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Abstract

Wireless charging is now a reality. Low-power de-
vices with sensing capabilities deployed within a build-
ing for example can now be powered wirelessly via Ra-
dio Frequency (RF) transmissions from existing Access
Points (APs) that form a Wireless Local Area Network
(WLAN]}. However, an AP cannor transmit frequently
to charge devices as it may starve other nearby AFs
operating on the same channel. Consequently, there
is a need fo schedule the transmissions of APs to
ensure their data queues remain short whilst charging
energy-harvesting devices. We present a finite-horizon
Markov Decision Process (MDP) to capture the queue
states at APs and also channel conditions to nodes.
The reward to be optimized is the amount of delivered
energy and data. We investigate the following queue
selection rules: max weight, max queue, best channel
state and random. Our results show that APs that select
the best gueue in each time slot according to the max
weight ritle vields a transmission schedule that has the
best reward; i.e., highest delivered packets and energy.
Moreover, the obtained reward has the smallest gap 1o
the optimal/exact reward.
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1. Introduction

Currently, Access Points (APs) in Wireless Local
Area Networks (WELANSs) are tasked with delivering
data to/trom devices. In the foreseeable future, APs
will also charge low-power devices via Radic Fre-
quency (RF) [1]. This is because works such as [2] and
[3] have demonstrated Jow-power sensor nodes with a

camera that can harvest energy from APs. One can
thus imagine sensor nodes being used in buildings and
factories to monitor one or more targets {4]. Moreover,
as APs are likely to be deployed densely in the future,
see [5] and [6], they are ideal energy transmitters.
Consequently, we believe APs will help proliferate
low-power devices that form the emerging Internet
of Things (IoTs), which will play a pivetal role in
improving the efficiency of existing industries.
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Figure 1. An sxample dense WLAN with an RF-
charging sensor node .. Dotted lines indicate
irterference belween APs.

Figure 1 shows a WLAN. In addition to deliver-
ing data to their respective station{s), the APs are
responsible for charging nearby sensor nodes; e.g., 5.
Also shown is a controller, e.g., a Cisco 8540 wireless
controller. It is responsible for both data and control
plane operation {7]. Critically, it is responsible for de-
termining APs that interfere with one another, as noted
by the dotted lines, and scheduling the transmissions
of APs; i.e., the controller ensures APs that interfere
do not transmit in the same time slot. Note that link
or transmission scheduling will be critical given that
APs are likely to interfere when they are densely

eploved. This is because of the limited number of
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non-overlapping channels that can be assigned to APs.
Lastly, as shown by the authors of [7], a controller is
necessary to schedule the transmissions of hidden and
exposed terminals.

The feasibility of RF-energy harvesting and dense
deployment of APs have spurred the development of
joint charging and data transmission schemes. These
schemes aim to supply energy to devices in order to
maximize their throughput. Examples include “harvest-
then-transmit” approaches, where an AP first charges
devices wirelessly. These devices then set their trans-
mission rate to the AP based on the amount of
harvested energy. In [8], the authors determine the
energy harvesting time that maximizes the minimum
transmission rate. The same problem is then extended
to cases where the AP has Multiple-Input Multiple-
Output (MIMO) capability [91; for other extensions,
please see [1] and references therein. In [10] the
authors propose to adapt an AP’s energy beamforming
vector, transmission time and power of devices to
ensure the queue at these devices remain stable. We
emphasize that these prior works on wireless powered
communication networks assume one AP and do not
consider mudtiple interfering APs scenarios; e.g., in
Figure 1, all APs are on the same channel, meaning
AP, and AP, cannot transmit simultaneously. Also,
these works do not consider queue dynamics at APs.
This is important as APs are responsible for delivering
data and the controller or link scheduler must ensure
the queues at APs remain short. In a different example,
the authors of [11] design a signaling protocol that
pairs sinks and sensor nodes, either for charging or
data collection: both of which are carried out simulta-
neously. They, however, did not consider data delivery
from APs. In [2], the authors prototype sensor nodes
that harvest energy from APs. They observe that APs
traffic load is too low to charge sensor nodes. A
solution is to have APs transmit power or dummy
User Datagram Protocol (UDP) packets when their
gueue occupancy is low. The authors of [12] jointly
optimize routing and link schedule over a multi-hop
wireless network to ensure flow demands and energy
requirement of energy harvesting sensor nodes are met.
Lastly, in [13] and [14], sensor nodes send charging
requests to APs or Energy Transmitters (ETs). The
key problem addressed in both works is to pick the
set of ETs/APs responsible for charging sensor nodes
and investigating the impact charging operation has
on data transmissions. The foregone works, however,
did not consider the problem of scheduling the data
transmissions of APs in order to maximize delivered
energy and data.
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Figure 2. An example schedule for the WLAN
shown in Figure 1 with T = 4. The number next
to each arrow denotes the maximum number of
packets or energy transfer afforded by the channel
at a given tims.

Different from existing works, we consider the fol-
lowing novel problem. Referring to Figure 1, each AP
has random exogenous data packet arrivals. Sensor
node S, relies on AP, for energy, where its energy
level is directly linked to AP,’s transmission duration,
path loss and energy conversion efficiency o. In this
example, we have the following transmission or in-
dependent sets a; = [AP, AP, AF.): a1 = [1,0,1]
or ag = [0, 1,0], where a ‘I’ indicates a transmitting
AP Assume time is slotted, where each slot lasts for
100ms. One possible schedule is to activate ay and ag
for 500ms (five slots) each. This means for a received
power Py, sensor node S, will harvest %C\/H)z of
energy. Although this schedule activates APs equally, it
may cause long queues; this occurs if the active time
or service rate of an AP, say a, is smaller than )\,.
Conversely, a schedule that favors a; may starve S,
of energy.

Henceforth, the controller must determine an appro-
priate transmission schedule for APs. The schedule
derived by the controller determines the amount of
energy delivered to sensor nodes around APs. A key
challenge, howevey, is that packet arrivals to each AP
and the channel condition to each device is random.
Another challenge is that the delay between the con-
troller and APs cause sub-optimal scheduling; see [7].
Consequently, as advocated by the authors of [7], the
scheduler/controller must operate in terms of epoch
or a time interval with 1,...,7 slots. That is, the
controller computes and sends 2 link schedule every
epoch. The schedule specifies the set of transmitting
APs in each time slot. One example schedule is shown
in Figure 2. Also shown is the maximum number of
data packets or energy that can be transferred in each
time slot to each device. In practice, these values are
random. Our problem is thus to determine a fransmis-
sion schedule over 7' time slots subject to random
packet arrivals and channel gains that optimizes the
following metrics: (i) data packets transferred, and (ii)
energy harvested by sensor or energy harvesting nodes.
For example, if we assume all APs are saturated, i.e.,
more packets than they can transmit over a channel,
and define a so called reward to be the sum of packets
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and energy transmitted, then the schedule depicted in
Figure 2 with length T = 4 has reward 15. Note, as
the channel conditions and packet arrivals are random,
we will need to maximize the expecred reward.

Next, Section 2 presents key notations. Then in
Section 3, we present a finite-horizon Markov Decision
Process (MDP) that models the novel problem at hand.

ts states capture the random queue lengths and channel
conditions over horizon 7. Using the MDP model, our
goal is to determine a rule, and in turn the schedule
in each time slot, that maximizes the total expected
reward in a given epoch with 7" slots. We study the
following queue selection rules: (i) max weight, where
APs select the queue with the biggest product value
between queue length and channel condition, (il) max
gueue, where APs select the station with the longest

APs select the station with the best channel, and (iv)
random, where APs randomly return a queue to ser-
vice. Once APs have chosen a queue as per one of the
above rules, we then employ a poficy that selects the

ansmission set that maximizes the expected reward
in each state. The reward is proportional to the total
number of packets and energy that can be delivered in
each time slot. Our results show that in comparison to
other rules, the schedule, i.e., set of transmitting APs in
each epoch, determined by the max weight rule vields
high packets and energy delivery rate. Moreover, the
max weight rule vields the smallest gap to the optimal
expected reward.

2. Preliminaries

We denote the set containing APs as A; all of which
operate on the same channel. A controller connects
all APs and is aware of stations associated to each
AP, and nearby sensor or energy-harvesting nodes. It
also computes the schedule of each epoch, using our
approach as detailed in Section 4, and informs all APs
their transmission schedule every 77 slots. Each slot is
indexed by 7. APs serve two types of nodes: (i) sta-
tions, which we record in the set S;. Stations transnuit
and receive data to/from their associated AP. They do
not rely on the APs for power. Those associated to AP
a are placed in set S;(a), and (ii) the set of sensor
nodes Se. Those “near” AP o are denoted as S.{a),
meaning when AP o transmits, these sensor nodes are
able to harvest energy because the received power is
higher than a given received sensitivity; e.g., for the
energy harvesters reported in [1], an RF input power
in the range —14 to —22 dBm is sufficient to produce
1V DC output. Note, sensor nodes are able to harvest
energy from one AP only. This is reasonable given the

low receiver sensitivity of current energy harvesting
implementation that restricts the charging distance to
0o more than five meters [2]. We do not consider
uplink traffic from stations and sensor nodes, and leave
it as a future work.

APs may interfere due to the limited number of
orthogonal channels in IEEE 802.11-based WLANSs.
To represent the interference between APs, we use a
conflict graph, whereby its vertices correspond to APs
[15]. Note that a controfler can use IEEH 802.11k to
determine which APs interfere with one another. If two
APs interfere, i.e., they hear each other’s transmissions
or an asscciated station hears transmissions from the
other AP, then there is an edge in the conflict graph
between the two APs. Note that the conflict graph
of a WLAN is fixed because APs are static. With
the conflict graph in hand, we can then derive the
collection of transmissions or independent sets; see
Section 5 for an example heuristic. Each of these sets
forms the columns of 2 matrix A with elements taking
a value of zero or one. For example, for the conflict
graph of Figure 1, namely AP,-APy-AP., two possible
transmission sets are {1 0 1]7 and [0 1 0}7; ie.
either AP, and AP, transmit together or AP, transmits
by itself. Note, there can be up to 2 independent
sets and finding the maximum independent set is an
NP-hard problem. Jo the sequel, 7{¢} refers o the
transmission set activated at time 7. Also, with a slight
abuse of notation we will also treat A as a set.

Each AP has a First-In-First-Out (FIFO) queue for
each associated station. Formally, at AP «, the queue
that stores packets headed to station j at time ¥ is
(Ja;(t). Let Ag;(t) be the packet arrivals at time
for station j. Packets arrive at the start of each slot as
per an i.i.d process with mean A;.

We model the amount of harvested energy and the
number of packets that can be transmitted to a node
at a given ume as follows. The channel state evolves
according to a finite-state Markov chain and is static
for the duration of a time slot. Moreover, the channel
state to each station is independent and is known to
the controller. We write g, (1) to represent the number
of packets that can be received by station z from AP
a at time £. On the other hand, ¢,,{t) refers to the
potential energy {in Joules) that can be harvested by
sensor node 2 at time ¢ for each packet transmitted
by AP a. As explained in Section 5, the amount of
energy (Joules), which is a random value, a sensor
node can harvest within five meters is drawa from the
measured data obtained in {2]. This random value or a
state of the Markov chain thus represents the variabie
received power and the resulting energy harvested after
accounting for conversion efficiency.



In each time slot #, we assume APs select the best
station according to some rule; see Section 4. Let this
station be j7*. Assume AP k ¢ 7{¢) is scheduled to
transmit. Its total number of transmitted packets is,

Ti(t) = MIN(Qrs- (D)
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The quete for each station 7 at AP & evolves as,
Qus{t+1) = Q¢

In words, for each station j, we sum its current gueue
length plus any drrwals, For station 7%, we subtract
transmitted packets as the indicator function 1, returns
a value of one when j equals j°.

Lastly, let X, (¢} be the total queue length of AP a
Formally, it evolves as per,

X (b+1) = > Qult+1)
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We ignore battery capacity because the energy de-
livered by an AP is a few orders of magnitude smaller
than the battery capacity of sensor podes; e.g., t
AA batteries, as commonly used by sensor nodes, is
capable of storing tens of kilo-joules of energy versus
a recharging rate of micro-joules.

3. A Markov Becision Process Medel

Briefly, an MDP [16] is specified by the tuple
(Y, A, P(|,.).r{.,.)), where Y denotes the state
space and A is the action space. In state ¥y € Y,
if we take action ¢ £ A, then we earn a reward
r(y,a). After that, we move to a new state v’ € Y
with pmhah im P(y'ly,a), where P{y'|y,a) > 0 and
L} p— Py'ly,a) = 1.

We are now ready [0 instantiate a MDP for the
problem at hand. At time 7, the queue length at all APs
is recorded as Q wiliaca jes,. The channel
states, from an AP to sensor nodes and stations at time
t, are stored in Oy = (e )acAjes, U (@) laca jes, -
The current state at time ¢ is denoted as y¢ =
f(gt.(/b, Formally, we have a discrete-time Markov
chain {y¢ H=5°. Lasdy, we refer to Y = (Q,C) as
the state space, where ¢} and €' are the poss,bie queue
lengths and channel states, respectively. Observe that
the state space has a high dimensionality. For example,
if the maximum gueue length at each AP 1s 100 packets
and there are 10 possible channel states, then in total
we have 1001 x 10154 states.

The action space corresponds to all the transmission
sets in matrix A. The transition probability to a new
state yii1. Le., P{yerr | ve, 7{8)), given state y¢ and
action 7(1), is determined by both the Markov model

that dictates the channel condition of each link and
also the packet arrival process.

We now define the reward 7 (y¢, 7(¢)). First, let the
total number of packets transmitted by APs at time ¢
be,

(t) 4)

keT(t)

At time 7, the total amount of energy delivered is

The reward is then defined as,
re(ye, T{t)) = 7T (1) + v E{t) (6)

where 4 and . are scalar factors to normalize the
vaiue of T'(¢) and E(t). Observe that the reward is
tied closely to both the queue and channel state of
the station chosen by each AP as well as the number
of transmitting APs in 7(¢). Given T time slots, our
problem is to determine a policy 7 that returns the best
transmission set from A for each of the next 7' slots
such that the expected reward is maximized. Formally,
we have,

N s f N
max & % re(ye, T{ye. A)) (7}

where the expectation £ is taken with respect to
random channel conditions and queue arrivals. Note, in
practice, in addition to the issues highlighted in [7], the
exact value of T needs to be balanced against signaling
overheads and computation time. If T is small, then
frequent commands to APs may cause congestion. On
the other hand, if 7" is big, then the computation time
will be Jong as the problem has high dimensionality.

4. Approximate DP and Queue Selection
Rules

We employ approximate DP given the high di-

rensionality of the problem at hand. Specifically, we
use forward dynamic programming, whereby for a
given starting state yg € Y and discount factor -,
the problem as formulated by (7) is equivalently to
computing the following value function [16],

Vilye) = max | rys, 7(0) +
T{t)EA )

U}
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A key problem is computing V; due the size of Y.
To this end, we use approximate value iteration; see
[16]. Specifically, we randomly generate a sample of
N outcomes from Y. Let the set {1 stores these N
outcomes, and p(w) be the probahility of cutcome w €
(). We then rewrite Equ. (8) as,

Vilye) = mass | ey, 7(0) +9 3 PV @)
wER
E)

Implicitly in the calculation of Vt (or Vi) is that
each AP has chosen the best station 7. In this paper,
we study the following rules. The first is called Max
Weighr. At each time 7, AP g selects station j* as
follows,

() (10)

That is, pick the station that has the longest queue
and best channel. The second rule called Max Queune
corresponds to APs picking only the longest queue,
ie.. identify the station j with the biggest Qq; (1)
value. The third rule, aka Max C§7, requires APs pick
the station with the biggest ag;{f) value. Lastly, the
Random rule returns a data queue randomly.

For each of the above rules, at each time 7, we
employ the foﬂowing policy 7 in each state y¢, select
the transmission set 7{¢) from A that maximizes Hqu.
(9). That is, select a column from A that maximizes
Vi(ve).

We remark that for a given matrix A, which contains
a finite set of actions, and queue selection tule, the
said policy is optimal. In particular, as there are finite
number of transmission sets, i.e., columns of matrix A,
there is an optimal action that maximizes expression
Vt(yt) for each ¢ in each epoch [i6]. A key issue,
however, is the gap between Vt(yt yoand Vi(ye). In
Section 5, we show for 7' values less than 10, the value
of %:Vt) is at most 25% higher than Vi(ye).

We note that constructing matrix A involves finding
maximum independent sets; an NP-hard optimization
problem. Thus we use a heuristic, see Section 5, when
generating transmission sets. Note, other heuristics can
be used to construct maximal m(iépendent sets, which
may yield a bigger or smaller WLAN capacity region;

, transmission sets with more or fewer active APs.
In other words, the new heuristic only scales our results
and does not alter our conclusions.

5. Evaluation
Using the formulated MDP, we now study the fore-

gone rules as follows. We first study the following
scenario. There are | A] = 10 APs; each of which

is randomly assigned up to five sensor nodes and
five stations. In each simulation run, a new topol—
ogy 1s generated; i.e., one with a different conflic
graph, and APs have a pew set of stations and
sensor nodes. The changel state at each time ¢ is
driven by a Markov model. For sensor nodes, each
state is the amount of harvested energy (in pJ) and
is drawn from {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
These values are based on the measurement data
reported in [2]. As for data packets, each state cor-
responds to the data rates of IEEE 802.11g. Each state
has a uniform probability to enter another state. At
each time ¢, packet arrivals follow a Bernoulii process.
When approximating the value of a given state, i.e.,
Vi), we sample N = 100 states. We set 7" = 10000
and calculate the average queue length and harvested
energy over 20 runs. The discount factor +y is set to one.
We recorded the average queue length of APs and alsc
the energy harvested by all sensor nodes.

We derive matrix A as follows. Each AP has a
unique identity (ID). For a given transmission set 7
we start with an AP ¢ with the lowest ID. We then
greedily add another AP into the set 7 if it does not
interfere with APs in 7. This continues until no moere
APs can be added. We then add 7 into A if it is new.
Otherwise, we construct a new 7 and repeat the process
by starting from the AP with the next highest 1D.

Figure 3 shows that the max weight rule is able to
support the highest arrival rates. This is hecause APs
pick the longest queue that can fully take advantage
of the channel condition at each tme f. In contrast,
rules such as random and max queue may choose a
station with few packets or poor channel. In terms of
harvested energy, see Figure 4, when the load is high,
max CSI allows APs to transmit the highest number
of packets, and thereby, allow sensor nodes to harvest
more energy. At lower loads, the max weight rule
may cause APs to choose a station with few packets
despite having good channel conditions. Hence, the
actual number of transmitted packets is low. Lasty,
we observe that larger transmission sets, those with

yore transmitting APs, are preferred because they
yield higher total expected reward. Hence, some APs
may receive fewer transmission opportunities in the
short term.

Next, we consider inter-APs interference. The traf-
fic load i1s fixed at 0.5. When APs are less likely
to interfere, more APs tfransmit simultaneously. With
increasing interference, only one AP out of | A] may
transmit. Figure 5 shows that the max weight rule has
the best performance due to the previously discussed
reasons. The amount of harvested energy decreases
when more APs interfere with one another; see Figure




6. This is because each AP transmits infrequently. At a
traffic load of 0.5, APs usually have packets awaiting
transmission. Thus, both the max weight and CSI rules
are able to fully exploit good channel conditions. In
contrast, the random and max gqueue rules may select
a station with poor channel condition.
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Figure 3. Average queue length versus probability
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Figure 4. Average harvested energy versus prob-
ability of arrivals or load

Lastly, we study the case where Equ. (§) can be
solved exactly as opposed to being approximated; see
Equ. (9). Note that finding a good method that has
minimal or no gap between the approximate and exact
value remains an open research guestion; see [17].
In our case, we also have the added complexity of
deriving the set of actions or transmission sets; see
Section 4. We consider a small scenario with two
interfering APs. Hence, there are only two transmission
sets, each with one transmitting AP. Each AP has two
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Figure 5. Average queue length versus probability
of interference between APs
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Figure 6. Average harvested energy versus inter-
ference between APs

stations and one sensor node. The queue length takes
on three states: {0,1,2}. There are two channel states,
namely {1,2} and in each state, there are either zero,
one or two packet arrivals. In total we have 5i84
states. When computing Eq. (9), we set N = 1000.
Figure 7 shows the gap from the exact expected reward
value. With increasing 7', the gap increases and it is
advantageous 10 keep 7" small; this ensures a smaller
gap and also fast computation time. Advantageously,
we see that the max weight rule has the smallest gap.
Note that for a given T', the gap is a constant. Note,
we have tried higher values of NV, at the expense of
longer compurtation time, but the results remain similar.
Figure § shows the exact reward value obtained by the
tested rules. The wend is consistent with earlier results
whereby the max weight rule has the best expected
reward.
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&. Conclusion

Future dense deployment of APs are likely to be
used to charge nearby energy-harvesting devices and
also deliver data to stations simultaneously. To this end,
we use a MDP to study various rules and show that the
max weight rule ensures APs have short queues whilst
ensuring energy-harvesting devices receive ample en-
ergy. Morecver, it yields the smallest gap between the
approximate and exact value.
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