Students, thinking, exploring and making

STEM at The Canobolas Rural Technology High School

One year on...

Matt Scott - Head Teacher STEM

@ The Canobolas Rural Technology High School

8/8/2016

Ĩ

Context:

- > Orange, Central West NSW
 - ➤ 40,000 population
- > 860m above sea level
- Comprehensive 7-12 school
- ➢ 595 students
 - includes 60 Support students
- Low Socio-economic area
 - ➢ ICSEA value is 872
 - ▹ NSW FOEI is 150
- > 24% Aboriginal students

 $\widehat{}$

Our first steps into STEM

- Incursion activities
 - University of Wollongong STEM road show
 - Robogals three day workshops
 - Engineers without borders
 - Aeronautical Velocity Challenge
 - ► Mobile makerspace
- Integrated STEM action research
 - ▶ 10 Week Stage 5 unit project for ACARA
 - ► 10 Week Stage 4 unit for DoE

ACARA Trial

- Invited to be one of three schools in NSW to develop and trial an integrated STEM unit in Stage 5.
- Trialled delivery by science, maths and TAS teacher in various rooms.
- While engagement was very evident, continuity and coordinating three teachers in three spaces was found to be problematic.

Why STEM?

► We've all seen the statistics...

- a 58% decline in STEM related course completions between 2001 and 2011 Australian Industry Group 2013
- 44% of of Australian jobs (5.1 million) will be at risk of 'digital disruption' in the next 20 years Price Waterhouse Coopers 2015
- ▶ and 75% of the fastest growing jobs require STEM skills Price Waterhouse Coopers 2015
- ► For our context, it's more...
 - Student engagement through project based learning
 - Making links between subject areas for deeper understanding
 - **•** Engagement in Science and Mathematics using practical tasks
 - Sir, why do we have to learn this stuff anyway...?'

Our STEM Curriculum model:

- Built into Stage 4 timetable for all Years 7 and 8.
 - ► Two 53min lessons each week (four per cycle).
 - Students study STEM for one semester, then rotate to Agriculture for a semester.
 - STEM content is directly aligned to and inspired by the Stage 4 Science scope and sequence.
 - Mathematics is taken from the Stage 4 Mathematics scope and sequence is included where authentic learning opportunities are identified.
 - ► A consistent feature is the use of the design process from Technology (Mandatory).
 - ► Four distinct units in Year 7 and four in Year 8.
- Stage 5 iSTEM elective
 - Student driven elective lines at CRTHS
 - Taken up in first year offered, did not detract from Industrial Technology Engineering elective.
 - ► A very diverse group of students.

Our STEM approach – Filmpond Video

http://bit.ly/1UsHCMD

Our STEM Curriculum outline:

Stage 4 STEM Scope and Sequence - aligned to Science Scope and sequence

Outcomes from science syllabus guide the unit. Each unit incorporates "Working Mathematically" outcomes. All units include Tech Mandatory outcomes.

Year	Term 1	Term 2	Term 3	Term 4
7	Chemical World	Earth and Space	Physical World	Living World
	Science syllabus Outcomes:	Science syllabus Outcomes:	Science syllabus Outcomes:	Science syllabus Outcomes:
	SC4-17CW Explains how scientific	SC4-12ES describes the dynamic nature of	SC4-10PW describes the action of unbalanced	SC4-14LW relates the structure and function of
	understanding of, and discoveries about the properties of elements, compounds and	models, theories and laws in developing scientific understanding of the Earth	forces in everyday situations	living things to their classification, survival and reproduction
	mixtures relate to their uses in everyday life		SC4-11PW discusses how scientific	
		SC4-13ES explains how advances in scientific	understanding and technological	SC4- 15LW explains how new biological
		and on the Farth, influence the choices people	solutions to problems involving energy	the world
		make about resource use and management	transfers and transformations	
STEM	Design Brief:	Design Brief:	Design Brief:	Design Brief:
project	Drought has hit our local community hard, and	Not all countries are as fortunate as Australia	Fossil fuels are becoming less popular globally,	In the zombie apocalypse, survival is the name
	greatly impacting the survival of farming	to readily have access to a range a high quality	due to financial and environmental costs. As	of the game. Those who do not adapt may not
	and its quality is falling. You have been	team to develop a low cost composite material	energy generation is becoming popular. Using	Build a robotics vehicle, then design and code
	employed by a company to come up with a	that could be used to cast affordable shelters	the STELR kits, create a prototype wind tower	an adaptation for survival.
	cheap way to make dirty water clearer.	for people and animals.	turbine to harvest wind energy.	Featured Project:
	Featured Project:	Featured Project:	Featured Project:	Build the base Lego EV3 robot vehicle, add and
	Design and make a water cleaner from a used	Cast a one-piece shelter from a class	A tower that supports the STELR wind turbine.	code an adaptation to help it survive a
	PEI DOLLE	fill.	captured wind energy.	KODOWAR.
1				

8/8/2016

 \bigcirc

Our STEM Curriculum outline:

Year Group	Term 1	Term 2	Term 3	Term 4
8	Living World Science syllabus Outcomes: SC4-14LW relates the structure and function of living things to their classification, survival and reproduction SC4-15LW explains how new biological evidence changes people's understanding of the world	Physical World Science syllabus Outcomes: SC4-8WS selects and uses appropriate strategies, understanding and skills to produce creative and plausible solutions to identified problems SC4-11PW discusses how scientific understanding and technological developments have contributed to finding solutions to problems involving energy transfers and transformations	Chemical World Science syllabus Outcomes: SC4-16CW describes the observed properties and behaviour of matter, using scientific models and theories about the motion and arrangement of particles SC4-17CW explains how scientific understanding of, and discoveries about the properties of elements, compounds and mixtures relate to their uses in everyday life	Earth and Space Science syllabus Outcomes: SC4-13ES explains how advances in scientific understanding of processes that occur within and on the Earth, influence the choices people make about resource use and management
STEM project	Design Brief: Drought has hit our local community hard, and greatly impacting the survival of food crops. You have been employed by Department of Agriculture and CSIRO to prototype a biodome to sustainably grow food crops in dry climates. Featured Project: Design and make a self-watering biodome to sustain a seedling. Mini-Projects: Mini self-watering pot	Design Brief: Consumer electronics are becoming smaller and more affordable every year, leading to personal devices and the Internet of Things. Taking advantage of such technology, you are to make and code a musical keyboard from waste cardboard that anyone can play. Featured Project: A cardboard based keyboard using a Makey Makey development board and coded with Scratch. Mini-Projects: Hour of Code	Design Brief: Compounds and mixtures have been used to our advantage for hundreds of years, making our lives easier, more comfortable and safer. Explore, discover and apply a mixture that could be used to extinguish a flame. Featured Project: Make a fire extinguisher from a PET bottle with a 3D printed nozzle that can deliver CO2 to extinguish a candle flame. Mini-Projects: Kinetic sand Slime	Design Brief: In an increasingly throw away world, landfill is becoming a greater issue. Burying non- sustainable resources that do not biodegrade will remain there for decades, if not centuries to come. Alternatives to these materials are in great demand by consumers, when they can be used in practical applications. Create a chocolate mould from your own plastic. Featured Project: A mould made from corn starch plastic, shaped using a 3D printed guide. Mini-Projects: Glues

THE CANOBOLAS TRUTH TRUT

The STEM Centre and STEM Head Teacher

► An Evolution of the existing Library space.

- ► Three distinct learning spaces:
- The thinkerspace: A flexible space for collaborative learning.
- The explorerspace: A knowledge area featuring traditional books and eLibrary accessed on iPads.
- The makerspace: A practical space for crafting prototypes and CAD/CAM work.
- Managed by a school-funded Head Teacher STEM
 - Provides whole school professional learning on project based learning, including team teaching.
 - Resourced using school equity funding.

Preliminary findings:

- > Term 1 student surveys:
 - 93% of students have a better understanding of STEM.
 - > 85% enjoyed working in the STEM Centre.
 - > 83% preferred collaborative learning.

 \bigcirc

Our first Integrated STEM Unit – Filmpond Video

http://bit.ly/1UsHCw4

()

8/8/2016

STEM Transition Project

- Breaking the old reputations...
 - Using STEM and collaborative learning to remind the community about our quality academic programs
- Stage 3->4 Transition
 - HT STEM visiting two Partner Primary Schools every week and other schools visiting Canobolas for STEM immersion workshops.
 - ▶ Working with Stage 3 students and teachers on a maker/coding project.
 - Modeling the new Orange Regional Museum and Orange Civic Theatre, designing and making an opening night LED light show powered by Intel Galileo.

Primary School Roadshows

Promoting STEM education through travelling roadshows to Partner Primary Schools.

WIN TV Central West - STEM Transition and Coding

https://goo.gl/WwPd2A

()

8/8/2016

Whole School Profession Learning

- STEM Team working together with the Head Teacher STEM to identify and plan project based learning activities for the whole school.
- STEM Team members leading project based learning Professional development with staff in their faculty to build capacity.

NSW Department of Education STEM Action Schools

- The NSW Department of Education has established eight STEM Action Schools in line with the NSW Department of Education STEM Strategic Plan.
- The Canobolas Rural Technology High School is one of eight NSW STEM Action Schools.
 - ▶ One of three regional and the only one in Rural NSW.
- The STEM Action Schools will share and support effective STEM pedagogy, illustrate innovative practice for student engagement in STEM, and demonstrate successful leadership, professional learning and industry partnerships.

Our future plans?

- Through applying the Design Thinking process, our vision is to have all students engaged in classrooms by staff who feel confident and are competent with embedding 21st Century learning into every lesson.
- Focus on transition both into and leaving high school.
- Building student confidence in writing.
- Incorporate more project-based learning across the school.
- Further cultivate and cement community links.

Contact

- ► W: www.canobolas-h.schools.nsw.edu.au
- ▶ P: 02 6362 1677

