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Abstract

The design of experiments with qualitative treatment effects where the observations
(and possibly the treatment effects) are correlated is of interest in the context of agricul-
tural field experiments. In the evaluation of genetic lines in Australian plant improvement
programs, it is widely accepted that methods of analysis accounting for spatial trend and
genetic relatedness have been found to produce accurate predictions of both additive and
total genetic effects. Motivated by this framework, we propose a general method to gener-
ate optimal categorical designs under the linear mixed model, and describe a model based
paradigm for design specification. The methodology is generic, with application to the
design of categorical experiments in other settings, and is implemented in an R package:
odw. The model based approach of odw extends the utility of R model formulae, where
variance models for random factors and constructed model terms are specified using a
functional style.

Keywords: optimal design, comparative experiments, correlated treatment effects, linear mixed
model.

1. Introduction
Members of the broad class of block designs with categorical treatments are widely used in
many statistical applications. For example, those commonly used in plant breeding programs
include complete or incomplete block, row-column and α-designs (Williams and John 1996),
while more recently partially replicated designs (Cullis, Smith, and Coombes 2006a) are
widely accepted in early generation testing in Australian plant breeding programs. Design
methods for spatially correlated data have been of interest in this setting (Butler, Eccleston,
and Cullis 2008; Cullis et al. 2006a; Williams, John, and Whitaker 2006; Chan 1999; Martin
and Eccleston 1997; Martin 1986). Few theoretical results exist and numerical optimization
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2 Model Based Design

has been used to construct A-optimal designs (Coombes 2002; Chan 1999; Eccleston and
Whitaker 1999; Martin and Eccleston 1997), assuming fixed treatment effects and a pre-
specified residual correlation model.
Design methods where there is a known correlation structure among treatment effects (for
example, genetic lines) have received comparatively little attention. Cullis et al. (2006a),
for example, consider random, though uncorrelated genetic effects in constructing partially
replicated designs. The numerator relationship matrix (NRM, A) gives an average measure
of relatedness among individuals, based on identity by descent probabilities (see Lynch and
Walsh 1998, for example). Alternative identical in state measures of relatedness based on
molecular information are also available (Wang 2002; Pagnacco and Jansen 2001) for use in
predicting genetic potential. In a small study using incomplete block designs and simple
genetic models for A, Bueno Filho and Gilmour (2003) showed that using the information on
genetic relatedness can improve the design of such experiments. Cullis, Smith, Cocks, and
Butler (2020) report the results of a simulation study that illustrates the gains in accuracy
for the prediction of total genetic effects (and therefore selection) that can be achieved from
model-based designs using genetic relatedness, bespoke non-genetic and residual models. The
only practical restriction in the methodology presented here is that A−1 must exist.
In general, algorithms that optimise a design criterion such as the A- or D-value Kiefer (1974),
proceed by iteratively permuting the allocation of treatments to experimental units under the
supervision of an optimisation strategy. A-optimality minimises the average pairwise variance
of all elementary treatment contrasts, and D-optimality minimises the average variance of
parameter estimates. A-optimality is generally considered an appropriate design criterion
when all treatment comparisons are of equal interest, such as genetic selection experiments.
However, computing the A-criterion for a design involves an expensive matrix inversion, and
repetitive brute force calculation in a design search is not feasible. In practice, a scheme
to update a matrix inverse such as described by Martin and Eccleston (1992) must be used
(Coombes 2002; Chan 1999) to achieve realistic compute times.
The odw package provides a flexible model based interface that explicitly links the underlying
analytical linear model to the design phase of an experiment. Computationally, we document
an efficient updating scheme based on Martin and Eccleston (1992) to compute the A-criterion
for general cases where treatment effects are correlated. The discussion is structured as
follows: Section 2 introduces the general linear model underlying the methodology; Section 3
outlines a computational framework for optimal design based on the mixed model equations;
Section 4 introduces a model based approach to design specification through the odw function
and includes several examples that demonstrate odw in practice; concluding remarks and
further developments are discussed in Section 6.

2. The linear mixed model and design
With y as the n × 1 vector of observations, we consider the linear mixed model

y = Xτ + Zu + e (1)

with a convenient partitioning scheme where τ = [τ⊤
1 τ⊤

2 ]⊤, τ1 = [τ⊤
11 τ⊤

12]⊤ are vectors of
fixed effects of size nτ × 1 and nτ1 respectively with nτ = nτ1 + nτ2 and nτ1 = nτ11 + nτ12 ,
u = [u⊤

1 u⊤
2]⊤, u1 = [u⊤

11 u⊤
12]⊤ are vectors of random effects of size nu ×1 and nu1 respectively
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with nu = nu1 +nu2 and nu1 = nu11 +nu12 , e is the n×1 vector of errors, and X = [X1 X2] =
[X11 X12 X2] and Z = [Z1 Z2] = [Z11 Z12 Z2] are associated design matrices. The
partitioning distinguishes between permute and static effects being those associated with the
design search and those associated with terms addressing the plot structure of the experiment
(including covariates) respectively. The partition of permute effects is required to define
objective and linked effects. Objective effects contribute to the design optimality criterion,
while linked effects are permuted in the design search but do not contribute to the design
optimality criteria. To be strictly correct, the design search involves an interchange of the
rows of W , and the permute set of effects are those effects which are associated with the
columns of W which are interchanged, while the static set of effects are those which are
associated with the columns of W which are not interchanged. For the remainder of the
paper we refer to these sets as the permute set and the static set. Subsets of the permute set
are referred to as the objective and linked sets. By convention the overall mean parameter is
in the objective set, unless otherwise stated.
Equation (1) can be written succinctly as

y = W β + e (2)

where W = [W1 W2], W1 = [X1 Z1], W2 = [X2 Z2], β = [β⊤
1 β⊤

2 ]⊤, β1 = [τ⊤
1 u⊤

1]⊤ and
β2 = [τ⊤

2 u⊤
2]⊤.

The random effects u and errors e in (1) are assumed normally distributed such thatu1
u2
e

 ∼ N


0

0
0

 ,

G1 0 0
0 G2 0
0 0 R




where G1, G2 and R are positive definite matrices assumed to be functions of vectors of
variance parameters σg1 , σg2 and σr respectively. Model-based design requires values for
these parameters so in the following they are regarded as known.

2.1. Mixed model equations for the set of permute effects
The mixed model equations (MME) (Robinson 1991) for (2) can be written succinctly as

Cβ̃ = W⊤R−1y (3)

and are given by[
W⊤

1 R−1W1 + G∗
1 W⊤

1 R−1W2
W⊤

2 R−1W1 W⊤
2 R−1W2 + G∗

2

] [
β̃1
β̃2

]
=

[
W⊤

1 R−1y
W⊤

2 R−1y

]
(4)

where G∗ =
[
G∗

1 0
0 G∗

2

]
, G∗

1 =
[
0 0
0 G−1

1

]
and G∗

2 =
[
0 0
0 G−1

2

]
.

It follows that the reduced MME for the permute effects β̃1 are given by

C11β̃1 = W⊤
1 P2y (5)

where C11 = W⊤
1 P2W1+G∗

1, P2 = R−1−R−1W2(W⊤
2 R−1W2+G∗

2)−W⊤
2 R−1 and (W⊤

2 R−1W2+
G∗

2)− is any particular generalised inverse of W⊤
2 R−1W2 + G∗

2. It can be shown that

P2 = V −1
2 − V −1

2 X2(X⊤
2 V −1

2 X2)−X⊤
2 V −1

2
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where V2 = Z2G2Z⊤
2 +R and (X⊤

2 V −1
2 X2)− is any particular generalised inverse of X⊤

2 V −1
2 X2.

The matrix P2 has rank n − rank(X2) and is unique, and it is the Moore-Penrose inverse of
T = M2V2M2, where M2 = In − X2(X⊤

2 X2)−X⊤
2 . That is T = P +

2 .

2.2. Prediction and optimal design criteria

The aim is to find an optimal or near optimal design with respect to a nπ-vector of estimable
functions π = Dβ1 where D is a known matrix with nw1 = nτ1 + nu1 columns. The vector
of estimable functions, π, involves only objective effects, but may involve fixed, random
or both fixed and random effects. Gilmour, Cullis, Welham, Gogel, and Thompson (2004)
provide a computationally efficient algorithm for forming predictions from the linear mixed
model specified in (2). For brevity in the following we use the terminology of Gilmour et al.
(2004) and refer to π as the vector of predictions, which we assume are estimable. Gilmour
et al. (2004) provide a simple test of estimability of predictions which fit naturally into their
prediction algorithm. Briefly, given D, the vector of predictions and associated prediction
error variance/covariance matrix Λ are formed by recursive absorption from an extended set
of mixed model equations (see Robinson 1991, for example). Full details can be found in
Gilmour et al. (2004).
For known σg1 , σg2 and σr

D(β1 − β̃1) ∼ N(0, Λ) (6)

where Λ = DC−
11D⊤ and C−

11 a particular generalised inverse of the coefficient matrix of (5).
A commonly used optimality criterion is A-criterion, which is equivalent to minimising the
average pairwise variance of all elementary contrasts (πi − πj), i ̸= j. The A-criterion (A)
is usually considered appropriate in circumstances where all treatments are of equal interest,
such as early stage plant breeding trials (Martin 1986). Bueno Filho and Gilmour (2007)
developed a Bayesian design criterion for selection experiments in plant breeding based on a
utility function that minimizes the risk of an incorrect selection. They show that this is in
fact the A-criterion on the prediction error variance (PEV) matrix for the vector of random
entry (treatment) effects. Bueno Filho and Gilmour (2003) and Cullis et al. (2006a) use this
criterion for generating optimal or near-optimal designs for plant breeding designs when the
treatments are correlated, and for partially replicated designs. In this case it can be shown
that

A =
∑

i

∑
j<i

pev(π̃i − π̃j)/nπ/(nπ − 1)

where pev refers to the prediction error variance of its scalar (or matrix) argument. A
computational form for A is given by

A = 2
nπ − 1(tr(Λ) − 1

nπ
1⊤

nπ
Λ1nπ ).

3. Finding an optimal design
Finding an optimal design in categorical experiments is a problem in combinatorial optimiza-
tion, where n entities must be allocated to n locations such as with the Quadratic Assignment
Problem or the Travelling Salesman Problem. Here, optimal design seeks a permutation of
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the given set of treatments of interest to the experimental units that is optimal with respect
to a predefined statistical criterion. Formally, if Ω is the n-vector of experimental units, a
design is a function F such that unit ωj is allocated treatment F(ωj) (see Bailey 2008b).
For a given design matrix W , say, F(ω) allocates treatment effect β[i] to ωj , where i is the
position of the non-zero element of W⊤

j , the jth row vector of W . In practice, we consider a
design as a permutation vector p ordering the rows of W , with a notional n × n permutation
matrix P . Reordering the rows of P provides a convenient mechanism to dynamically alter
the mapping returned by F(ω).
Let D be the set of designs attainable through all possible (and permissible) permutations of
the rows of P . Even for modest designs it is generally impossible to enumerate all solutions
in D, and an efficient evaluation strategy directed by an optimisation algorithm is necessary.
Given a suitable starting design and choice of optimality criterion, A, optimal design search
methods share a common set of features in exploring the design space D, that include:

1. A method to calculate A for a given P ,

2. An interchange policy to move to a neighbouring configuration in D,

3. A sampling strategy for D and acceptance policy for new configurations,

4. A stopping rule to terminate the search.

An interchange strategy is a perturbation function S() operating on the rows of P . A straight-
forward interchange function for S() is typically chosen which simply swaps two rows of P ,
subject to any resolvability or other practical constraints. Computationally, a design is repre-
sented in a permutation vector p and a new permutation p∗ is generated as p∗ = s(p), where
s() is the corresponding vector perturbation function.

3.1. Search algorithm

Items 2-4 above encapsulate the search algorithm in the optimization process. The search
algorithm implemented in odw is based on the the tabu search first reported in Glover (1989,
1990). Simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983) has been used in optimal
design problems (Chan 1999; Elliot, Eccleston, and Martin 1999) but Coombes (2002) found
its performance inferior to tabu based methods.
The tabu search implements the the robust method of Taillard (1991) and the suggestion of
Woodruff and Zemel (1993) to use hashing vectors to maintain the tabu list. A strict cycle
avoidance scheme that encodes p into a 64 bit hash code using the FNV hash (Fowler, Knoll,
Vo, and Eastlake 2011) is used. This tabu strategy is relatively simple to implement, and the
results of Randall and Abramson (1997) suggest that storing the full solution in the tabu list
coupled with a small probability of accepting an inferior solution was very competitive when
compared across a range of assignment problems.

3.2. Computation

In the most general case, the prediction eror variance matrix Λ can be computed directly
from augmenting the mixed model equations (4) with D (Gilmour et al. 2004). Succinctly,
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using the notation of (3) the extended mixed model equations are

Q =
[

0 D
D⊤ C11

]
, (7)

and absorbing C11 gives Q∗ = −DC−
11D⊤, that is, Λ = −Q∗. This approach is amenable to

the formation and inclusion of a general D in the search for an optimal design. A prediction
design matrix pre-processor is not yet available and special cases of D are implemented
through various arguments to the odw function described in Section 4; the numerical methods
as used in odw are described here.
The rows of W2 are considered invariant and the permutation p operates only on the rows of
W1, noting that not all columns of W1 need contribute to the calculation of A. At iteration
ι = 0, P [0] = In and p[0] = [1, 2, . . . , n]. Computing A by brute force involves forming
Λ[ι+1](= (C−

11)[ι+1]) for each update W
[ι+1]
1 = P [ι+1]W

[ι]
1 , where P [ι+1] = S(P [ι]). This is

computationally prohibitive for all but small designs.
Martin and Eccleston (1992) developed an updating method for finding optimal designs under
a linear model with correlated errors. Their algorithm is extended here, but allowing the more
general setting of correlated objective effects, within the framework of a linear mixed model.
The interchange of two rows of W1 is equivalent to first removing two rows from Ω, followed
by adding the two units back, but in reverse order. Martin and Eccleston (1997) suggest
using a four-step approach which involves adding or removing one unit to obtain the new
C−

11. Chan (1999) presented a two-step approach which she claims to be simpler and easier to
implement. We begin by developing a two-step approach, similar to that proposed by Chan
(1999), but a four-step approach is also presented as this has proven to be competitive to
the two-step approach in terms of computational load. The four-step approach is also more
suitable for use in the context of early stage trials, where the presence of singleton treatments
(that is, those treatents which occur on only one plot) can cause computational problems as
discussed by Coombes (2002).
Let the current design contain n = r + s units, which are referred to as plots in the following.
Consider the retention of r plots by removing s plots, and both W1 and P2 are partitioned
conformably with the removal of s plots as follows

W1 =
[

W1r

W1s

]
and P2 =

[
P2;rr P2;rs

P2;sr P2;ss

]

where for example W1r is the design matrix for the subset of the design corresponding to the
r retained plots so has r rows and cwo columns. The matrix T is also partitioned conformably
with P2. We note that in many cases X2 is null in which case P2 = V −1

2 and hence T =
V2. It follows that the coefficient matrix of the reduced MMEs for the subset of the design
corresponding to the r retained plots is

C
(r)
11 = W⊤

1rT ∼
rrW1r + G∗

1

where T ∼
rr is any particular generalised inverse of Trr.

Using a similar argument to Martin and Eccleston (1992) and results on the inverse of parti-
tioned matrices (see for example Searle 1982) it can be shown that

C11 − C
(r)
11 = FrsP −

2;ssF⊤
rs (8)
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where Frs = W⊤
1rP2;rs + W⊤

1sP2;ss. Hence an updating formula for C
(r)−
11 can now be derived

using (8) as follows. Using Corollary 18.2.15 in Harville (1997) (p.432)

C
(r)−
11 = C−

11 + C−
11Hrs(P2;ss − H⊤

rsC−
11Hrs)−H⊤

rsC−
11 (9)

where Hrs = FrsP −
2;ssP2;ss. If P2;ss is non-singular then Hrs = Frs. Furthermore, if (P2;ss −

H⊤
rsC−

11Hrs) is non-singular then (9) becomes

C
(r)−
11 = C−

11 + C−
11Hrs(P2;ss − H⊤

rsC−
11Hrs)−1H⊤

rsC−
11 (10)

Next we consider adding s units back to the design, but with the appropriate permutation
applied to the rows of W1s. In the simple case of s = 2, then provided that the interchange
is legal, then the two rows of W1s are interchanged. The new design matrix for the full set
of n = r + s units is therefore given by

W ∗
1 =

[
W1r

W ∗
1s

]

where W ∗
1s is the permuted design matrix associated with the s units.

Using a similar approach to the deletion of r units, we consider the coefficient matrix of the
reduced MMEs for the full, new design with r + s units which is given by

C
(r+s)
11 = W ∗⊤

1 P2W ∗
1 + G∗

1

It can be shown that
C

(r+s)
11 − C

(r)
11 = F ∗

rsP −
2;ssF ∗⊤

rs (11)

where F ∗
rs = W⊤

1rP2;rs + W ∗⊤
1s P2;ss. Hence an updating formula for C

(r+s)−
11 is

C
(r+s)−
11 = C

(r)−
11 − C

(r)−
11 H∗

rs(P2;ss + H∗⊤
rs C

(r)−
11 H∗

rs)−H∗⊤
rs C

(r)−
11 (12)

where H∗
rs = F ∗

rsP −
2;ssP2;ss. If P2;ss is non-singular then H∗

rs = F ∗
rs. Furthermore, if (P2;ss +

H∗⊤
rs C

(r)−
11 H∗

rs) is non-singular then (12) becomes

C
(r+s)−
11 = C

(r)−
11 − C

(r)−
11 H∗

rs(P2;ss + H∗⊤
rs C

(r)−
11 H∗

rs)−1H∗⊤
rs C

(r)−
11 (13)

Using the two updating formulae, one for the removal and one for the addition allows us to
compute the new A-value from Λ(r+s) = DC

(r+s)−
11 D⊤.

Setting s = 1 leads to the four-step updating scheme proposed by Martin and Eccleston
(1992). The four-step approach can have computational advantages and additionally it can
be implemented to handle designs in which all of the objective effects are fixed effects and
the design contains singletons. Using the updating formulae in (10) and (13), as an example,
when s = 1 we have:

C
(r)−
11 = C−

11 + C−
11hrs(p2;ss − h⊤

rsC−
11hrs)−1h⊤

rsC−
11 (14)

C
(r+s)−
11 = C

(r)−
11 − C

(r)−
11 h∗

rs(p2;ss + h∗⊤
rsC

(r)−
11 h∗

rs)−1h∗⊤
rsC

(r)−
11 (15)
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for removal and addition of a unit respectively where

W1 =
[

W1r

w⊤
1s

]
, W ∗

1 =
[

W1r

w∗⊤
1s

]
and P2 =

[
P2;rr p2;rs

p⊤
2;sr p2;ss

]

and

hrs = frs = W⊤
1rp2;rs + w1sp2;ss

h∗
rs = f∗

rs = W⊤
1rp2;rs + w∗

1sp2;ss

for p2;ss − h⊤
rsC−

11hrs > 0.
The two-step approach is straightforward, however it is useful to illustrate the four-step
approach in more detail. As a simple example of the four-step approach consider interchange
of two units in the design, denoted by (ωa, ωb). The rows of the objective design matrix W1
are indexed using Ω such that W1 = W1[Ω, ] and let Ω−a be the set of plots excluding ωa and
Ω−b be the set of plots excluding ωb, then the four-step approach consists of the following
four steps:

1. Remove ωa: W1r = W1[Ω−a, ] and w⊤
1s = W1[ωa, ] then use (14);

2. Add ωb: W1r = W1[Ω−a, ] and w∗⊤
1s = W1[ωb, ] then use (15);

3. Remove ωb: W1r = W ∗
1 [Ω−b, ] and w⊤

1s = W ∗
1 [ωb, ] then use (14);

4. Add ωa: W1r = W ∗
1 [Ω−b, ] and W ∗⊤

1s = W1[ωa, ] then use (15)

noting that if a singleton is included in the set (ωa, ωb) then the steps must be arranged so
that the singleton is not removed first.

4. Model based design in odw

4.1. A brief overview of odw

Design generators are often discipline specific, and seldom explicitly link the underlying linear
model to the design, or subsequent analysis. For example, in agricultural field trials design
factors specifying trial layout are typically referred to as column and row, while for the same
class of design in a laboratory setting these may correspond to day and sequence, say. Linear
mixed models can be succinctly represented by extending the symbolic model formulae of
Wilkinson and Rogers (1973a). The full linear mixed model in odw is described with three
formula objects:

fixed to specify the fixed effects terms,

random to specify the random effects, and

residual to specify the residual (error) variance structure.
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The fixed and random formulae contain model terms separated by a '+' operator, with
compound terms, such as interactions, formed with the ':' operator in the R convention. The
residual formula defines the error structure with one or more model terms separated by the
':' operator; by necessity the product of the numbers levels of these factors equals the number
of observational units. Variance models for random terms and constructed model factors are
assigned by special model functions acting on the term(s) of interest. In this context, the ':'
operator implies that the variance model for the compound term is formed as the Kronecker
product of the contributing terms. The presence of the intercept in the model is implicit,
but can be explicitly included or omitted using the '+1' or '-1' constructs, respectively. The
fixed formula must be present and contain at least the intercept.
The terms appearing in the model formulae are resolved in a pre-existing R data frame,
which serves as the base or starting design. This data frame is mandatory, must have the
appropriate factor declarations. Initially, 1000 interchanges of the experimental units using a
greedy steepest descent strategy are undertaken prior to a supervised search.
In addition to the model formulae introduced above, there are several other arguments to
odw that complete the design specification and direct the design search. Principal among
these include identifying W1, setting pre-specified values for σg1 , σg2 and σr, and identify-
ing resolvability or other constraints for the interchange policy. Table 1 outlines some key
arguments to odw with reference to the corresponding components of the linear model or
methodology (where applicable).

Table 1: Some odw arguments additional to the model formulae. Only permute and data are
mandatory.

Argument Value Context
permute ∼ formula specifying the permute terms. This is a one sided

formula with the objective term optionally separated by the
"|" operator from any linked terms. These linked terms do
not contribute to A.

W1, D

swap ∼ formula controlling legal unit exchanges. S()
optimize character vector identifying the levels of the objective factor

to include in the A set; defaults to those present in the data.
O, D

group list where each component is a numeric vector specifying g
contiguous fields in data that are to be considered as a single
term. The component names can then appear in odw model
formulae using the grp() special function.

X, Z

start.values logical which if TRUE returns a list containing the default
variance parameter values; these can be replaced with user
specified estimates.

G, R

G.param list assigning values of pre-specified variance parameters. G
R.param list assigning values of pre-specified variance parameters. R

criterion string specifying the optimality criterion: A or pev= tr(Λ). O
data data frame containing the initial configuration.

Variance models for random terms are specified with special model functions in the random
and residual formulae. Table 2 summarises the variance functions available in odw and
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additional special functions that extend the linear model.

Table 2: Summary of special model functions
Function Description

Constructor type functions

at(obj, lev) Defines one or more binary variables with value 1 where the levels
of obj in the data matches those in the vector lev, or 0 otherwise.

dsum(form, lev) Used in the residual formula to define R. The formula object
form allows a conditioning factor on the right of a '|' operator that
partitions e into independent sections; the expression to the left
models the error structure within each section. If lev is absent
the same variance structure is applied to all sections.

grp(obj) Defines a new factor obj with g levels from contiguous columns
within the data. The g columns of data are identified by a char-
acter or numeric vector component obj of the odw() group argu-
ment.

xpr(form) Creates a new model factor with corresponding columns in the de-
sign matrix formed from an algebraic expression of existing model
terms. The expression is given in the R formula object form and
the levels of all participating terms must conform in size.

Variance models

id(obj) Identity model family for factor obj.
ar1(obj) First order autoregressive correlation family.
cor(obj) Simple correlation family.

vm(obj, source) Includes a known variance structure for additive genetic effects in
the model. The relationship matrix GK or its inverse G−1

K is given
by the source argument.

ide(obj, source) Includes a variance structure for non-additive genetic effects in
the model. The factor levels are set by the known structure in
source, and the variance model is set to idv() or id() depending
on context.

ric(obj, source) Includes the Ricardo variance structure σ2
aGK + σ2

eI for total ge-
netic effects in the model.

str(form, var) Applies the direct product variance structure in the formula argu-
ment var to the terms given in the formula form.

4.2. Notes on special functions

The model functions in Table 2 can be broadly classified as constructor functions or variance
functions. The former are concerned with generating new model terms and may have no
intrinsic variance parameters, while the latter specify a variance model to apply to a factor
either singularly or as part of a direct product structure. The distinction is not unambiguous.
A correlation model Σ = [ρij ] where ρii = 1 ∀i can be converted to a variance matrix by
V 1/2ΣV 1/2 where V is a diagonal matrix of (possibly equal) variance parameters. The
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variance form of the correlation matrices is specified by appending 'v' or 'h' to the correlation
function name. In the former case this yields a homogeneous variance model while the latter
gives the corresponding heterogeneous model. In the following, obj refers to a factor in the
data with n levels except where noted.

Conditional factors

A conditional factor is one that is present only when another factor has a particular level.
The at() and dsum() functions specify conditional structures, albeit in different contexts.
at(obj, lev)

The at() function constructs one or more factors depending on whether the lev argument
is a scalar or a vector. For a scalar lev= ℓ, the resulting factor has 1 for data records
where obj== ℓ. If lev is a vector of length nℓ, then nℓ factors are included in the model.
These factors are typically used in compound terms to allow for individual effects in a nested
hierarchy, such as blocks within experiments, say. If lev is absent, all levels of obj are used;
this is equivalent to idh(obj).
dsum(form, lev)

The dsum() function strictly applies to the residual formula and allows for multiple in-
dependent sections within e. The conditioning factor (cf) is specified to the right of a '|'
operator in the formula form, and the variance model for each level of cf specified in lev is
given on the left. Multiple dsum() functions separated by '+' may be used in a residual
formula. Formally, dsum() specifies R as the direct sum of variance matrices, each of which
may be the direct product of one or more dimensional factors.

Augmenting the design matrix W

grp(obj)

The grp() function augments the design matrix W with a contiguous set of columns from the
data, considering them to be defined by a single factor. The companion group list argument
to odw() identifies the sets of data columns that define each grp() factor; each string obj
must be in the set of names(group).
xpr(form)

The xpr() function forms a new set of columns in W from an arithmetic operation on existing
ones, where participating columns are identified by their generating factors in an algebraic
expression (R formula) form. The factors in form must have the same number of levels.
Allowed operators are '+', '-', '*' and '/ ' with any constants or coefficients given explicitly;
all other symbols are expected to resolve to model terms. For example, (xpr(∼ 0.5*Male +
0.5*Female)) forms a set of columns in W that are the (matrix) sum of those for Male and
Female scaled by 0.5.

Identity variance models

id(obj), idv(obj), idh(obj),
where Σ = I. The id() correlation model or the idv() simple variance model, depending
on context, is the default for terms in the random or residual formulae where a model is not
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explicitly specified.

Correlation and time series type models
cor(obj), corv(obj), corh(obj),
where Σ = [ρij ], ρii = 1 ∀i and ρij = ρ for i ̸= j. These models have 1, 2 and 1+n parameters,
respectively.
ar1(obj), ar1v(obj), ar1h(obj),
where Σ = [ρij ], ρii = 1 ∀i and ρij = ρ|i−j| for i ̸= j. These models have 1, 2 and 1 + n
parameters, respectively.

Known relationship structures
vm(obj, source), ide(obj, source), ric(obj, source),
where Σ = GK = [vij ] and vij = vji ∀i, j for vm() and ric(), and Σ = I for ide(). Either
GK or G−1

K or dim(I) is given by the source argument:

• a three column matrix holding G−1
K in co-ordinate form in row major order. This triplet

matrix must have a rowNames attribute giving the levels of the model term being defined,
or

• a matrix (or Matrix object) with a dimnames attribute. This may be GK or G−1
K ; if

G−1
K , source must have an attribute INVERSE set to TRUE,

noting that more levels may be defined in source than exist in obj.
The functions vm() and ric() generate the variance models σ2

aGK and σ2
aGK + σ2

eI for
additive and total genetic effects, respectively. While total genetic effects can be specified in
the random formula by vm()+ide(), only ric() is permitted in permute for efficiency.
The source argument to ide() is optional if ide() is preceded by vm() in the model.

General variance structures
str(form, var)

The str() function applies a variance model given in the var formula to the model given
in the form formula argument. The var argument is a one sided formula specifying a direct
product structure with variance functions separated by ':' operators. The size of the variance
structures can be given as an integer argument to the variance functions in place of the usual
factor object.
Typically, a variance structure applies to an individual term. Sometimes it is appropriate, for
example in random regression models, to allow for covariance between terms. The columns
in W corresponding to the terms in form are kept together, and the variance structure var
begins at the first term and covers the subsequent terms in the sequence.

4.3. The odw class

The odw class includes plot and summary methods, and a call to odw returns an S3 object
of class ’odw’ with the following components:
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design A data frame with the permute terms in design order.

permutation The permutation vector p.

criterion The optimality criterion O at termination.

G.param List object containing the pre-specified variance components for terms in the random
formula.

R.param List object containing the pre-specified variance components for terms in the residual
formula.

call The function call.

5. Examples

5.1. Generating designs

The following examples assume that the odw package has been loaded with

> library(odw)

prior to loading the data. The choice of pre-specified variance parameters in the examples
is for illustration, and is not meant to imply their suitability in practice; in general these
parameter settings would be based on prior experience or specific knowledge of the specific
experimental conditions at hand. The A-optimality criterion is used in all cases.

5.2. Latinized row-column designs

This example considers the construction of latinized and t-latinized designs and are taken
from John and Williams (1995) and John and Williams (1998). Table 3 presents a summary
of the attributes of three designs. Designs t1 and t2 are presented in tables 1 and 2 of
John and Williams (1998), while design t3 is presented in table 6.6 of John and Williams
(1995). Design t1 is a 2-latinized design for 24 varieties with two replicates, design t2 is
a 2-latinized row-column design for 56 varieties with three replicates and design t3 is a (1-
)latinized row-column design for 40 varieties (provenances) with six replicates. Design t1
was generated using a simulated annealing algorithm in which the optimality criteria was a
weighted linear function of two design functions, corresponding to the resolvable block design
and the long block binary design respectively. Design t2 was constructed in two stages. Stage
one generated a 2-latinized block design in blocks of size 7. In the second stage, the columns
of the design (i.e. the long columns of width 2) were fixed and their algorithm carried out
within column interchanges to find an efficient row-column design. Lastly, design t3 was also
generated in two stages. A latinized α-design was generated using ALPHA+, then an efficient
row-column design was generated with permissable swaps being within long columns.
We begin by setting up the data-frames which contain the plot and treatment factors necessary
for construction of each design. The three data frames are presented in the following. In
each data frame, the original allocation of Variety was been altered by applying a random
permutation to the elements of Variety.
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Design v k s r RC tL Ajw Aodw
t1 24 4 6 2 n 2 1.0845850 1.0845850
t2 56 7 8 3 y 2 0.7497202 0.7494786
t3 40 5 8 6 y 1 0.3748953 0.3748950

Table 3: Summary of the attributes and optimality criteria for the t-latinized designs. Design
attributes use standard notation, RC indicates the design is a row-column design and tL
indicates the latinized level. Optimality criteria are presented for the designs in the literature
(Ajw) and obtained from odw (Aodw).

> sapply(t1s,nlevels)

Row Col Rep Longcol Variety
8 6 2 3 24

> sapply(t2s,nlevels)

Row Col Rep Longcol Variety
21 8 3 4 56

> sapply(t3s,nlevels)

Row Col Rep Variety
30 8 6 40

Note that the data frame for design t3 does not contain an additional factor for long columns,
as this design is (1-)latinized.
The efficiency of each design was computed and verified using the intra-block linear model in
odw. The terms in the model differed slightly for each design depending on the attributes of
the design and the odw calls are presented below:

$t1
odw(fixed = ~Variety + Rep + Rep:Col + Longcol, permute = ~Variety,

search = "tabu+rw", maxit = 0, data = t1)

$t2
odw(fixed = ~Variety + Rep + Rep:Col + Row + Longcol, permute = ~Variety,

search = "tabu+rw", maxit = 0, data = t2)

$t3
odw(fixed = ~Variety + Rep + Col + Rep:Col + Row, permute = ~Variety,

swap = ~Rep, search = "tabu+rw", maxit = 0, data = t3)

An additional term, Row was included for the row-column designs, t2 and t3, while the
Longcol term for design t3 was simply Col. All terms were fitted as fixed effects and the
objective and permute term was Variety. The A values for each design can be converted to
efficiencies as follows:
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> c((2*1/2),(2*1/3),(2*1/6))/
+ c('t1'=sapply(t1des.ll,function(x) x$criterion)[[1]],
+ 't2'=sapply(t2des.ll,function(x) x$criterion)[[1]],
+ 't3'=sapply(t3des.ll,function(x) x$criterion)[[1]])

t1 t2 t3
0.6448598 0.7142562 0.7070759

noting that the default setting in odw for σ2 is 1.
To construct an optimal model-based design in odw it is natural use a model which is as close
to the model used for the analysis. The recommended method of analysis for block designs for
the recovery of inter-block information, is to fit a linear mixed model using residual maximum
likelihood Patterson and Thompson (1971). This linear mixed model will be referred to
as the inter-block LMM. To specify this model in odw requires terms associated with the
plot structure of the experiment be declared as random, while terms associated with the
treatment structure, in this case Variety, be declared as fixed. In our experience, the
search algorithm in odw is more reliable for constructing classical design by using the inter-
block LMM compared with the intra-block LMM, which is the linear mixed model with all
terms declared as fixed. Construction using the inter-block LMM is also very robust to the
specification of the variance parameters for the random terms. Unless specified, the values
used for the variance parameters in the design search are the default of 0.1.
Optimality criteria for the published designs under the inter-block LMM are presented in
table 3. These were obtained from odw using a call which declared all terms associated
with the plot structure as random, and setting maxit to 0. The call to produce an optimal
2-latinized design for t1 is given by

desodw <- odw(fixed = ~ Variety, random=~ Rep + Rep:Col + Longcol,
permute = ~Variety, search = "tabu+rw", data = t1s,maxit=100)
summary(desodw)$is.binary
table(with(desodw$design, table(Variety,Rep:Col)))

where the data-frame t1s has identical variables to t1 except the elements of Variety have
been permuted. Note that we set maxit to 100, but the optimal design was found in one iter-
ation. The code chunk also illustrates the summary method for checking the binary properties
of the design. On the other hand, optimal t-latinized row-column designs for t2 and t3 were
obtained in two stages. Stage one used odw to construct an optimal t-latinized design using
the following calls:

t2desodw <- odw(fixed = ~ Variety, random = ~ Rep + Rep:Col + Longcol,
permute = ~Variety, search = "tabu+rw", data = t2s,maxit=100)

summary(t2desodw)$is.binary
with(t2desodw$design,table(table(Variety,Rep:Col)))
t3desodw <- odw(fixed = ~ Variety, random = ~ Rep + Col + Rep:Col,

permute = ~Variety, search = "tabu+rw", data = t3s,maxit=1000)
summary(t3desodw)$is.binary
with(t3desodw$design,table(table(Variety,Rep:Col)))
t3desodw <- update(t3desodw,swap=~Rep)
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Finding an optimal t-latinized design for t3 proved more difficult, and so an additional update
was used in which the permissable interchanges were restricted to within replicates. This re-
duces the size of the design space and enhances the performance of the supervised learning
algorithm for this design. Stage two involved using the design from stage one as the initial
configuration, adding Row to the random model formula and restricting permisssable inter-
changes to within the intersection of Rep and Longcol and Col respectively. The calls were

t2desodw <- odw(fixed = ~ Variety,
random = ~ Rep + Rep:Col + Row + Longcol,
permute = ~Variety, swap = ~Rep:Longcol, search = "tabu+rw",
data = t2desodw$design,maxit=1000)

with(t2desodw$design,table(table(Variety,Rep:Longcol)))
summary(t2desodw)$is.binary
t2desodw <- update(t2desodw,maxit=1000)
t3desodw <- odw(fixed = ~ Variety,

random = ~ Rep + Col + Rep:Col + Row,
permute = ~Variety, swap = ~Rep:Col, search = "tabu+rw",
data = t3desodw$design,maxit=500)

summary(t3desodw)$is.binary
with(t3desodw$design,table(table(Variety,Rep:Col)))
t3desodw <- update(t3desodw,maxit=5000)

The A values for the three designs constructed using odw are presented in table 3, matching
or improving on those in the literature.

5.3. Partially replicated designs using genetic relatedness

Designs for total genetic effects

Cullis et al. (2006a) introduced the class of partially replicated (p-rep) designs to address
challenges with the design of early stage selection experiments in plant breeding programmes.
These designs incorporate a flexible strategy for replication status of genotypes in which
test lines with limited seed can be sown in one plot, while other test lines and commercial
varieties which have adequate seed supply can be sown in two, three or more plots. This
property results in the use of the full set of genotypes rather than a subset of those with
sufficient seed for two or more replicates. The p-rep design is also a sensible alternative to
grid plot designs where resources are wasted by interspersing plots allocated to unreplicated
test lines with a systematic grid of plots containing a few check genotypes (see Kempton
(1982) and Cullis, Lill, Fisher, Read, and Gleeson (1989)). The p-rep designs advocated by
Cullis et al. (2006a) are widely used in most Australian plant breeding programs and are
gaining more popularity overseas. Efficient model-based designs have been constructed using
the R software package DiGGeR (Coombes 2009). Recently Cullis et al. (2020) demonstrated
that substantial gains in response to selection can be achieved by using genetic relatedness
for the construction of efficient model-based p-rep designs.
In this example, we illustrate the construction of an efficient model-based design for a stage
one (S1) trial grown in 2022 at Narrabri, in northern NSW, using odw. The experiment
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involved a total of 1139 genotypes and was one of four experiments which were located across
the agro-ecological area of interest. The experiment at Narrabri was the so-called “home-
site”, which means that every genotype in the full multi-environment trial is grown at this
site. Other satellite sites typically grow a subset of the genotypes; the exact allocation of
genotypes to satellite sites depends on seed supply of each genotype and land availability for
each satellite site. There were a total of 1280 plots at the home-site and these were laid out
in two row-adjacent rectangular lattices each comprising 20 columns and 32 rows. Thus the
overall dimension of the experiment was 64 rows by 20 columns. The two rectangular arrays
are referred to as co-located trials, or simply trials, and are used to facilitate sowing and
harvesting operations. Hence trials are considered as a major blocking factor in the design
construction process. It is clear that a p-rep design must be used so that all genotypes can
be grown. Comprehensive ancestral information was available and this was used to form the
NRM, A. The mean genetic relatedness across the 1139 genotypes ranged from a minimum
of 0.078 to a maximum of 0.263 and a mean of 0.204.
Table 4 presents the two-way contingency table of genotype swap status (swp) by genotype
packet choice status (pC). Only 462 genotypes had sufficient seed to be sown in two plots, while
the breeder stipulated that the commercial variety, CBA CAPTAIN, be sown in two plots.
The design construction process involves two stages: allocation of packet choice to genotypes
and allocation of plots to genotypes, given packet choice status. Stage one determines an
optimal subset of size 140 from the genotype swap status “two”. In the absence of genetic
relatedness this subset would be determined using simple random sampling. For our approach
we consider an interim linear mixed model for the pseudo data vector y of length n, which is
given by

y = 1µ + ug + η (16)
where µ is an overall mean parameter, ug is the vector of total genetic effects of size nug × 1
and η is the n×1 vector of errors. We note that for this interim LMM n = ng. Following Cullis
et al. (2020) the vector of genetic effects ug is decomposed into additive and non-additive
genetic effects as follows:

ug = ua + ue (17)
where ua and ue are the vectors of additive and non-additive total genetic effects respectively.
Substituting (17) into (16) gives

y = 1µ + ua + η∗ (18)

The random effects ua and errors η∗ = ue + η in (18) are assumed normally distributed such
that ua

ue

η

 ∼ N


0

0
0

 ,

σ2
aA 0 0
0 σ2

eIn 0
0 0 R




where R = ⊕2
i=1

σ2

ri
Ini , n1 + n2 = ng, r1 = 1 and r2 = 2. Finally, the permute and objective

sets are the same and contain the additive genetic effects, and the linked and static sets are
NULL.
The data frame used for stage one contains variables for genotype, genotype swap status and
genotype packet choice status as shown below

'data.frame': 1139 obs. of 3 variables:
$ GKeep: Factor w/ 1139 levels "CBACAPTAIN","D16035>F103>19F3TW011",..: 28 46
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swp pC1 pC2
capt 0 1
one 677 0
two 321 140

Table 4: Two-way contingency table of genotype swap (swp) status (swp) by genotype packet
choice (pC) status for the chickpea S1 experiment.

47 50 51 64 65 75 181 193 ...
$ pC : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ swp : Factor w/ 3 levels "capt","one","two": 3 3 3 3 3 3 3 3 3 3 ...

and this data frame, step1init.df is then used in the following calls to odw to determine
an optimal allocation of packet choice to genotypes:

require(odw)
sigma.vmg <- 0.8/south.met.abar
sigma.ideg <- 0.2
sigma <- 1
phi <- c(sigma.ideg,sigma)
sv <- odw(fixed=~ 1, random=~ vma(Genotype, south.s1.sweep),

residual = ~dsum(~units|pC), swap=~swp,
permute=~ vma(Genotype, south.s1.sweep), start.values = TRUE,
data=step1init.df)

sv <- sv$vparameters.table
sv$Value <- c(sigma.vmg*south.met.abar,phi[1]+phi[2]/1,

phi[1]+ phi[2]/2)
temp.od <- odw(fixed=~ 1, random=~ vma(Genotype, south.s1.sweep),

residual = ~dsum(~units|pC),
permute=~ vma(Genotype, south.s1.sweep), swap=~swp,
R.param = sv, G.param = sv, search = 'tabu+rw',
maxit=20, data=step1init.df)

These calls illustrate a number of features found in odw. For example, since the variance
model is of a specific form, initial values for the variance parameters for the additive genetic
effects and the errors must be provided. Use of the argument start.values invokes odw to
return a list containing default variance parameters which we replace with the appropriate
values. Variance components for the additive and non-additive genetic effects are set to those
observed from fitting similar models to yield data-sets from the Chickpea breeding program.
The variance for the errors for each level of pC match the variance model for η∗. Including the
non-additive genetic effects with the errors significantly reduces computational time. The vma
variance model requires specification of a known (scaled) variance matrix, and this is provided
in the second argument. In this example, A−1 is provided as a sparse matrix held in three
column co-ordinate form (as a matrix) in row major order, with the attribute INVERSE set
to TRUE. This matrix was constructed using the AIsweep function found within pedicure (see
https://mmade.org/pedicure/). The constructor function dsum creates the direct sum form
for R, conditioned on pC. The second call to odw uses the starting values held in sv, in the
G.param and R.param arguments. Lastly, the swap argument specifies legal unit exchanges.

https://mmade.org/pedicure/
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The agreement between the initial and odw genotype packet status is given by

pCodw
pCinit 1 2

1 910 88
2 88 53

Stage two of the design construction approach, involves allocation of plots to genotypes.
To ensure the final design is resolvable with respect to major blocking components, this is
achieved using two steps. The LMM in ( 2) is used in both steps, and uses the same pseudo
data vector of size 1280 × 1. The permute set are the total genetic effects, in both steps
and the variance of these effects is G1 = σ2

aA + σ2
eInu1

. For step one, the static set are the
Trial and ColBlock effects with associated variance matrix G2 = ⊕2

i=1σ2
g2i

Inu2i
. In step

two, the static set are the Trial, ColBlock, Column and Trial:Row effects with variance
G2 = ⊕4

i=1σ2
g2i

Inu2i
. The swap argument is set to Trial:ColBlock to ensure that permissable

swaps occur between plots within the intersection of Trial and ColBlock. The error variance
matrix for both steps is In, since σ2 = 1. Although the error model used in the analysis of
these experiments will be the separable autoregressive process of order one, we have found
that designs which are constructed using the separable autoregressive process of order one
results in an undesirable allocation of genotypes with a packet status of one. Further, Cullis
et al. (2020) found that there was little impact on the realised genetic gain by not specifying
this variance model for the errors, and hence we use the default variance model for errors.
The data-frame containing an initial configuration of plots to genotypes contains the following
variables:

'data.frame': 1280 obs. of 6 variables:
$ Genotype: Factor w/ 1139 levels "CBACAPTAIN","D16035>F103>19F3TW011",..: 807

170 524 946 547 901 128 35 724 1024 ...
$ Trial : Factor w/ 2 levels "HS.1","HS.2": 1 1 1 1 1 1 1 1 1 1 ...
$ ColBlock: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ Row : Factor w/ 32 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ Column : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ yield : logi NA NA NA NA NA NA ...

The variable Row indexes rows within trials, rather than lattice rows, and the major blocking
factors Trial and ColBlock create two blocks in each dimension of the lattice. Figure 1
presents a schematic layout of the experiment which indicates the placement of major blocking
factors and the orientation of these with respect to the plot dimensions. The variable Entry
contains genotype codes. The following four calls to odw constructs an optimal allocation of
plot to genotypes:

# step 2.1
sv <- odw(fixed=~ Site, random=~ vmt(Genotype, south.s1.sweep) +

Trial + ColBlock, permute=~ vmt(Entry, south.s1.sweep),
start.values = TRUE, data=init.df)

sv <- sv$vparameters.table
sv$Value[1:2] <- c(sigma.vmg*met.abar,sigma.ideg) # others as defaults
temp.od <- odw(fixed=~ Site, random=~ vmt(Genotype, south.s1.sweep) +
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Figure 1: Schematic layout of the S1 chickpea selection experiment conducted at Narrabri in
2022.
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Trial + ColBlock,
residual = ~units, permute=~ vmt(Genotype, south.s1.sweep),
R.param = sv, G.param = sv, search = 'tabu+rw',
maxit=20, data=init.df)

# step 2.2
sv <- odw(fixed=~ Site, random=~ vmt(Genotype, south.s1.sweep) +

Trial + Column + Trial:Row + ColBlock,
permute=~ vmt(Genotype, south.s1.sweep), swap=~Trial:ColBlock,
start.values = TRUE, data=temp.od$design)

sv <- sv$vparameters.table
sv$Value[1:2] <- c(sigma.vmg*met.abar,sigma.ideg) # others as defaults
temp.od <- odw(fixed=~ Site, random=~ vmt(Genotype, south.s1.sweep) +

Trial + Column + Trial:Row + ColBlock,
residual = ~units, permute=~ vmt(Genotype, south.s1.sweep),
swap=~Trial:ColBlock,R.param = sv, G.param = sv,
search = 'tabu+rw',maxit=200, data=temp.od$design)
summary(temp.od)$is.binary # not for row of course
xx <- with(temp.od$design,table(Entry,Trial:Row))
table(xx)

The last three commands check the design and returns a list of logical scalars, one for each
factor in the model. If TRUE, the permute factor is binary with respect to the particular model
term. The functionality of is.binary within the summary method for odw does not extend
to compound model terms. Hence an additional manual check is made for the Trial:Row
term.
In order to assess the impact of using genetic relatedness for the construction of designs in
terms of their theoretical efficiency we undertook a small study which involved the construc-
tion of four design types. These design types are the factorial combinations of using or not
using genetic relatedness at each stage of the design construction. Hence the four design types
as SG++, SG+-, SG-+ and SG–, where for example SG++ denotes that genetic relatedness
was used in both stages of the design construction and SG– denotes that genetic relatedness
was not used in either stage. The quality of the design was assessed by computing the A of
the design against the LMM for stage two, step 2 using genetic relatedness. The A values
multiplied by 1e4, using SG++ as the origin were

SG++ SG-+ SG+- SG--
0 27 15 43

These results demonstrate the importance of using genetic relatedness in both stages of the
design construction. The impact of using genetic relatedness is more important for stage one
than stage two, and the effects appear to be strictly additive.

Designs for additive genetic effects
In the previous section we presented a design construction approach when the aim is to select
genotypes from an inbred crop using the prediction accuracy of the vector ot total genetic
effects, hence the objective effects were associated with the total genetic effects using the
variance model, vmt. There are examples where it is of interest to construct as design which is
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optimal for additive genetic effects. Some examples include diallel experiments (Butler 2013),
selection of parents in hybrid breeding programs, and evaluation of parents using progeny
trials in outcrossing plant species (see Cullis, Jefferson, Thompson, and Smith (2014)). These
examples would use the vector of additive effects as the objective effects and use vma as the
variance model in all stages of the design construction process. These ideas can also be used to
construct near optimal designs for inbred crops when the number of genotypes is prohibitively
large. Cullis et al. (2014) used a reduced or an approximate reduced animal model for the
analysis of a large MET data-set involving outcrossing plant species and we apply similar
ideas to construct a near optimal design for the example presented in the previous section.
The reduced animal model (RAM) is based on the partition of the genetic effects into effects
associated with parental and non-parental genotypes. We denote this partition by us =
[u⊤

s1 u⊤
s2 ]⊤, s = g, a and e where us1 and us2 are the vectors of parental and non-parental

genotype effects of size nus1 × 1 and nus2 × 1 respectively. Typically nus1 is much less than
ns. There is a conformal partitioning of the NRM given by[

A11 A12
A21 A22

]
(19)

and we have
ua2 = T ua1 + um2 (20)

where um2 is a vector of mendelian effects for non-parental genotypes of size nua1 × 1, and T
is the parent design matrix of size nua1 × nua2 given by

T = 1
2(F + M)

and F and M are female and male design matrices respectively. It follows that

A =
[

A11 A11T⊤

T A11 T A11T⊤ + D22

]
(21)

where var(um2) = σ2
aD22 is a diagonal matrix given by

D22 = ⊕na2
i=1

{
3
2 − (1

2)si − 1
2Fai + ((1

2)si − 1)fmifi

}
and si, Fai , fmifi

are the selfing, average of the inbreeding values for parents and coefficient of
coancestry between parents of the ith non-parental genotype respectively. Note that fmifi

=
amifi

/2, where A = {aij}. It follows that

A−1 =
[
A−1

11 + T⊤D−1
22 T −T⊤D−1

22
−D−1

22 T D−1
22

]
(22)

This matrix can be obtained using the ainverse function in ODExtras, which uses the method
of Meuwissen and Luo (1992) to generate an inverse relationship matrix in sparse triplet form
from a pedigree data frame. The required elements of D22 can be extracted as the diagonals
of A−1 associated with non-parental genotypes in the experiment.
The RAM interim linear mixed model, used for the allocation of packet choice to genotypes
is given by

y = 1µ + Zgug + η (23)
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where Zg = [Zg1 Zg2 ] is the conformal partitioning of Zg associated with parental and
non-parental genotypes effects in ug. Substituting (17) and (20) into (23) gives

y = 1µ + (Zg1 + Zg2T )ua1 + Zg2um2 + Zg1ue1 + Zg2ue2 + η (24)

In many cases there is no data on parental genotypes, particularly in selection experiments in
hybrid crops and outcrossing species, so Zg1 = 0. However for complete generality we retain
terms associated with Zg1 in the model. The design matrix for ua1 is non-standard, but this
can be accommodated in odw by using the xpr constructor function. Further simplifications
for (24) can be achieved by considering the partition of us1 given by us1 = [u⊤

s11u⊤
s12 ]⊤, s =

g, a and e where us11 and us12 are the vectors of effects for parental genotypes without and
with data of size nus11 × 1 and nus12 × 1 respectively. Hence, assuming all non-parental
genotypes have data then nus12 + nus2 = n. Using the partition of Zg1 = [Zg11 Zg12 ] in (24)
leads to

y = 1µ + (Zg1 + Zg2T )ua1 + Zg2um2 + η∗ (25)

where η∗ = u∗
e + η and u∗

e = [u⊤
e12u⊤

e2 ]⊤. This simplified formulation holds as

[Zg12 Zg2 ][Zg12 Zg2 ]⊤ = In

for all permutations applied to the rows of [Zg11 Zg12 ].
Equation (25 is still not suitable to reduce the computational time relative to using the model
in (18. This is due to the presence of the Mendelian sampling term, which has a large number
of effects. Although the size of the objective set is nus11 , the non-parental Mendelian effects
are in the linked set. A useful approximation which overcomes this problem is to replace D22
by d̄22. Use of this approximation means that um2 can be incorporated into the errors, and
this is demonstrated in the following. There are 43 parents for the 1139 genotypes in the
S1 example. Of these three are also present in the experiment. These genotypes are CBA
CAPTAIN, PBA STRIKER and PBA SLASHER, but only CBA CAPTAIN occurs as a parent
for the non-parental genotypes. The inbreeding coefficients for these parental genotypes are
0.9854, 0.9961 and 0.9961, hence it is plausible to replace the parents for these genotypes in
the initial data frame by themselves. This results in a total of 43 parental genotypes, but we
note that the appropriate parents are retained for these genotypes in forming the NRM for
the parental genotypes.
As for the full approach, initially factors for the genotype swap status and genotype packet
choice status are created. Table 5 presents the two-way contingency table of genotype swap
status (swp) by genotype packet choice status (pC). The levels of pC correspond to the condi-
tional variance of the data, in conjuction with the swap block status:

var(y|ua1) =



σ2
e + σ2/2 : pC1 - CBA CAPTAIN, two packets
σ2

e + σ2 : pC2 - PBA SLASHER/PBA STRIKER, one packet
σ2

e + σ2/2 : pC3 - PBASLASHER/PBASTRIKER, two packets
d̄22σ2

a + σ2
e + σ2 : pC4 - non parental genotypes, one packet

d̄22σ2
a + σ2

e + σ2/2 : pC5 - non parental genotypes, two packets

The conditional variance for non parental genotypes includes d̄22σ2
a from the Mendelian sam-

pling effect. Note that the breeder requires that CBA CAPTAIN be included with two packets,
and at least one of the other check genotypes be included with two packets. Only 459 non
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parental genotypes had sufficient seed to be sown in two plots. We note that levels pC1 and
pC3 of pC could be merged in this example, but for pedagogical reasons we retain these as
separate levels to make the distinction between CBA CAPTAIN and the other two parental
genotypes clear. As before, the design construction process involves two stages: stage one
- allocation of packet choice to genotypes and, stage two - allocation of plots to genotypes,
given packet choice status.

swp pC1 pC2 pC3 pC4 pC5
capt 1 0 0 0 0

ch(slash/str) 0 1 1 0 0
one 0 0 0 677 0
two 0 0 0 320 139

Table 5: Two-way contingency table of genotype swap (swp) status (swp) by genotype packet
choice (pC) status for the RAM model with the chickpea S1 experiment.

The data frame used for stage one contains variables for genotype, Female parent, Male
parent, genotype swap status and genotype packet choice status as shown below

'data.frame': 1139 obs. of 5 variables:
$ GKeep : Factor w/ 1139 levels "CBACAPTAIN","D16035>F103>19F3TW011",..: 1139 1

1138 2 3 4 5 6 7 8 ...
$ Female: Factor w/ 37 levels "05109-1279/CICA1841",..: 37 7 36 10 10 10 19 19

19 19 ...
$ Male : Factor w/ 15 levels "CBA2042","CBACAPTAIN",..: 15 2 14 6 6 6 3 3 3 3

...
$ swp : Factor w/ 4 levels "capt","ch(slash/str)",..: 1 2 2 3 4 4 3 3 3 3 ...
$ pC : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 4 4 4 4 4 4 ...

and this data frame, step1ram.init.df is then used as the initial configuration for odw to
determine an optimal allocation of packet choice to genotypes:

sigma.vmg <- 0.8/real.south.met.parabar
sigma.ideg <- 0.2
sigma.mend <- dbar22*sigma.vmg
sigma <- 1
phi <- c(sigma.mend,sigma.ideg,sigma)

sv <- odw(fixed=~ 1,
random=~ str(~xpr(~Female/2+Male/2),~vma(Female,real.s1.par.sweep)),
residual = ~dsum(~id(units)|pC),
swap=~swp,optimize = real.parents.in.south,
permute=~ xpr(~Female/2+Male/2),
equate.levels=c('Female','Male'),
start.values = TRUE, data=step1ram.init.df,
reorder = c('GKeep'))

sv <- sv$vparameters.table
sv$Value <- c(sigma.vmg,
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sigma.ideg + sigma/2,
sigma.ideg + sigma,sigma.ideg + sigma/2,
sigma.vmg * dbar22 + sigma.ideg + sigma,
sigma.vmg * dbar22 + sigma.ideg + sigma/2)
sv
temp.od <- odw(fixed=~ 1,

random=~ str(~xpr(~Female/2+Male/2),~vma(Female,real.s1.par.sweep)),
residual = ~dsum(~id(units)|pC),
swap =~swp,optimize = real.parents.in.south,
permute=~ xpr(~Female/2+Male/2),
equate.levels = c('Female','Male'),
R.param = sv, G.param = sv, data=step1ram.init.df,
reorder = c('GKeep'),
maxit=4, search='tabu+rw')

temp.od <- update(temp.od,maxit=60)

These calls introduce some additional features of odw. For example, the non standard design
matrix for ua1 is formed using xpr, the optimality criteria be computed using optimize
levels only, equate.levels=c(’Female’,’Male’) specifies that the levels of Female and Male
match and reorder = c(’GKeep’) permutes GKeep (at termination of the search) in design
order, parallel to xpr(~Female/2+Male/2).
The agreement between the initial and odw genotype packet status is given by

pCodw
pCinit 1 2 3 4 5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 882 115
5 0 0 0 115 24

The calls for stage two are very similar to those when using the full model. An example of
the call for step 2 in stage 2 is below

sv <- odw(fixed=~ 1,
random=~ str(~xpr(~Female/2+Male/2),~vm(Female,real.s1.par.sweep)) +
Trial + Column + Trial:Row + ColBlock,
residual = ~units, swap=~Trial:ColBlock,optimize = real.parents.in.south,
permute=~ xpr(~Female/2+Male/2), equate.levels=c('Female','Male'),
start.values = TRUE, data=temp.od$design, reorder = c('GKeep'))

sv <- sv$vparameters.table
sv$Value[1] <- c(sigma.vmg)
sv
temp.od <- odw(fixed=~ 1,

random=~ str(~xpr(~Female/2+Male/2),~vm(Female,real.s1.par.sweep)) +
Trial + Column + Trial:Row + ColBlock,
residual = ~units, swap=~Trial:ColBlock,optimize = real.parents.in.south,
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permute=~ xpr(~Female/2+Male/2), equate.levels=c('Female','Male'),
R.param = sv, G.param = sv, data=temp.od$design, reorder = c('GKeep'),
maxit=4, search='tabu+rw')

temp.od <- update(temp.od,maxit=500)

Note that it was not possible to achieve resolvability with respect to the major blocking factors
for the RAM approach. The quality of the RAM design was assessed by computing the A
against the full LMM for stage two, step 2 using genetic relatedness. The A values multiplied
by 1e4, using SG++ as the origin were

SG++ SG-+ SG+- SG-- RAM
0 27 15 43 9

These results suggest that there is little loss in efficiency using the RAM approach. This
is a very useful result since the reduction in computing time is substantial. For example,
on a Dell Inc. Precision 7560, with 128.0 GiB RAM, an Intel®Xeon(R) W-11955M CPU @
2.60GHz × 16 processor and 2.0 TB disk space running Ubuntu 22.04.1 LTS, there was a 50
fold reduction in time per tabu loop for the RAM model for the stage two, step two call to
odw from 20.25 seconds to 0.4 seconds.

Determining optimal subsets for selective phenotyping
Huang, Clifford, and Cavanagh (2013) consider a method to maximize genetic diversity within
the selected samples for so-called selective phenotyping. Here we propose an alternate ap-
proach using odw, which can be used in any design, and with either ancestral or marker based
relationship matrices. Our approach is a simple extension to the allocation of packet choice
status to genotypes. To illustrate the approach we again consider the S1 chickpea experiment,
but for this application, assume that there is only sufficient resources to sow 640 plots. Hence
the aim is to determine an optimal subset to not phenotype, but maintain approximately 10%
partial replication, while accounting for seed supply constraints and breeder choices.
As for the earlier models, factors for the genotype swap status and genotype packet choice
status have to be created. Table 5 presents the two-way contingency table of genotype swap
status (swp) by genotype packet choice status (pC). The levels of pC correspond to the condi-
tional variance of the data and these provide odw with the to find an optimal allocation with
respect to additive genetic effects:

var(y|ua1) =


σ2

e + σ2 : pC1 - one packet
σ2

e + σ2/2 : pC2 - two packets
σ2

e + ασ2 : pC3 - no packets

The conditional variance takes three values, where α is set to a large number, say 300. This
idea is based on the so-called alternative outlier model of Thompson (1985), where data points
to be excluded can be regarded as those associated with an inflated error variance. This makes
the approach simple to implement in odw and intuitively appealing. The genotypes swap
status was similar to before so that the breeder requires that CBA CAPTAIN be included
with two packets, and at least one of the other check genotypes be included with two packets.
A total of 568 genotypes would not be phenotyped. As before, the design construction
process involves two stages: stage one - allocation of packet choice to genotypes and, stage
two - allocation of plots to genotypes, given packet choice status.
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swp pC1 pC2 pC3
capt 0 1 0

ch(slash/str) 1 1 0
one 338 0 339
two 163 67 229

Table 6: Two-way contingency table of genotype swap (swp) status (swp) by genotype packet
choice (pC) status for selective phenotyping with the chickpea S1 experiment.

The code to determine the allocation of packet choice status to genotypes in odw is:

sigma.vmg <- 0.8/south.met.abar
sigma.ideg <- 0.2
sigma <- 1
alpha <- 300
phi <- c(sigma.ideg,sigma,alpha*sigma)
sv <- odw(fixed=~ 1, random=~ vm(GKeep, south.s1.sweep),

residual = ~dsum(~units|pC), swap=~swp,
permute=~ vm(GKeep, south.s1.sweep), start.values = TRUE,
data=step1drop.init.df)

sv <- sv$vparameters.table
sv$Value <- c(sigma.vmg*south.met.abar,phi[1]+phi[2]/1,

phi[1]+ phi[2]/2, phi[1]+phi[3])
sv
temp.od <- odw(fixed=~ 1, random=~ vm(GKeep, south.s1.sweep),

residual = ~dsum(~units|pC),
permute=~ vm(GKeep, south.s1.sweep), swap=~swp,
R.param = sv, G.param = sv, search = 'tabu+rw',
maxit=20, data=step1drop.init.df)

The agreement between the initial and odw genotype packet status is given by

pCodw
pCinit 1 2 3

1 238 22 242
2 19 19 31
3 245 28 295

The method of Huang et al. (2013) was also used to construct a subset of test lines to
phenotype. Using this approach the 1136 test lines were subsetted and then combined with
the three checks. Out of a total of 571 genotypes there were only 363 in common between
this subset and the subset selected using odw. Using the Huang et al. (2013) approach
still requires determining which genotypes will be replicated from the subset of phenotyped
genotypes. This is clearly piecemeal and inefficient, whereas the approach using odw finds
both subsets in a single step, respecting genetic relatedness between test lines and check lines.

5.4. Multi-phase design
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In this example we consider the design of an experiment to predict the performance of wheat
varieties in terms of the important quality trait of falling number (FN). The measurement
of FN requires a multi-phase experiment (Brien 1983; Smith, Lim, and Cullis 2006) with
two phases. The varieties are first grown in a field experiment (Phase I) and after this has
been harvested, grain samples from individual plots are processed in a laboratory experiment
(Phase II) to obtain the trait of interest. Several authors, including Brien (1983) and Smith
et al. (2006), have stressed the need for the use of valid experimental designs for all phases
of a multi-phase experiment. However, this rarely occurs in practice and one of the major
impediments has been the lack of suitable software to generate the designs. In this example we
illustrate how odw can produce valid and efficient designs for the seemingly complex scenario
of multi-phase experiments.
The Phase I field experiment in this example comprises 144 plots arranged in a rectangular
array of 24 columns by 6 rows. A total of 105 varieties will be grown using a partially
replicated (p−rep) design (Cullis, Smith, and Coombes 2006b) in which 39 varieties will be
planted in two plots each while the remaining 66 varieties will be planted in single plots.
Unlike previous examples in this section, there is no information available on the genetic
relatedness of varieties so that replicated varieties will be chosen at random.
The laboratory experiment in Phase II involves the production of a slurry from each grain
sample taken from the field. The slurry is then placed in a tube on one of the two available
FN machines to measure the trait, which is the time taken (in seconds) for a rod to travel
through the slurry. In this experiment, samples from all 144 field plots will be processed, and
replication in Phase II will be achieved by producing two slurries (from two separate grain
samples) for a subset of the plots. A partially replicated (q−rep) design (Smith et al. 2006)
will be used in which 40 plots will be tested using two slurries while the remaining 104 plots
will be tested as single slurries, making a total of 184 slurries to be processed. The choice
of plots to be replicated in Phase II can be made in an informed manner, and this will be
discussed in Section 5.7. The slurries will be processed using two FN machines, each of which
comprises two tubes. This allows four slurries to be processed simultaneously, and these will
be referred to as a run. Thus the full Phase II design will require 46 runs which are processed
sequentially. Practical considerations necessitate the grouping of runs into blocks with (no
more than) 8 runs in each, and with 3 blocks per day. The full design spans 2 days, and the
final block on each day will have 7 rather than 8 runs. The schematic layout of the Phase
II design is shown in Figure 2. Note that this also contains information relating to the final
design which will be discussed in section 5.6.
The design of multi-phase experiments can be achieved by considering each phase in turn,
with the design for higher order phases being conditional on the preceding phases. In terms of
model based design, this hierarchical structure adds some complexities to the LMMs required
for individual phases. In this example we therefore use the Design Tableau (DT) approach
of Smith and Cullis (2018), which was developed to aid with the specification of a LMM
for analysis, given an experimental design. In the DT approach, the key components that
must be defined are the factors associated with the treatments, the factors associated with
the observational units (also generically called the “plots”) and the design function. In the
standard application of DT, the design function relates to the manner in which treatments
were allocated to plots. In our application it relates to the design search we are about to
undertake. With this base-line information we can derive the so-called treatment and plot
structures, each of which is expressed as a model formula using the notation of Wilkinson and
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Figure 2: Schematic layout of second phase for multi-phase experiment example.
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Rogers (1973b). In the context of odw, the treatment formula is associated with the permute
formula, and the combination of the treatment and plot formulae provide the overall form
of the LMM. In sections 5.5 and 5.6 we summarise the derivation of the odw calls for the
example using the DT procedure. The reader is referred to Smith and Cullis (2018) for full
details of the Design Tableau approach.

5.5. Phase I design
In order to construct the design for the first phase we ignore the fact that there are further
phases so assume a trait is to be measured directly from the field experiment. The key steps
in the DT process for construction of the Phase I design are as follows:

1. Define the plots (observational units) and the plot factors: the observational units are
the field plots and there are 144 of these. The plot factors, with the number of levels
given in parentheses are: ColBlock (2), Column (24) and Row (6), where ColBlock
corresponds to blocks of contiguous columns (columns 1-12 and 13-24 for ColBlock 1
and 2 respectively). Note that it must be possible to uniquely index the observational
units using the full set of plot factors. In this example they are completely indexed
using Column and Row

2. Define the treatments and treatment factors: the treatments are the varieties. The
treatment factors are: Variety (105)

3. Describe the design function/search: the search will aim for resolvability (aligned with
column blocks) for the varieties with multiple observational units and will allow for
sources of variation associated with rows and columns; the objective will be A−optimality,
to minimise the average pairwise prediction error variance between the varieties

4. Define the treatment model formula: Variety

5. Define the plot model formula (as implied by the design function): ColBlock +
Column*Row = ColBlock + Column + Row + Column:Row.

In terms of the odw call, the permute set, are the set of variety effects. Since this contains
a single term only, the objective effects are also the variety effects. The fixed, random and
residual formulae are extracted from the combined treatment and plot model formulae.
The terms in the latter are always included as random effects but note that the final term,
namely Column:Row, indexes the observational units so defines the error term. It is therefore
implicitly included in the odw call as the residual formula. In the current example the only
fixed effect is an overall mean so that the Variety term in the treatment model is included
as a random term. The odw call to construct this design is therefore given by:

PhaseI.od <- odw(fixed=~ 1, random=~ Variety + ColBlock + Column + Row,
residual = ~units, permute=~ Variety,
search = 'tabu+rw',maxit=10, data=init.df)
PhaseI.od <- update(PhaseI.od,maxit=10)

where init.df is the data-frame containing the initial design and contains 144 records, in-
dexed by field plots. Note that in this example, the requirement for resolvable blocks was
met using the single odw call.
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5.6. Phase II design

The key steps in the DT process for construction of the Phase II design are as follows:

1. Define the plots (observational units) and the plot factors: the observational units are
the slurries and there are 184 of these. The plot factors, with the number of levels given
in parentheses are: Day (2), RunBlock (3), Run (8), Machine (2) and Tube (2), where
RunBlock corresponds to blocks of consecutive runs within each day. The observational
units are completely indexed using all five factors.

2. Define the treatments and treatment factors: here we must invoke the full definition of
treatments as the “entire description of what can be applied to an experimental unit”
(Bailey 2008a). Thus in the second phase, the treatment factors comprise not only the
varieties, but the complete set of factors associated with the field plots in which the
varieties were grown. The treatment factors are therefore: Variety (105), ColBlock
(2), Column (24) and Row (6). For notational convenience, we also define the factor
FieldPlot (144) which can be used instead of Column:Row in model formulae.

3. Describe the design function/search: the search will aim for resolvability with respect
to two factors, namely days and machines, for the varieties with multiple observational
units (i.e. slurries). It will allow for sources of variation associated with both the tem-
poral aspect of the measurement process and the natural physical sources associated
with machines and tubes within machines; the objective effects are the Variety effects
and as before we use A−optimality

4. Define the treatment model formula: the treatment formula for the second phase is
given by the combined treatment and plot formulae from the first phase (Smith and
Cullis 2018): Variety + ColBlock + Column + Row + Column:Row

5. Define the plot model formula (as implied by the design function): (Day/RunBlock/Run)
* (Machine/Tube)

Once again the permute formula in odw is given by the treatment model formula. However
the latter now includes multiple terms and these align with the partitioning of the permute
formula into objective and linked sets of terms. Importantly, the objective term, appearing
before the “|” symbol is given by Variety so that the optimality criterion relates to the aims
of the experiment, namely the prediction of variety effects. The linked terms, that is those
terms after the “|”, comprise all other terms from Phase I, since the associated factors must
be permuted with Variety in the design search but should not contribute to the optimality
criteria. Unlike the first phase, the requirement for resolvable blocks in Phase II was not
achievable using a single odw call so we used the two-step approach. The odw call for the
first step is given by:

PhaseIIbin.od <- odw(fixed=~ 1, random=~Variety + Day + Machine,
residual = ~units, permute=~ Variety,
reorder = c('FieldPlot','Column','Row','ColBlock'),
search = 'tabu+rw', maxit=10, data=init.lab.df)
PhaseIIbin.od <- update(PhaseIIbin.od, maxit=10)
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where init.lab.df is the data-frame containing the initial design (based on the laboratory
replication of field plots as determined in Section 5.7) and contains 184 records, indexed by
slurries.
The resultant design (resolvable for two factors) was then used as the starting design for the
final search. Three designs were created, each using a different model for the swap formula, in
order to investigate the impact on A−optimality of the restrictions imposed by resolvability.
The formulae were: (1) swap=~Day:Machine, (2) swap=~Day and (3) swap=~NULL. The first
formula restricts permutations to within the intersection of Day and Machine; the second to
within Day and the third has no restrictions. Apart from the swap formula, the odw call to
construct all three designs was identical. The call for the first design is given by:

PhaseII.od <- odw(fixed=~ 1, random=~ Variety + FieldPlot +
Column + Row + ColBlock + Day +
Day:RunBlock+Day:RunBlock:Run + Machine + Machine:Tube +
Day:Machine + Day:RunBlock:Machine + Day:RunBlock:Run:Machine +
Day:Machine:Tube + Day:RunBlock:Machine:Tube, swap=~Day:Machine,
residual = ~units, permute=~ Variety|FieldPlot + Column + Row + ColBlock,
search = 'tabu+rw', maxit=10, data=PhaseIIbin.od$design)

PhaseII.od <- update(PhaseII.od, maxit=50)

This design call demonstrates the use of the“|” operator which separates the objective and
linked terms within the permute formula. The A−values for the three designs were (1)
0.179415, (2) 0.179284 and (3) 0.179202. Thus there was a penalty associated with the
restrictions for resolvability. Note that in the second design, the removal of the resolvability
restriction associated with Machine led to a non-binary design for this factor. Similarly, the
third design, with the lowest A−value, was non-binary for both Day and Machine. This was
regarded as undesirable by the researcher, so, as a compromise, the design with resolvability
for days alone was adopted.
The ability to permute varieties together with linked factors and to optimise on variety effects
is a unique and key feature of odw for the design of second (and higher order phases. Pre-
viously, in the second phase design, it was only possible to permute field plots and optimise
on field plot effects. In order to assess the impact of using Variety as the objective term
rather than FieldPlot, a small study which involved the construction of four design types
was conducted. The design types comprised the factorial combinations of using or not using
Variety as the objective term and the two stages of the Phase II design construction, namely
the choice of field plots to replicate (see Section 5.7) and the final allocation of varieties as
described above. The designs are labelled P2D+ + (Variety as objective in both stages),
P2D+ −(Variety as objective in first stage only), P2D− + (Variety as objective in second
stage only) and P2D− − (Variety not used as objective in either stage). Thus P2D+ +
corresponds to design (2) as described above. The quality of each design was assessed by
computing the A−value of the design against the LMM used for P2D+ + and is reported
here as the difference from P2D+ + multiplied by 1e6. The resultant differences were 0 for
P2D+ +; 622 for P2D+ −; 58 for P2D− + and 675 for P2D− −. Thus the loss associated
with not using Variety as the objective function was substantially larger for stage 2 (the final
allocation in the laboratory).
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5.7. Selecting field plots to replicate in Phase II

In order to determine an optimal subset of 40 field plots from Phase I to be replicated in Phase
II, we consider an interim LMM for Phase II in which the pseudo data vector represents field
plot means (across laboratory replicates) rather than observations for individual slurries.
Thus we write

y = 1µ+ : Zg : ug+ : Zc : uc+ : Zr : ur+ : Zb : ub+ : up+ : η

where : y is the pseudo data vector of length n = 144, µ is an overall mean parameter,
: ug, : uc, : ur and : ub are the vectors of random Variety, Column, Row and ColBlock effects.
The last two vectors, : up and : η, both have length n and represent the field plot effects and
Phase II errors, respectively. The random effects are assumed to be normally distributed and
independent (both between and within sets) with variance components σ2

g , σ2
c , σ2

r , σ2
b and

σ2
p. We assume that the pseudo data vector is ordered such that the first 104 “observational

units” correspond to field plot means based on a single slurry and the remaining 40 to means
based on two slurries. We then assume the variance matrix for : η is given by ⊕2

i=1
σ2

ri
: Ini

where n1 = 104, n2 = 40, r1 = 1, r2 = 2 and σ2 is the Phase II error variance component. It
is computationally efficient to then define a combined vector of errors, namely : η∗ =: up+ : η

so that var : η∗ = ⊕2
i=1

(
σ2

p + σ2

ri

)
: Ini . In order to define this heterogeneous error variance

structure in odw we require the initial data-frame to include a two level factor (called pC to
be consistent with the other examples), which has the value 1 for the first 104 records and 2
for the remainder.
We then use odw to allocate levels of laboratory replication (associated with the factor pC)
to varieties as follows:

PhaseIIrep.od <- odw(fixed=~ 1, random=~ Variety + Column + Row + ColBlock,
residual = ~dsum(~units|pC),
permute=~ Variety|ColBlock + Column + Row,
R.param = sv, G.param = sv, search = 'tabu+rw', data=dup.df,
reorder = c('FieldPlot'),maxit=10)

where dup.df is the data-frame containing the initial design and contains 144 records, indexed
by field plots. Note that the variance parameter values used to form the starting values in
sv were σ2

g = 1.0, σ2
c = 0.1, σ2

r = 0.1, σ2
b = 0.1, σ2

p = 0.5 and σ2 = 1.0. Thus the last two
values in sv which relate to the combined vector of errors were 1.5 and 1.0 for levels 1 and 2
of pC, respectively.
A key feature of the allocation of laboratory replication from this odw call is that the field
plots to be replicated in Phase II corresponded only to varieties that were not replicated in
Phase I:

pC=1 pC=2
Varieties with 1 field plot 26 40
Varieties with 2 field plots 39 0

This allocation formed the basis of the initial design used for Phase II (see section 5.6). Note
that it means there were 79 varieties with 2 slurries (39 varieties with a single slurry from
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each of 2 field plots and 40 varieties with 2 slurries from a single field plot) and 26 varieties
with a single slurry, making a total of 184 slurries, as required.

6. Summary and discussion
This paper presents a formal model based approach to the design of comparative experi-
ments implemented in the R package odw. The focus is on the functionality allowed by this
paradigm, coupled with an efficient computing strategy for optimal designs with qualitative
treatments, where both treatment effects and residuals are correlated. Though not exhaus-
tive, the examples are intended as a guide to several operating characteristics of the package
that we have found useful in addressing certain design challenges encountered in practice.
The examples are not prescriptive; the models and parameter values chosen are not meant to
imply that they are suitable in other settings.
A strength of the package is an easy to use model based interface using R formulae objects
that strongly links the design and analysis chain. Helper functions assist in setting random
parameters, and plot and summary methods provide visual and tabular diagnostics, respec-
tively. Also, design specification in odw is data driven; the supplied data frame encompasses
the physical or temporal blueprint, and does not enforce any configuration restrictions, thus
making possible differing block sizes or unusual blocking arrangements. A caveat to this
advantage arises from the assumption of separability at the residual level, the consequence
being that for correlated error structures a non-rectangular layout must be accommodated
by the judicious use of swap and additional dummy treatments to complete the array.
At present the data frame expected by odw must be constructed by the user outside the
package environment. This may be the only recourse for complex designs, however, add-ons
to the package could include concise but intuitive methods to construct initial data frames for
less demanding configurations or standard design types. A significant avenue for improvement
in practice is the integration of the predict formulation outlined in Section 3.2.
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