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Abstract—In this paper, we consider channel access in Un-
manned Aerial Vehicles (UAVs) networks where a ground
station is equipped with Successive Interference Cancellation
(SIC) capability. The problem at hand is to derive a transmis-
sion schedule for UAVs to communicate with a ground station
frequently, and with minimal collisions. We first formulate
a stochastic optimization problem before introducing a novel
distributed Learning Medium Access Control (MAC), aka L-
MAC, protocol. A key novelty of L-MAC is that it allows UAVs
to learn the best orientation that results in the highest decoding
success. Our simulation results show that L-MAC achieves a
throughput that is 68% higher than the well-known Aloha
protocol without SIC, and 28% higher than Aloha with SIC.

1. Introduction

Unmanned Aerial Vehicles (UAVs) are increasingly be-
ing used in many applications such as broadcasting [1], and
mobile base stations [2]. In these applications, UAVs are
required to communicate with a ground station continuously.
Thus, they require a link with a high capacity to the ground
station. To this end, we equip the ground station with a
Successive Interference Cancellation (SIC) radio [3], which
allows it to receive transmissions from multiple UAVs si-
multaneously if their respective Signal to Interference plus
Noise Ratio (SINR) is above a certain threshold. This paper
focuses on deriving a transmission schedule for use in
a multi-UAVs network. As the schedule repeats, coupled
with the fact that the ground station supports SIC, a short
schedule means UAVs will be able to transmit frequently;
equivalently, the network capacity will be high.

The key novelties in our work are that we consider the
orientation of UAVs and random channel gains. In particular,
a number of works, see [4], have shown that the orientation
of a UAV has an impact on the channel condition or gain at
a ground station. This is particularly advantageous when the
ground station has a SIC radio. UAVs are able to re-orient
themselves to improve SIC decoding success. Consider the
example scenario with two UAVs in Figure 1. We can see
in Figure 1(a) that the two UAVs have the same antenna
orientation. Suppose that at this orientation, the received
power is not sufficient to cause a difference that allows SIC
decoding to be successful. Hence, the transmission from
these two UAVs fails. Now consider Figure 1(b), where

a UAV changes its orientation, which causes a different
receive power at the ground station. In this case, this new
orientation allows the ground station to successfully decode
all transmissions.

Ground Station
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Ground Station
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Figure 1. An example transmission scenario.

A number of works have focused on UAVs placement or
optimizing antenna heading angles such as [5]. They have a
similar aim as ours, i.e., throughput maximization. However,
they do not aim to derive a transmission schedule, and
their UAVs do not have any learning ability. Additionally,
they do not consider a receiver with SIC capability. Many
authors have considered nodes with SIC capability; e.g.,
[6], [7] and [8]. These works, however, consider a different
system and problem. References [9] and [8] also aim to
derive short schedules. However, they do not employ any
learning mechanisms nor consider nodes that can re-orient
themselves to facilitate SIC decoding.

From the foregone example in Figure 1, we see that
there are two actions to be optimized: (i) transmission time,
and (ii) orientation. To this end, we introduce an orientation
aware MAC scheme for UAVs. Specifically, we address
the following optimization problem: given a UAVs network
with a ground station that has SIC capability, determine
the shortest possible transmission schedule for UAVs. Each
UAV is tasked with learning the best transmission policy
i.e., to determine the best time slot and antenna orientation.
A challenging issue is the random channel gains caused by
UAVs mobility. To this end, we formulate a novel stochastic
optimization problem in Section 3. We then propose a
distributed MAC called L-MAC that uses the well-known
Softmax based function to determine the said actions; see
Section 4. Advantageously, L-MAC does not require the
ground station to collect channel state information from each



UAV, and thus making it suitable for use in large-scale UAVs
networks. Our results show that L-MAC achieves up to 68%
higher throughput as compared to the Aloha protocol. Our
conclusions are presented in Section 6.

2. Network Model

We consider a network comprising of |N | fixed/mobile
UAVs and a ground station, denoted as s, where N =
{1, 2, . . . , |N |} is the set of UAVs. Each UAV i ∈ N
is equipped with a radio for communication with ground
station s and transmits with power P . In addition, UAVs
always have traffic to transmit. Our UAVs network operates
in terms of frames. Each frame contains z time slots; each
time slot is represented as t, where t ∈ {1, 2, . . . , z}. In
each time slot t, if UAV i is scheduled to transmit, it selects
an orientation k ∈ O to transmit data to ground station
s, where O is a set of orientations. For example, we can
set |O| = 4, where O = {‘North′, ‘South′, ‘East′, ‘West′}.
Let Gtik denote the channel coefficient of UAV i when it
transmits in orientation k at time t. Moreover, Gtik is drawn
from a Nakagami-m [10] distribution, which includes the
path loss. Also, we denote by Γt ⊆ N as the set of UAVs
that have chosen to transmit in time slot t.

The ground station has a SIC radio. To decode a com-
posite signal, it first decodes the strongest received signal
and treats other signals as noise. After that, it subtracts the
decoded signal from the composite signal and proceeds to
decode the next strongest signal [3]. The received power
of UAV i when it transmits over orientation k at time
slot t is denoted as Ptik = PGtik. Let pt be a set con-
taining the received power of UAVs transmitting in time
slot t; i.e., UAVs in Γt. Assume that the order of received
power in pt at ground station s in slot t is as follows:
Ptik ≥ Ptjl ≥ · · · ≥ Ptmk. Then the ground station decodes
the transmission from UAVs in Γt in the following order:
UAV i with orientation k, UAV j with orientation l, and
so forth. Let ϕti(p

t) return a set containing received power
that is less than the received power of UAV i. Formally, the
transmission of UAV i is successful if,

Ptik
σ2 +

∑
p∈ϕt

i(p
t) p
≥ γ (1)

where γ is SINR threshold that corresponds to a data rate
rγ , and σ2 is the noise power, which can also include any
residual noise from imperfect SIC. If SIC decoding is suc-
cessful, the ground station subtracts UAV i’s transmission
from the composite signal, and proceeds to decode UAV j’s
signal. SIC decoding is successful if,

Ptjl
σ2 +

∑
p∈ϕt

j(p
t) p
≥ γ (2)

Finally, the last transmission is successful provided that the
following inequality is satisfied,

Ptmk
σ2
≥ γ (3)

3. The Problem

Our problem consists of two parts: (i) the ground station
needs to determine the best frame size z, and (ii) for each
frame, each UAV i needs to select a transmission slot. In
both parts, the aim is to maximize the sum-rate. In part (i),
for a given frame size z, each UAV i has two decisions or
actions: (a) ati, which is set to one (ati = 1) if it selects to
transmit in slot t ∈ {1, 2, . . . , z}, and (b) atik, which is set
to one if it chooses to use orientation k when transmitting
in slot t; i.e., we have atik = 1 and ati = 1. Define the
vector or transmission schedule az = [(ati, a

t
ik)], with t ∈

{1, 2, . . . , z}, i ∈ N and k ∈ O, meaning vector az has
dimension z × |N | × |O|. We define Az as a collection
of all possible transmission schedules az; i.e., the set Az
contains all possible combinations of transmission slots and
orientations of all UAVs. Also, each UAV only transmits
once in each frame; formally, we have

∑z
t=1 a

t
i = 1. In

addition, if ati = 1, then at most one orientation can be
chosen:

∑
k∈O a

t
ik = 1.

For a time slot t, the reward for UAV i is defined as,

rti(az) =

rγ ,
ati

∑
k∈O P

t
ika

t
ik

σ2+
∑

p∈ϕt
i
(pt) p

≥ γ

0, Otherwise.
(4)

Note, if UAV i does not transmit (ati = 0), then its SINR
will be less than γ, and thus rti(az) = 0. Also, we have
pt = {Ptjk | Ptjkatjk > 0,∀j ∈ N, ∀k ∈ O}. Using (4), the
total reward or sum rate is therefore,

R(az) =

z∑
t=1

∑
i∈N

rti(az) (5)

We are now ready to define part (ii) of our problem.
Formally, for a given frame of length z, we aim to identify
an action a∗z that yields the maximum average reward,

a∗z = arg max
a∈Az

E [R(a)] (6)

The expectation is taken with respect to the joint probability
distribution of channel gains to UAVs.

We now turn our attention to part (i) of our problem. The
ground station aims to determine a frame size z that yields
the maximum average throughput. In particular, it seeks to
optimize the following quantity,

T = max
z∈N>0

E [R(a∗z)] (7)

where a∗z is the optimal joint action for frame size z.

4. A Learning MAC

Our distributed MAC enables each UAV to learn the best
time slot in a given schedule and also orientation that yields
the highest transmission success. It associates a probability
to each time slot and orientation, where a high probability
indicates a high reward. Figure 2 shows the steps taken by a
UAV to learn the transmission probability of each slot and



Figure 2. A UAV’s learning process.

corresponding antenna orientation for a schedule length z
that is transmitted by the ground station.

For a given frame length z, let αzi denote the Probability
Mass Function (PMF) over time slots t ∈ {1, 2, . . . , z}, and
αzit is the PMF over the set K of antenna orientations for the
selected time slot t. We write αzi (t) as the probability that
UAV i transmits in time slot t, and αzit(k) is the probability
that UAV i will use the k-th antenna orientation in slot t.

Next, we explain how UAV i constructs the PMF αzi (t)
and αzit(k). Initially, all UAVs set both PMFs to be the
uniform distribution. Thus it selects a transmission slot and
an orientation uniformly. Assume UAV i selects time slot
t, and orientation k. Define the reward corresponding to
orientation k as uit(k), which equals the transmission rate
rγ if the ground station indicates UAV i’s transmission is
successful. Otherwise, it is zero. Then UAV i calculates the
probability αzit(k) using the following Softmax function,

αzit(k) =
euit(k)/τ∑

k′∈K e
uit(k′)/τ

(8)

where τ is called the temperature parameter, which controls
the probability that a UAV exploits the best action or orien-
tation thus far or explore other orientations in O. The PMF
αzi is calculated in a similar way. Let ui(t) be the reward,
e.g., data rate, for transmitting in time slot t. Then, we have,

αzi (t) =
eui(t)/τ∑z
t=1 e

ui(t)/τ
(9)

We deem a PMF to have converged if the change in prob-
ability is within a specified tolerance ε.

The ground station is responsible for informing UAVs
and adjusting the schedule length based on the number
of observed transmission successes, failures and idle slots.
After informing UAVs of a given schedule length z, it waits
for UAVs to achieve convergence. After that, it monitors the
performance in terms of the number of success, collision
and idle slots for the schedule with length z; see Figure 3.
As an example, if there are two collisions, i.e., c = 2,
then the value 0.2 will be added to the schedule length. If
the schedule length changes after rounding up, the ground
station informs all UAVs. Note that if UAVs have existing
PMFs for a schedule length z, then they simply use these
PMFs to select a transmission slot and orientation; i.e., they

do not need to learn new PMFs. In Figure 3, the value
0.1 controls the sensitivity in which the schedule length
increases/decreases.

Figure 3. A ground station’s schedule length adjustment process.

5. Evaluation

We conduct our experiments in Matlab. Our system
consists of up to twenty UAVs. The distance from the ground
station to UAVs ranges from 20 to 400 meters. We first train
our L-MAC over a period of 100,000 frames. After that, we
record the data rate of UAVs over 1000 frames. We set the
SINR threshold to γ = 1 (dB); this corresponds to a rate of
500 kbps. We plot the average of ten simulation runs. The
temperature τ decreases linearly after each frame, where
it starts from τ = 110 from the first frame and reaches
a value of τ = 5 in the last frame; this affords the ground
station and UAVs sufficient time to explore their action space
before converging onto the best action. The set of antenna
orientations is K = {0◦, 90◦, 180◦, 270◦}. We note that as
the problem is new, there are no other MACs we could
compare against fairly. As a benchmark, we customize the
Aloha protocol to operate over a ground station with (i) a
SIC radio, labeled as Aloha with SIC (ASIC), and (ii) no
SIC radio, labeled as Aloha without SIC (AWSIC).

From Figure 4(a), we see that L-MAC outperforms ASIC
and AWSIC. UAVs are able to learn the best time slot
and antenna orientation that lead to the highest number
of successful transmissions. For example, in case of ten
UAVs, the average data rate is approximately 430 kbps for
L-MAC. However, ASIC and AWSIC with a frame size
of ten achieves 360 kbps and 280 kbps, respectively, for
the same number of UAVs. Referring to Figure 4(a), we
also see that the average data rate for ASIC and AWSIC
decreases as the number of UAVs increases. This is because
these protocols have a fixed number of time slots per frame
i.e., five and ten. For small number of UAVs, these frame
sizes are appropriate. However, with more UAVs, collisions
increases, which results in a lower data rate. For example
ASIC with a frame length of ten achieves a data rate of 450
kbps for four UAVs, which drops to 240 kbps for twenty
UAVs. On the other hand, L-MAC manages to maintain a
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Figure 4. Performance of L-MAC. (a) L-MAC, ASIC vs. AWSIC at γ = 1 (dB), (b) convergence rate of L-MAC, and (c) number of orientations.

data rate of around 425 kbps as it is able to adjust the frame
length based on the number of transmission failures.

Figure 4(b) shows the convergence rate of L-MAC for
ten UAVs when τ is either fixed or dynamic. The average
data rate is over 1000 frames. We see that when τ is large,
i.e., 100, the average data rate is low; i.e., 285 kbps. This is
because Softmax is less likely to explore, and thus it may
converge onto the local optima solution. If τ is dynamic,
the average data rate fluctuates initially as UAVs explore
and learn the reward of each time slot and corresponding
orientation. Finally, they converge onto the best time slot and
orientation; initially, the average data rate is approximately
285 kbps before settling to 325 kbps at the 98-th frame.

Lastly, we investigate how the available number of an-
tenna orientations affect the average data rate. We consider
K = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. We see
from Figure 4(c) that if UAVs more orientations, then the
average data rate is higher. That is because of higher diver-
sity in channel gains. Figure 4(c) shows that the data rate
for a single orientation is 383 kbps, which increases to 397
kbps for two orientations and 420 kbps when there are eight
orientations. We also change the shape parameter µ of the
Nakagami-m distribution, where µ controls the fading depth
[11]; a lower µ value corresponds to a higher fading depth.
From Figure 4(c), we see that the average data rate increases
by 2% when we increase the value of µ from 0.5 to 2 and by
5% when µ = 5. Specifically, when µ = 0.5, we obtain 409
kbps. At µ = 2.5, the throughput increases to 416 kbps, and
when µ = 5, the throughput is 426 kbps. Advantageously,
L-MAC is able to learn the best orientation for all channel
conditions or µ values.

6. Conclusion

We have proposed a distributed MAC that enables UAVs
to learn the best transmission slot and corresponding orien-
tation, for a given schedule length. Our results show that L-
MAC has at least double the average data rate of the Aloha
protocol. We find that a dynamic learning rate is necessary,
and a higher number of orientations yield better average data

rate. Lastly, we note that L-MAC can also be extended to
include transmit power control and data rate. We leave this
extension as an immediate future work.
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