× |C| × (i− 1)|C|)

=

|B(k)|/|C|∑
i=1

(2|C|2(|B(k)| − i|C|)(i− 1))

=

|B(k)|/|C|∑
i=1

(2|C|2 |B(k)|(i− 1)− 2|C|3i(i− 1))

=

|B(k)|/|C|∑
i=1

(2|C|2|B(k)|(i− 1)− 4|C|3i(i− 1)/2)

= 2|B(k)|2(|B(k)|/|C|(|B(k)|/|C| − 1)/2)− 4|C|3((|B(k)|/|C| − 1)|B(k)|/|C|(|B(k)|/|C|+ 1)/6)

≈ |B(k)|3 − 2|B(k)|3/3
= |B(k)|3/3.

It is now worth considering the second shaded area:

C{B∗}{B∗} := C{B∗}{B∗}−(L{B∗}{C(k)}C
>
{B∗}{C(k)}+C{B∗}{C(k)}L

>
{B∗}{C(k)}),

which is achieved using HER2K. The author assumes that since the first
product in brackets is equal to the transpose of the second product that
the second product comes for a lower order cost than the first product,
and thus can be ignored. Similarly subtraction at the front of the equa-
tion will be ignored. This leaves the following:

C{B∗}{B∗} := (L{B∗}{C(k)}C
>
{B∗}{C(k)}).

The matrices L{B∗}{C(k)} and C>{B∗}{C(k)} are standard rectangular ma-

trices of sizes (|B(k)| − i|C|)× |C| and |C| × (|B(k)| − i|C|) respectively. So
multiplying them together leads to the following number of multiplica-

39 Version: September 4, 2023

tions and additions summed over blocks:

|B(k)|/|C|∑
i=1

((|B(k)| − i|C|)× |C| × (|B(k)| − i|C|) + (|B(k)| − i|C|)× |C| × (|B(k)| − i|C|))

=

|B(k)|/|C|∑
i=1

(2|C|(|B(k)| − i|C|)2)

=

|B(k)|/|C|∑
i=1

(2|C||B(k)|2 − 4|C|2|B(k)|i+ 2|C|3i2)

= 2|C||B(k)|2(|B(k)|/|C|)− 4|C|2|B(k)|(|B(k)|/|C|(|B(k)|/|C|+ 1)/2)

+ 2|C|3(|B(k)|/|C|(|B(k)|/|C|+ 1)(2|B(k)|/|C|+ 1))

≈ 2|B(k)|3 − 2|B(k)|3 + 4|B(k)|3/6
= 2|B(k)|3/3.

Adding these two together (ignoring the non-shaded parts as those are
lower order of magnitude) leads to 2|B(k)|3/3 + |B(k)|3/3 = |B(k)|3 which
is in agreement with the aforementioned paper.

40 Version: September 4, 2023

C. C wrapper for
implementation of
forttwosidedtrsm

The following is the implementation of the C wrapper to enable the use of
twosidedtrsm via FORTRAN. First an environment is created as the Elemental
library requires an Elemental environment to be created in order to function.
Then options are specified, in this case a lower triangular input matrix that is
not unit diagonal. Then Elemental matrices are created for both the Cholesky
factor and for the output matrix, as this type is required to work with the
functions of the Elemental library. Finally, the function twosidedtrsm is called
to perform the invert cross-multiply.

void forttwosidedtrsm(long* numrows, long* numcols, long* ldl, double** l,
long* ldz, double** z, long* nbr)
{
int tempArgc = 0;
char** tempArgv = new char* [0];

El::Environment* env = new El::Environment(tempArgc, tempArgv);

char uplo = ’L’;
El::UpperOrLowerNS::UpperOrLower ElUplo =
El::UpperOrLowerNS::CharToUpperOrLower(uplo);
char diag = ’N’;
El::UnitOrNonUnitNS::UnitOrNonUnit ElDiag =
El::UnitOrNonUnitNS::CharToUnitOrNonUnit(diag);

long tempNBR = *nbr;
double* tempL = *l;
double* adjustedL = &tempL[tempNBR];
double* tempZ = *z;
double* adjustedZ = &tempZ[tempNBR];

41 Version: September 4, 2023

El::Matrix<double> fortLMatrix((El::Int) (*numrows), (El::Int) (*numcols),
adjustedL, (El::Int) (*ldl));
El::Matrix<double> fortZMatrix((El::Int) (*numrows), (El::Int) (*numcols),
adjustedZ, (El::Int) (*ldz));

// All the matrices are square here so numrows = numcols
// Further all their dimensions must be the same so this one parameter is all that is needed

El::TwoSidedTrsm(ElUplo, ElDiag, fortZMatrix, fortLMatrix);

}

42 Version: September 4, 2023

	
	9bb177664a07226101584f1726bc309bce2b54eaf2cb7d552d63b659bead7f54.pdf
	techreport
	techreport

