
Augmenting Complex Problem Solving with Hybrid
Compute Units?

Hong-Linh Truong1, Hoa Khanh Dam2, Aditya Ghose2, Schahram Dustdar1

1 Distributed Systems Group, Vienna University of Technology, Austria
{truong,dustdar}@dsg.tuwien.ac.at

2 University of Wollongong, Australia
{hoa,aditya}@uow.edu.au

Abstract. Combining software-based and human-based services is crucial for
several complex problems that cannot be solved using software-based services
alone. In this paper, we present novel methods for modeling and developing
hybrid compute units of software-based and human-based services. We discuss
high-level programming elements for different types of software- and human-
based service units and their relationships. In particular, we focus on novel pro-
gramming elements reflecting hybridity, collectiveness and adaptiveness proper-
ties, such as elasticity and social connection dependencies, and on-demand and
pay-per-use economic properties, such as cost, quality and benefits, for complex
problem solving. Based on these programming elements, we present program-
ming constructs and patterns for building complex applications using hybrid ser-
vices.

1 Introduction

Recently, several novel concepts have been introduced to exploit human computing
capabilities together with machine computing capabilities. This combination has intro-
duced a new form of “computing model” that includes both machine-based and human-
based “computers”. In this emerging computing model, machine-based and human-
based computing elements are interconnected in different ways, thus it is possible to
support different programming models built on top of them.

Indeed, there are different ways to develop applications atop such a new computing
model. In the current research approaches, human-based capabilities are usually provi-
sioned via “crowdsourcing” platforms [1] or specific human-task plug-ins [2,3]. These
approaches achieve human and software integration mainly using (specific) platform in-
tegration. The main programming model is mostly the workflow which is however not
flexible enough for programming different types of interactions among multiple types of
services. In these approaches, essential programming elements representing software-
based services (SBS) and human-based services (HBS) cannot be programmed directly
into applications. Furthermore, these approaches do not provide a uniform view of SBS
and HBS, and let the developer perform the complex tasks of establishing relationships
between SBS and HBS. In addition, although SBS and HBS can be provisioned using

? The work mentioned in this paper is partially supported by the EU FP7 FET SmartSociety.

cloud provisioning models (thus they can be requested and initiated on-demand under
different quality, cost and benefit models), there is a lack of mechanisms to program
explicitly quality, cost, and benefit constraints for complex elastic applications.

In this paper, we view the “new computing model” as a collection of diverse and
heterogeneous SBS and HBS that can be provisioned (e.g., by cloud computing models)
on-demand under different cost, benefits and quality models. This view is very differ-
ent from human-based workflows of which tasks and flows are (statically) mapped to
humans. More specifically, our model considers humans as a service unit, like software
service units, and takes into account diverse types of relationships among human-based
and software-based service units, quality, cost and benefit properties. Our approach
provides concepts for developing such applications where hybrid service units, their re-
lationships, and cost, quality and benefits are first-class programming elements. Hence,
our approach provides a higher level of abstraction and a flexible way for combining
hybridity, collectiveness and adaptiveness of sohuman-based and software-based ser-
vices.

The rest of this paper is organized as follows: Section 2 discusses background, re-
lated work and our approach. Section 3 serves to describe programming elements cov-
ering units, relationships and non-functional parameters. In Section 4 we describe high-
level programming constructs. Section 5 illustrates an example of how our approach
works in practice. We conclude the paper and outline our future work in Section 6.

2 Background and Related Work

Software-based service units constructs: There exist several frameworks for engi-
neering and executing cloud applications using different IaaS, PaaS and SaaS, such as
Aneka [4], BOOM [5]. They abstract cloud resources and support different prorgam-
ming models, such as MapReduce and dataflows. But they do not consider hybrid ser-
vices consisting of SBS and HBS and do not provide high level programming constructs
for modelling the relationships among HBS and SBS. Most of them rely on traditional
relationships among SBS, such as control and data dependencies, modelled in specific
application structure descriptions, workflows and declarative programming languages.

Human computation programming frameworks: There have been an increas-
ing number of programming frameworks for human computation introduced in recent
years. Most of existing work (e.g., Crowdforge [1], TurKit [2]) consider human workers
as being homogeneous and interchangeable, which is useful in developing crowdsourc-
ing solutions where scalability and availability are the main issues. Such frameworks,
however, provide limited notion of identity, human skills, and social relationships which
are important in developing an ecosystem of connected, heterogeneous people and soft-
ware. The recent Jabberwocky framework [6] has addressed this issue to some extent
by providing a programming environment for both human and machine computation.
However, Jabberwocky does not allow to explicitly model the relationships between
people and machines. General-purpose programming languages for human computa-
tion, such as CrowdLang [7], do not rely on service models and do not consider quality,
cost, benefits and elasticity as first-class entities in programming and constructing hy-
brid compute units.

High-level constructs for hybrid compute units: Using several low level APIs for
accessing SBS, like JClouds, Boto, and OpenStack, the developer can define SBS ob-
jects and establish data and control flows. Our previous work (e.g., [8]) has focused on
providing well-defined APIs for provisioning HBS. However, there is a lack of support
for programming different types of relationships among SBS and HBS. The developer
has to do this on his/her own. As a result, they would find it difficult to code such re-
lationships due to the lack of well-defined programming elements, in particular those
related to cost, benefit, quality constraints and to mixed compositions of SBS and HBS.
The use of generic “building blocks” abstracting patterns and providing them via APIs
to simplify the developer task is well-known in SBS in clouds[9]. However, no high-
level program constructs and code generation have been proposed for HBS and SBS in
cloud environments.

Compared with existing work we are focusing on combining HBS and SBS for
hybrid compute units using service computing and cloud computing models. Our ap-
proach supports unified framework for human and software, and provide high-level
programming constructs for different types of services, relationships, and cost, quality,
and benefits models.

3 Fundamental Elements for Hybrid Compute Units

3.1 Service-based Compute Units

In our model, at the core of SBS and HBS there are “processing units”, realized via
either machine CPUs/cores or human brains. To program an application, the developer
can exploit an SBS or HBS via an abstract service unit. Therefore, an application devel-
oped in our framework is abstractly viewed as consisting of a number of service-based
compute units (see Figure 1) and their interactions. A Unit can perform a number func-
tions (e.g., detecting a pattern in or enriching the quality of an image) with input and
output data. A unit also has a number of cost, benefit, and quality properties (see sec-
tion 3.3 for more details). A unit can be either a SBS (Software-Based Service) or HBS
(Human-Based Service). We further divide HBS into ICU (Individual Compute Unit –
representing a service offered by an individual) and SCU (Social Compute Unit – rep-
resenting a service offered by a team). Both HBS and SBS units can potentially support
elasticity in terms of capability (resource), cost and quality [10]. For example, a SBS
for data analytics can increase its cost when being asked to provide higher analysis ac-
curacy or a SCU can reduce its size and the cost when being asked to reduce the quality
of the result. To support solving complex problems with elastic service units, we model
elasticity capability (ElasticityCapability) and associate it with Unit.

A SBS unit can be in number of known software forms offered in cloud computing
models, such as IaaS (e.g., Amazon EC), DaaS (e.g., Microsoft Azure Data Market-
place), PaaS (e.g., Google App Engine) or SaaS (e.g., Salesforce.com). Although many
ongoing work is still being developed for SBS, SBS are already extensively explored in
terms of service management, capabilities, and function modeling. Therefore, we rely
on existing common models for representing SBS. For HBS, their computing capability
is specified in terms of human skills and skill levels. Therefore, in our model a HBS unit
has a set of Skills, each of which is associated with a skill level. Those skills and

Fig. 1. A conceptual model for elements in programming hybrid compute units

skill levels can be defined consistently within a particular service provisioning platform
(using evaluation techniques, benchmarking, or mapping skills from different sources
into a common view for the whole platform). Therefore, we associate each HBS with
a Human Power Unit (HPU) [8], a value defined by the HBS provisioning platform to
describe the computing power of the HBS based on its skills and skill levels, which
are always associated with specific Archetypes indicating the domain in which the
skills are established.

By combining a set of HBS and SBS, we introduce hybrid compute units (HCUs).
A HCU is a collective, hybrid service-based units among which there exist different
types of relationships, covering human-specific, software-specific, as well as human-
software specific ones. A HCU, as a collective unit, can be elastic: it can be expanded
and reduced based on specific conditions.

3.2 Relationships between Service Units

Using cloud computing provisioning models in which SBS and HBS are abstractly
represented under the same service unit model with pay-per-use and on-demand ser-
vice usage, a range of programming elements reflecting relationships among different
types of service units are important and useful in building complex applications. Table
1 describes different types of relationships between service units that we consider as
important programming elements, each of which applies to HBS, SBS or HCU.
Similarity: Given that certain tasks can be conducted by software or human, developers
will need to compare HBS and SBS in order to select suitable ones for the tasks. We
extend traditional similarity among SBS for HBS (e.g., simulation result analysis can
be provided by two different research teams which are similar in terms of archetype
and/or cost) or between HBS and SBS (e.g., specific image patterns can be detected by
scientists or image processing software). From the programming perspective, similarity

Relationship
Type

HBS SBS HCU Description

Similarity Yes Yes Yes This traditional type of relationship indicates how similar
a service is to another. In principle, similarity can be mea-
sured in terms of functions, non-functional parameters and
social contexts.

Composition Yes Yes Yes This well-known type of service relationships indicates
that a service is composed of several other services.

Data depen-
dency

Yes Yes Yes A service depends on another service if the former re-
quires the latter for providing a certain data for one of its
functions.

Control depen-
dency

Yes Yes Yes A service depends on another service if the outcome of
latter determines whether former should be executed or
not.

Location depen-
dency

Yes Yes Yes The locations of two service units are dependent, e.g., co-
located in the same data center or country

Forwarding Yes Yes Yes This is a form of brokering/outsourcing in which a task is
forwarded form one service to another.

Delegation Yes Yes Yes This is a form of brokering/outsourcing in which a service
delegates a task to another service.

Social relation Yes No Yes This relationship describes different types of social rela-
tions (e.g. family or Linkedin connection) between two
services.

Elasticity Yes Yes Yes This relationship describes how service units can be scaled
in/out, replaced or (de)composed to offer similar functions
but different cost, benefit and quality at runtime.

Table 1. Different types of relationships between services

can be specified in applications in terms of cost and quality (for all unit types), archetype
(between HBS units), capability (between SBS units) and function (between HBS and
SBS units).
Composition: Composing HBS and SBS units for complex tasks are possible. There-
fore, we extend traditional composition relationships to cover also composites of hybrid
services, such as describing how ICU can be composed with SBS to establish human-
based filter. Composition can be in different forms such as data or control decomposi-
tion, and can be structured in different ways (e.g., star vs. ring structure).
Dependency: We support the classical view of dependency between services in terms
of data (a service requires data provided by another service) and control (a service
requires an successful completion of another service). Data and control dependencies
can be programmed for any types of SBS and HBS. In particular, data exchange between
two units can be conducted via other service units (e.g., two HBS can exchange data via
Dropbox – a SBS). Furthermore, we consider location dependency which is crucial in
clouds due to not only performance but also compliance requirements. Developers can
use the location dependency to control the co-location of services.
Brokering: We consider brokering relationships for work distribution among service
units. Two types of brokering relationships are considered: delegation (a service manip-
ulates a request/response and delegates the request/response to/from another services)
and forwarding (a service just forwards request/result to/from another service). With

hybrid services, such relationships can also be established between a SBS and a HBS,
e.g., a SBS can decide where a SBS or an HBS will be used for evaluating the quality
of data based on the type of the data.
Social relation: When using HBS for certain tasks in complex applications, we may
require specific social relations among HBS solving the tasks, for example, two scien-
tists who have conducted a joint research before. To support this, social relations are
considered as programming elements.
Elasticity: This emerging relationship is due to the elasticity capability of services at
runtime [10]. To the consumer, elasticity means that the expected service function is
unchanged but the cost, benefits and/or quality can be scaled up/down at runtime. To
the service provider, to enable the elasticity of costs, benefits, and/or quality, at runtime
service units can be replaced by different variants or similar units or (re)composed by
adding/removing appropriate units, or new compositions are introduced.

3.3 Quality, Cost, and Benefits

SBS and HBS have common and distinguishable quality, cost and benefit properties.
In order to allow programmers to specify these properties, we support the following
programming elements:

– Quality: represents common quality metrics and models for processing units and
data. Quality can be further classified into Performance for processing capa-
bilities of service units and QoD (quality of data) for input/output of service units.
Performance and QoD can have several other sub entities, such as Response-
Time, Availability, Accuracy, and Completeness.

– Cost: represents monetary pricing models, such as charging or rewarding models.
– Benefits: represents non-monetary benefits. It is classified into different entities,

such as Return-on-Opportunity or Promotion.

We consider these properties as first-class programming elements since service units
are constrained by various types of cost, benefit and quality models and the service
provider wants to program her SBS/HBS/HCU to be able to scale in/out with expected
quality under desirable cost and benefit at runtime. For example, in a situation with sev-
eral real-time events signaling an emergency situation, an HCU might be programmed
to reduce the accuracy of analytics in order to meet the response time to quickly react
to the situation. On the other hand, in non-critical situations it could be programmed
to utilize more (cheap) HBS to minimize the cost, maximize the accuracy, but accept
an increasing response time as a trade-off. Therefore, treating these properties as first-
class programming elements will allow the developer to explicitly specify, control, and
enforce elastic constraints.

4 High-level Constructs for Hybrid Compute Units

From our proposed fundamental elements, in order to assist the development of complex
applications, we develop a number of high-level constructs for service units and the
relationships between them that help establish interactions among units in a hybrid

compute unit. Those constructs correspond to the conceptual model elements presented
in Figure 1. Constructs for service units have a set of APIs that can be called upon
the units. Constructs for a relationship have a set of (usage) patterns that can be used
to establish the relationship. Constructs for cost, quality and benefits also have a set of
APIs for specifying expected costs, quality and benefits. Using high-level programming
constructs the developer can focus on the logic of the hybrid compute unit, instead of
dealing with implementation-specific details of service units and complex algorithms
for establishing relationships among units.

Construct Description
similarity(U, V, criteria) true if U is similar to V w.r.t. criteria
datadependency(U,D, [M,]V) U producing data D which is needed by V . The optional

medium is the location associated with a DaaS (e.g., a
Dropbox URL) where the data will be placed and shared.

controldependency(U, V) declares that V should execute only after U finishes.
locationdependency(U, V, ctx, path) declares that U and V should be linked in a given location

context (e.g., country or data center) with a path in that
context (e.g., city or server rack)

composition(structure, type,
U1, U2, · · · , Un)

construct a composition of U1, U2, ..., Un for a given struc-
ture model and type

forward(U, t, V) U forwards task t to V .
delegate(U, t, V) U delegates task t to V .
socialrelation(U, V, ctx, path) returns a distance relation between U and V in a given

social context.
?elasticity(U, [Func,]NFPs, x) x is a new form of U or x provides function Func to sat-

isfy given cost/quality/benefit models specified in NFPs.
Table 2. High-level constructs for relationships in hybrid compute units

Table 2 presents main programming constructs for relationships, each of which is
abstractly represented as a function which takes a number of arguments. There are two
types of functions: one that takes grounded variables (denoted as capital letters) as ar-
guments, and one that takes free variable (denoted as lower case letters) as arguments.
The latter is denoted with the symbol “?” in the function name. In the following, we
explain some possible algorithmic patterns for high-level constructs for relationships:
Similarity: The construct similarity(U, V, criteria) represents a similarity relation-
ship between units U and V with regard to a given criteria (namely “Cost”, “Quality”,
“Archetype”, or “Function”). A variant of this construct is ?similarity(U, x, criteria)
which returns a set of units similar to U with regard to a given criteria and store them
in a free variable x. Pseudo algorithmic for this construct usages is shown below.

i f (c r i t e r i a == "Cost") re turn s imCos t (U, V) ;
e l s e i f (c r i t e r i a == "Quality") re turn s i m Q u a l i t y (U, V) ;
e l s e i f (c r i t e r i a == "Archetype" && U. t y p e == HBS && V. t y p e ==

HBS) re turn (U. Arche type == V. Arche type) ;
e l s e i f (c r i t e r i a == "Function") re turn U. F u n c t i o n ==V. F u n c t i o n ;
re turn f a l s e ;

Data dependency: The construct datadependency(U,D,M, V) states that V depends
on U for data D and medium M where the data is stored. Variants of this construct
include ?datadependency(x,D,M, V) (find unit x which provides data D needed
by unit V), ?datadependency(U,D,M, x) (find unit x which needs data D), and
?datadependency(U,D, x[c], V) (find a medium x that can be used to share D be-
tween U and V satisfying a given constraint c). Pseudo algorithmic code for data de-
pendency constructs are shown in the following:

d a t a d e p e n d e n c y (U, D, M, V) {
Uni t s t o r a g e U n i t = M;
i f (M== n u l l) s t o r a g e U n i t = getDedaul tMedium ()
r e q u e s t U s t o r e s D i n t o s t o r a g e U n i t
/ / g e t t h e URI i n d i c a t i n g t h e l o c a t i o n o f t h e da ta
URI u r i = s t o r a g e U n i t . getURI (D)
r e q u e s t V a c c e s s D from u r i

}

Location dependency: The construct locationdependency(U, V, ctx, path) establishes
a location dependency between U and V based on a specific context ctx and a specific
path in cxt. Here ctx can represent human-specific location context, such as the cloud
platform providing HBS (e.g., based on Amazon Mechanical Turk) or the country, or
cloud data center locations hosting SBS (e.g., Amazon EC2 EU site). The path can
indicate further dependencies in ctx, such as the same city or the same server rack in a
data center.
Brokering: Delegation and forwarding relations are simply represented by delegate(U, task, V)
and forward(U, task, V) where task is a given task that needs to be delegated or for-
warded. A variant of the delegation construct is ?delegate(U, task, x) which finds a ap-
propriate unit x that U can delegate task t to. Pseudo code generated for delegate(U, task, x)
are given as follows:

f o r u : l i s t U n i t ()
f o r f : u . l i s t F u n c t i o n ()

i f ((f . i n p u t == t a s k . i n) && f . o u t p u t == t a s k . o u t) {
u . e x e c u t e (t a s k) ;
U. w a i t U n t i l (t a s k . f i n i s h e d == t rue) ;
U. a d d I n p u t (t a s k . o u t) ;
re turn ;

}

Social Relations: The construct socialrelation(U, V, ctx, path) returns a distance be-
tween U and V (HBS only) via social relations in a given social context, denoted by
(cxt, path). It can also be used to establish a social relation constraint between U and
V . The context ctx is a social network (e.g., Linkedin) and path is a specific group
in that network (e.g., data scientist). A negative distance (e.g., -1) indicates that there
is no social relation found between U and V , whilst a value of 0 indicates that they
belongs to the same given social group (e.g., in data science group on Linkedin). On

the other hand, a positive value indicates that they are related via some third parties
who are directly related with them, e.g., A is a Linkedin colleague of B, B is a col-
league of C, then the distance between A and C is 1. In order to find a HBS that is
socially related to a given HBS within a specified distance, one can use the construct
?socialrelation(U, x, distance, ctx, path). The pseudo algorithmic code for
?socialrelation(U, x, distance, ctx, path) construct is as follows:

? s o c i a l r e l a t i o n (U, x , d i s t a n c e , c tx , p a t h) {
f o r hbs : l i s t H B S ()

/ / g e t t h e subgraph o f t h e s o c i a l ne twork w i t h i n a c o n t e x t
Graph s o c i a l N e t = g e t S o c i a l N e t w o r k (c t x) ;
/ / f i n d t h e d i s t a n c e
i n t d = s o c i a l . f i n d D i s t a n c e (U, hbs , p a t h) ;
i f d <= d i s t a n c e

x . addElement (hbs) ;
re turn x ;

}

Elasticity: Elasticity construct can be used for different purposes. In the simplest case,
the construct ?elasticity(U, elasticityReq, x) returns a new unit x that offer similar
functions as unit U does but guarantees the elasticity requirement elasticityReq:

f o r v : l i s t U n i t () {
boolean r e s u l t = s i m i l a r i t y (U, v ,’’ f u n c t i o n’’)
i f (r e s u l t)

E l a s t i c i t y C a p a b i l i t y e l a s C a p = v .
g e t E l a s t i c i t y C a p a b i l i t y () ;

r e s u l t = r e s u l t && (matches (e lasCap , e l a s t i c i t y R e q) ;
i f (r e s u l t) re turn x ;

}

Elasticity construct ?elasticity(Func, elasticityReq, x) returns a (new) unit x that
offers function Func as long as the elasticity requirement is met.

5 Illustrating Examples

To illustrate the “expressiveness” of our programming models, we use an illustrative ap-
plication which is based on a real-world simulation application. Consider a multi-scale
simulation application that utilizes different software as simulation solvers and visu-
alization services. Typically, the simulation application includes several components,
each of which is a SBS unit performing a particular task. These components can be
used to pre-process data, execute solver engines, post-process results and analyze final
results. In such an application, the quality of input, and the intermediate and final result-
ing data is crucial. Therefore, several components for evaluating quality of data (QoD)
can be introduced into the application. Currently, such QoD evaluation components
are rarely designed in the application. When redesigning the simulation application
with QoD evaluation components, we face a problem: evaluating QoD cannot be done
fully by SBS. We need to augment the application with human-based services to carry

out runtime quality evaluation. Furthermore, whether the employment of software or
human-based service units for QoD evaluation is dependent on runtime aspects. Based
on this application, we present how our programming elements and high-level con-
structs can be useful for implementing complex tasks using cloud APIs for SBS and
HBS units.

QoD
Evaluation

Data Pre-processing
QoD

Evaluation

Changing
Solver

Post-
processing

QoD
Evaluation

Solving

Data
analysis

Forwarding
to peers

Cleansing
& Enriching

Delegating to
team members

Fig. 2. Expected simulation components and their interactions using both SBS and HBS

Figure 2 describes expected simulation components and control flows using both
SBS and HBS. Typically, only four main components are described in the simulation,
namely pre-processing, solving, post-processing, and data analysis.
However, by employing QoD-aware activities, we can introduce several new compo-
nents for evaluating QoD and utilizing QoD to control the simulation. In the follow-
ing we will illustrate how our programming elements and constructs can simplify the
development of such new components and their interactions. For the sake of simplic-
ity, we will not show the whole applications but illustrate main parts. QoDEvaluation
components can be implemented different: (i) only SBS is needed, for example, in the
QoDEvaluation step before pre-processing, (ii) SBS or HBS is used interchange-
ably, for example, in the QoDEvaluation after pre-processing, or (iii) only HBS
is used, e.g., in QoDEvaluation after solving.
Programming elasticity and collectiveness in solving steps: Using different con-
structs, the programmer can invoke different types of units to deal with different situa-
tions. The following code excerpt shows examples of using ICU to check why the data
is bad or to find solvers that can handle dirty data as long as they meet cost and quality
requirements:

Double q o d P r e P r o c e s s e d D a t a =
(Double) qodEva lUn i t . e x e c u t e ("qodEvaluate" , params1) ;

/ / g e t an ICU t o check why da ta i s bad
i f (q o d P r e P r o c e s s e d D a t a < 0 . 5) {
/ / i n i t i a t e a new u n i t

ICU d a t a S c i e n t i s t = new ICU () ;
/ / c r e a t e a dropbox p l a c e f o r s h a r i n g da ta

DropboxAPI<WebAuthSession> scuDropbox = n u l l ;
/ /
DropboxAPI . DropboxLink l i n k = scuDropbox . s h a r e ("/hbscloud") ;

/ / a sk t h e c l o u d o f HBS t o i n v o k e t h e ICU
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;

vieCOMHBS . s t a r t H B S (d a t a S c i e n t i s t) ;
HBSMessage msg = new HBSMessage () ;
msg . setMsg ("pls. use shared dropbox for communication " + l i n k .

u r l) ;
vieCOMHBS . sendMessageToHBS (d a t a S c i e n t i s t , msg) ;

} e l s e i f (q o d P r e P r o c e s s e d D a t a < 0 . 7) {
/ / i n t h i s case , we j u s t need a s o f t w a r e t o c l e a n t h e da ta

SBS d a t a C l e a n s i n g = new SBS ("datacleaner") ;
/ / . . .

} e l s e i f (q o d P r e P r o c e s s e d D a t a < 0 . 9) {
/ / s p e c i f y some s t a t i c p r o p e r t i e s o f t h e s o l v e r
SBS s o l v e r U n i t 2 = new SBS ("solver") ;
s o l v e r U n i t 2 . c a p a b i l i t i e s . p u t ("DIRTY_DATA" , Boolean . va lueOf (

t rue)) ;
/ / s p e c i f y e x p e c t e d c o s t and a c c u r a c y s u p p o r t
CostModel cos tMode l = new CostModel () ;
cos tMode l . p r i c e = 100 ; / / max i n EUR
cos tMode l . usageTime = 1000 ∗ 60 ∗ 6 0 ; / / 1 hour
Q u a l i t y q u a l i t y = new Q u a l i t y () ;
q u a l i t y . name = Q u a l i t y .ACCURACY;
q u a l i t y . v a l u e = 0 . 9 5 ; / / minimum v a l u e
A r r a y L i s t n f p s = new A r r a y L i s t () ;
n f p s . add (q u a l i t y) ; n f p s . add (cos tMode l) ;
/ / f i n d s o l v e r s met q u a l i t y and c o s t needs
SBS e l a s t i c S o l v e r U n i t = (SBS) R e l a t i o n s h i p . e l a s t i c i t y (

s o l v e r U n i t 2 , n f p s) ; O b j e c t s o l v e r R e s u l t 2 =
e l a s t i c S o l v e r U n i t . e x e c u t e ("solving" , params1) ;

} e l s e {
/ /

}

Forwarding and delegating analysis request: After post-processing, in data analysis,
an analyst can capture an unknown pattern which she can forward to her research con-
nectors, who have a social relation to her in Linkedin. A professor may receive this
pattern and he delegates the analysis tasks to his SCU, a set of graduate students. The
following code excerpt shows the above-mentioned illustrative tasks:

ICU d a t a S c i e n t i s t = new ICU () ;
/ /
ICU f U n i t = new ICU () ;
R e l a t i o n s h i p . s o c i a l r e l a t i o n (d a t a S c i e n t i s t , f U n i t , 1 ,"Linkedin:

DataScienceGroup/TUWien") ;
R e l a t i o n s h i p . f o r w a r d (da t a , f U n i t) ;
/ / . . .

SCU studentSCU = new SCU () ;
/ / . .
R e l a t i o n s h i p . d e l e g a t e (da t a , s tudentSCU) ;

6 Conclusions and Future Work

In this paper, we investigate high level programming supports for solving complex prob-
lems using software-based and human-based compute units. We have presented a range
of possible fundamental programming elements abstracting software and people and
several possible high-level constructs. As the paper mainly discusses about high-level
models and constructs, our validation is limited to illustrating examples and compar-
isons. We believe that programming elements and high-level programming constructs
presented in this paper can be foundations for the development of domain-specific lan-
guages and software engineering processes for hybrid compute units. Our future work
involves further developing our prototype and tooling support for the proposed high-
level programming constructs.

References

1. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing complex work.
In: Proceedings of the 24th annual ACM symposium on User interface software and technol-
ogy. UIST ’11, New York, NY, USA, ACM (2011) 43–52

2. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: tools for iterative tasks on
mechanical turk. In: Proceedings of the ACM SIGKDD Workshop on Human Computation.
HCOMP ’09, New York, NY, USA, ACM (2009) 29–30

3. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins.
Proc. VLDB Endow. 5 (2011) 13–24

4. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The Aneka platform and qos-
driven resource provisioning for elastic applications on hybrid clouds. Future Generation
Comp. Syst. 28(6) (2012) 861–870

5. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.: Dedalus:
Datalog in time and space. In de Moor, O., Gottlob, G., Furche, T., Sellers, A.J., eds.:
Datalog. Volume 6702 of Lecture Notes in Computer Science., Springer (2010) 262–281

6. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment
for structured social computing. In: Proceedings of the 24th annual ACM symposium on
User interface software and technology. UIST ’11, New York, NY, USA, ACM (2011) 53–
64

7. Minder, P., Bernstein, A.: Crowdlang: A programming language for the systematic explo-
ration of human computation systems. In Aberer, K., Flache, A., Jager, W., Liu, L., Tang,
J., Guéret, C., eds.: SocInfo. Volume 7710 of Lecture Notes in Computer Science., Springer
(2012) 124–137

8. Truong, H.L., Dustdar, S., Bhattacharya, K.: Programming hybrid services in the cloud.
In: 10th International Conference on Service-oriented Computing (ICSOC 2012), Shanghai,
China (2012)

9. Fehling, C., Leymann, F., Ruetschlin, J., Schumm, D.: Pattern-based development and man-
agement of cloud applications. Future Internet 4(1) (2012) 110–141

10. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes. IEEE Internet
Computing 15(5) (2011) 66–71

