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Abstract. Human action recognition is a well researched problem, which
is considerably more challenging when video quality is poor. In this pa-
per, we investigate human action recognition in low quality videos by
leveraging the robustness of textural features to better characterize ac-
tions, instead of relying on shape and motion features may fail under
noisy conditions. To accommodate videos, texture descriptors are ex-
tended to three orthogonal planes (TOP) to extract spatio-temporal fea-
tures. Extensive experiments were conducted on low quality versions of
the KTH and HMDB51 datasets to evaluate the performance of our pro-
posed approaches against standard baselines. Experimental results and
further analysis demonstrated the usefulness of textural features in im-
proving the capability of recognizing human actions from low quality
videos.

1 Introduction

Recognizing human actions [1–9] from unconstrained videos is of central impor-
tance in a variety of real-world applications such as video surveillance, human-
computer interaction and video retrieval & indexing . Actions in video present
a wide range of variations, ranging from object-based variations such as appear-
ance, view pose and occlusion, to more challenging scene-related problems such
as illumination changes, shadows, and camera motions. One relatively under-
studied problem is video quality [8, 10, 11]. Current video processing research
have focused primarily on good quality videos that offer fine details and strong
signal fidelity which are not feasible for real-time video processing, or lightweight
mobile applications. Among recently proposed methods, local spatio-temporal
handcrafted features such as space-time interest points (STIPs) [12], cuboids
[6], extended SURF [6], dense sampling [6] and dense trajectories [7] are popular
for their simplicity and effectiveness in human action recognition. A majority
of these methods [2, 6, 7] used HOG and HOF descriptors to characterize shape
and motion information. Meanwhile, spatio-temporal textural features such as
LBP-TOP [13] and extended LBP-TOP [5] have also found its way to action
recognition, albeit in less celebrated fashion. Their reported performances were
promising, though they acknowledge the lack the explicit encoding of motion



features. The use of textures is less common in literature, though there are
promising benefits that can be established in our recent works [10, 11]. Following
the emphasis on understanding the behavior of existing approaches over video
quality [14], our recent works [10, 11] evaluated STIPs [12] on spatially and tem-
porally downsampled videos and showed that they are not effective with the
deterioration of video quality. It was also shown that, the individual shortcom-
ings of shape and motion features [2] can be alleviated by using complementary
textural features [13].

Motivated by the analysis above, we aim to investigate and present viable
approaches to the problem of human action recognition in low-quality video.
In this paper, we propose approaches that utilize textural features in addition
to conventional space-time shape and motion features to vastly improve the
recognition of human actions under such conditions. We conduct an extensive
series of experiments on poor quality versions/subsets of two publicly available
action benchmark datasets: The classic KTH [1] and the large-scale HMDB51
[8]. The rest of the paper is organized as follows: Section 2 describes the feature
descriptors used, Section 3 elaborates on the experiments conducted with its
results and further analysis. Finally, Section 4 concludes the paper.

2 Spatio-Temporal Feature Representation

This section presents the descriptors used for extracting features from each video.
Section 3.1 describes shape and motion feature descriptors while Section 3.2
describes various textural feature descriptors employed in this work.

2.1 Shape and Motion Features

For extraction of shape and motion features from video, the Harris3D [12]
detector (a space-time extension of the popular Harris detector) was used as
the local spatio-temporal interest point (STIP) detector. It detects local struc-
tures where image values have significant local variations in both space and
time. To characterize the shape and motion information accumulated in space-
time neighborhoods of the detected STIPs, we applied Histogram of Gradient
(HOG) and Histogram of Optical Flow (HOF) feature descriptors as proposed
in [12]. The combination of HOG/HOF descriptors produces descriptors of size
∆x(σ) = ∆y(σ) = 18σ,∆t(τ) = 8τ (σ and τ are the spatial and temporal scales).
Each volume is subdivided into a nx × ny × nt grid of cells; for each cell, 4-bin
histograms of gradient orientations (HOG) and 5-bin histograms of optical flow
(HOF) are computed [6]. We used the original implementation and standard
parameter settings nx, ny = 3, nt = 2 defined in [6].

2.2 Textural Features

For the extraction of textural features we employed three feature descriptors
namely LBP, LPQ and BSIF, which are then extended by three orthogonal



planes (TOP). They are briefly discussed as follows:

LBP features: Local binary patterns (LBP) [15] are used to describe the struc-
tural variations of brightness (contrast) in an image. The LBP operator uses
center pixel as threshold and label its circular neighborhood within radii R by
1 if larger than center, otherwise label by 0 if smaller than center. The binary
code for each center pixel is formed by multiplying binalized values obtained by
thresholding with corresponding (given) pixel weights and summing them up.
The LBPP,R operator produces 2P different output values, corresponding to the
2P different binary patterns that can be formed by the P pixels in the neigh-
borhood set.

LPQ features: Local phase quantization [16] operator uses local phase infor-
mations to produce blur-invariant image features extracted by computing short
term Fourier transform (STFT) in rectangular neighborhoods Nx, which are
defined as:

F (u, x) =
∑
y∈Nx

f(x− y)e−j2ρu
T y = WT

u fx

where, Wu is the basis vector and fx is image samples across Nx. Four com-
plex coefficients corresponds to 2D frequencies is considered for forming LPQ
features: u1 = [a, 0]T , u1 = [0, a]T , u1 = [a, a]T and u1 = [a,−a]T , where a is
a scalar. To express the phase informations, a binary coefficient is then formed
from the sign of imaginary and real part of these Fourier coefficients. An image is
then produced by representing 8 binary values (obtained from binary coefficient)
as the integer value between 0 to 255. Finally, LPQ feature histogram is then
constructed from the produced image.

BSIF features: Binarized statistical image features (BSIF) [17] is a recently
proposed method that efficiently encodes texture information, in a similar vein
to earlier methods that produce binary codes [15, 16]. Given an image X of
size p × p, BSIF applies a linear filter Fi learnt from natural images through
independent component analysis (ICA), on the pixel values of X and obtained
the filter response,

ri =
∑
u,v

Fi(u, v)X(u, v) = fTi x

where f and x are the vectorized form of Fi and W respectively. The binarized
feature bi is then obtained by thresholding ri at the level zero, i.e. bi = 1 if
ri > 0 and bi = 0 otherwise. The decomposition of the filter mask Fi allows the
independent components or basis vectors to be learnt by ICA. Succinctly, we
can learn n number of l× l linear filters Wi, stacked into a matrix W such that
all responses can be efficiently computed by s = Wx. Consequently, an n-bit
binary code is produced for each pixel, which then builds the feature histogram
for the image.



Fig. 1. Three Orthogonal Planes (TOP) approach for describing spatio-temporal tex-
tures. The histograms from the XY, XT and YT planes are concatenated to construct
the final histogram.

Spatio-temporal extension of textural features: Inspired by the success
of works relating to the recognition of dynamic sequences based on the LBP [5,
13], we consider the three orthogonal planes (TOP) approach which extends the
aforementioned texture features to extract features for our task. An illustration
of the TOP extension is shown in Figure 1. Given a volumetric space of X×Y ×T ,
the TOP approach extracts the texture descriptors along the XY, XT and YT
orthogonal planes where, the XY plane encodes structural information while XT
and YT planes encode space-time transitional information. The histograms of
all three planes are concatenated to form the final feature histogram.

In this work, we have applied parameter settings of LBP − TOP8,8,8,2,2,2

with non-uniform patterns as specified in [5, 10], LPQ−TOP5,5,5 as specified in
[18] and 9x9 12 bit (l = 9, n = 12) filters for BSIF-TOP.

3 Experiments

In this section, we describe the datasets used in the experiments and report
the results on various approaches. We also compare the effectiveness of different
textural features, and discuss their computational costs.

3.1 Datasets

We conduct our experiments on two public datasets: KTH [1] and HMDB [8],
in a manner that is suitable for our work. The KTH action dataset is one of
the most popular datasets for action recognition, consisting of videos captured
from a rather controlled environment. It contains 6 action classes performed by
25 actors in 4 different scenarios. There are 599 video samples in total (one
subject has one less clip) and each clip is sampled at 25 fps at a frame resolution
of 160 × 120 pixels. We follow the original experimental setup specified in [1],
reporting the average accuracy over all classes. Similar to our previous work
[10, 11], six downsampled versions of the KTH were created – three for spatial
downsampling (SDα), and three for temporal downsampling (TDβ). We limit
our experiments to downsampling factors, α, β = {2, 3, 4}, which denotes spatial



Fig. 2. Sample video frames from (left two) KTH (downsampled) and (right two)
HMDB (’bad’ and ’medium’ clips) datasets.

or temporal downsampled versions of half, a third and a fourth of the original
resolution or frame rate respectively.

The HMDB is one of the largest human action recognition dataset that is
fast gaining popularity. It has a total of 6,766 videos of 51 action classes collected
from movies or YouTube videos. HMDB is a considerably challenging dataset
with videos acquired from uncontrolled environment with large viewpoint, scale,
background, illumination variations. Videos in HMDB are annotated with a rich
set of meta-labels including quality information; three quality labels were used,
i.e. ’good’, ’medium’ and ’bad’. Three training-testing splits were defined for the
purpose of evaluations, and performance is to be reported by the average accu-
racy over all three splits. In our experiments, we use the same specified splits
for training, while testing was done using only videos with ’bad’ and ’medium’
labels; for clarity, they are respectively indicated as HMDB-BQ and HMDB-
MQ hereafter. In the ’medium’ quality videos, only large body parts are identi-
fiable, while they are totally unidentifiable in the ’bad’ quality videos due to the
presence of motion blur and compression artifacts. ’Bad’ and ’medium’ videos
comprise of 20.8% and 62.1% of the total number of videos, respectively. Figure
2 shows some sample frames of various actions from the downsampled KTH and
poor quality HMDB subsets.

3.2 Evaluation Framework

We evaluated our methods using traditional bag-of-visual-words representation
where, visual features are represented as histogram of visual codewords obtained
from hard assignment by vector quantization (VQ). Classification is performed
with a non-linear multi-class support vector machine (SVM) with χ2-kernel,
adopting a one-versus-all strategy. We use a computationally efficient approxi-
mation of the non-linear kernel by Vedaldi et al. [19] which allows features to
undergo a non-linear kernel map expansion before a linear SVM classification.
This also provides us the flexibility of deciding which features are to be ”ker-
nelized”. We follow the settings specified in [6] which are shown to be effective
across various datasets, i.e. k = 4000 and `2-normalization.

3.3 Experimental Results and Analysis

The experimental results are summarized in Tables 1 and 2. In our experiments,
we chose to concatenate the quantized HOG and HOF descriptors of the STIPs



Table 1. Comparison of different texture feature combinations on various downsampled
versions of KTH

Method SD2 SD3 SD4 TD2 TD3 TD4

HOG/HOF [6] 83.33 76.39 65.74 86.11 81.94 76.85
HOG+HOF [10] 84.26 80.09 75.46 87.04 80.09 81.48
HOG+HOF + LBP-TOP [11] 87.41 80.74 77.69 87.87 82.50 80.37
HOG+HOF + LPQ-TOP 88.15 81.30 78.52 87.50 81.85 80.00
HOG+HOF + BSIF-TOP 89.07 85.00 81.67 88.52 87.04 84.91

Table 2. Comparison of various texture feature combinations HMDB ’bad’ (HMDB-
BQ) and ’medium’ (HMDB-MQ) subsets

Method HMDB-BQ HMDB-MQ

HOG/HOF [8] 17.18 18.68
C2 [8] 17.54 23.10

HOG+HOF [10] 21.71 23.68
HOG+HOF + LBP-TOP [11] 20.80 24.20
HOG+HOF + LPQ-TOP 23.89 28.36
HOG+HOF + BSIF-TOP 32.46 37.14

(’histogram-level’ concatenation), as denoted by ”HOG+HOF”. This represen-
tation is found to be generally more effective than a ’descriptor-level’ concatena-
tion (denoted by ”HOG/HOF”) which was originally used in [2, 6]. Meanwhile,
textural features i.e. LBP-TOP, LPQ-TOP, BSIF-TOP, are extracted from the
entire video volume as feature histograms, and then aggregated with the HOG
and HOF histograms.

Overall, all three approaches that utilize the additional textural features
clearly demonstrate significant improvement, as compared to the baseline meth-
ods. This is consistent across both the downsampled KTH data (Table 1) and
HMDB poor quality subsets (Table 2). Among the evaluated spatio-temporal
textural features, the BSIF-TOP appears to be the most promising choice, as it
outperforms the other approaches.

Figure 3 offers a closer look at how the BSIF-TOP fare against the other
two features across varying downsampled (spatially and temporally) versions
of the KTH dataset. Evidently, BSIF-TOP performs distinctly better than the
LBP-TOP and LPQ-TOP features as the spatial resolution and temporal sam-
pling rate drops. It is about 4% better than the LBP-TOP on the spatially
downsampled data, and about 5% better than the LPQ-TOP on the temporally
downsampled data. On the HMDB subsets, the approaches that incorporated
textural features are clearly better than its original HOG/HOF and C2 base-
line methods [8]. By aggregating BSIF-TOP textures, recognition capability of
both HMDB-BQ and HMDB-MQ improves to almost double that of the original
baseline results.



Fig. 3. Percentage improvement of BSIF-TOP over LBP-TOP and LPQ-TOP, when
aggregated with STIP (HOG+HOF) features

Table 3. Computational cost of different feature descriptors

HOG+HOF LBP-TOP LPQ-TOP BSIF-TOP

Time (in sec.) 13.76 47.57 2.48 5.25

3.4 Computational Complexity

Using a Core i7 32GB RAM machine, we compare the speed (includes feature
detection and quantization time) of computing different feature descriptors, as
shown in Table 3.4. This computational test was performed on a sample video
from SD2 version of KTH dataset consist of 656 image frames. Among the
textural features, the LPQ-TOP and BSIF-TOP are the most efficient methods
(both much quicker than computing HOG+HOF on STIPs), and yet they are
able to contribute significantly to the recognition accuracy.

4 Conclusion

Shape, motion and textural features are all important features for recognizing
human actions. In this paper, we leveraged on textural features to improve the
recognition of human actions in low quality video clips. Considering that most
current approaches involved only shape and motion features, the use of spatio-
temporal textural features is a novel proposition that improves the recognition
performance by a good margin. Among all, the usage of BSIF-TOP dynamic
textures is most promising, with a significant leap of around 16% and 18% on the
KTH-SD4 and HMDB-MQ datasets respectively, over their original baselines. In
future, we intend to extend this work towards a larger variety of human action



datasets. It is also worth designing textural features that are more discriminative
and robust towards complex backgrounds.
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