The following matrix is the (0,1) incidence matrix of a (61,25,10) symmetric design. 0000000000011111111111111111111111110000000000000000000000000 0111110000011111111110000000000000001111100000111110000000000 0111110000000000111111111100000000000000011111000001111100000 0111110000000000000001111111111000000000000000111110000011111 0111110000000000000000000011111111111111100000000001111100000 0111110000011111000000000000000111110000011111000000000011111 0000000000011111000001111100000000001111100000000001111111111 0000000000000000111110000011111000001111111111000000000011111 0000000000000000000001111100000111111111111111111110000000000 0000000000011111000000000011111000000000011111111111111100000 0000000000000000111110000000000111110000000000111111111111111 1110001010000110001100011000110001100100101001010010100101001 1110001010000011000110001100011000111010010100101001010010100 1110001010010001100011000110001100010101001010010100101001010 1110001010011000110001100011000110000010100101001010010100101 1110001010001100011000110001100011001001010010100101001010010 1011000101000110001100100101001010010011000110001100100101001 1011000101000011000111010010100101000001100011000111010010100 1011000101010001100010101001010010101000110001100010101001010 1011000101011000110000010100101001011100011000110000010100101 1011000101001100011001001010010100100110001100011001001010010 1001100010100110010010011001001010010011001001010010011000110 1001100010100011101000001110100101000001110100101000001100011 1001100010110001010101000101010010101000101010010101000110001 1001100010111000001011100000101001011100000101001011100011000 1001100010101100100100110010010100100110010010100100110001100 1000111001000110010011000110100010101100000101100100001101100 1000111001000011101001100001010001010110010010010011000100110 1000111001010001010100110000101100100011001001101001100000011 1000111001011000001010011010010010010001110100010100110010001 1000111001001100100100001101001101001000101010001010011011000 1100010100100110010011100010010001011000101010101000110000011 1100010100100011101000110001001100101100000101010100011010001 1100010100110001010100011010100010010110010010001010001111000 1100010100111000001010001101010101000011001001100101000101100 1100010100101100100101000100101010100001110100010011100000110 0101001001101001001100100100110010010100101001001100011000110 0101001001110100000111010000011101001010010100000110001100011 0101001001101010100010101010001010100101001010100011000110001 0101001001100101110000010111000001010010100101110001100011000 0101001001110010011001001001100100101001010010011000110001100 0010101100101001001101010011000000111001001100100010010101010 0010101100110100000110101001100100010100100110110001001000101 0010101100101010100010010100110110001010000011011000100110010 0010101100100101110001001000011011000101010001001101010001001 0010101100110010011000100110001001100010111000000110101010100 0001011110001001001101001010001011001010000011110000101000101 0001011110010100000110100111000001100101010001011000010110010 0001011110001010100011010001100000110010111000001101001001001 0001011110000101110000101000110100011001001100000110100110100 0001011110010010011000010100011110000100100110100011010001010 0100100111001001010010011001001001100100100110001100100100110 0100100111010100101000001110100000111010000011000111010000011 0100100111001010010101000101010100010101010001100010101010001 0100100111000101001011100000101110000010111000110000010111000 0100100111010010100100110010010011001001001100011001001001100 0010010011101001010010100100110001100011000110010010011001001 0010010011110100101001010000011000110001100011101000001110100 0010010011101010010100101010001100011000110001010101000101010 0010010011100101001010010111000110001100011000001011100000101 0010010011110010100101001001100011000110001100100100110010010