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Abstract

Recently, small satellites have attracted much at-
tention in both academia and industry. These satellites
can form a swarm and communicate via Inter-Satellite
Links (ISLs) and help each other download data to one
or more Ground Stations (GSs). A key challenge is that
each satellite has a short contact period with differ-
ent GSs over time. Henceforth, this paper considers
the following objective: minimize the download time of
a given amount of data from each satellite to ground
stations. The main challenging issues are that satel-
lites have different energy and buffer constraints. We
model the problem as a Mixed Integer Linear Program
(MILP). Its objective is to minimize the total number
of time slots taken to download a fixed amount of data
from each satellite. Its key decision variables relate to
(i) routing, (ii) link scheduling, and (iii) data aggrega-
tion rate in each time slot. Our results show that in-
network data aggregation is able to significantly reduce
the total download time by 52% to 84% when the data
aggregation rate is between 10% to 50%.

1. Introduction

With decreasing manufacturing and launch costs,
Low Earth Orbiting (LEO) small satellites are now at-
tractive to both academia and industry [1]. According to
the weight of each satellite, LEO small satellites can be
categorized as a mini-satellite (500-100 Kg), a micro-
satellite (100-10 Kg), a nano-satellite or called a cube-
satellite (10-1 Kg) as well as a Femto and Pico-satellite
(<1 Kg) [1]. Compared to other satellites operating at
higher altitudes, LEO small satellites have the follow-
ing advantages: small size, light weight, low power
consumption, high flexibility, and low communication
latency. Also, they can form a constellation or oper-
ate in a swarm where communication is facilitated by
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Inter-Satellite Links (ISLs) [2]. Advantageously, small
satellite networks provide low cost solutions for diverse
and complex space missions, e.g., weather forecast, en-
vironment monitoring, broadband communications and
target tracking [3].

The main objective of any missions is to collect
data and download them to Ground Stations (GSs).
Here, we assume these GSs are connected by the Inter-
net. This means all GSs can be treated as equal where a
satellite can download its data to any GSs within range.
However, considering the high orbiting speed of small
satellites, each of them only has a very limited con-
tact time with each GS. Consequently, the data stored
on satellites cannot be fully downloaded in most cases.
The works in [4] and [5] showed that ISLs can help
download collected data to a GS. However, the obtained
throughput gain is small due to limited download band-
width. For example, the CubeSat in [6] is only equipped
with a radio that has a downlink rate of 2400 bps.

An approach to reduce the amount of data
to be downloaded is to employ on-orbit data pro-
cessing [7] [8]. Specifically, satellites can pro-
cess/compress/aggregate stored data whilst ensuring a
minimum Quality of Information (QoI). This approach
not only improves the efficiency of data download, but
also reduces the amount of buffered data, which allows
for more data to be collected by each satellite. Thus in
one time slot, a satellite has the following options: 1)
it downloads unprocessed data to a GS directly if there
is sufficient download bandwidth; 2) it first aggregates
collected data to reduce its size before downloading; 3)
it transmits unprocessed data to a neighbor satellite for
the purpose of compression or downloading to a GS; 4)
it first compresses its collected data before transmitting
it to a neighbor for further aggregation or download-
ing to a GS; 5) it first receives data from neighbors, ag-
gregates the received data and downloads the processed
data to a GS. It is worth noting that in-network data
processing costs a non-negligible amount of energy [8].
Indeed, as small satellites have limited buffer size and
battery capacity, there is a trade-off between in-network
data processing and data download.

Figure 1 shows an example of data downloading
with in-network data aggregation in a small satellite net-



work. The topology has three satellites, namely S1, S2
and S3. In this example, only satellite S3 is able to
establish a download link to ground station GS. Ini-
tially, each satellite has one data packet to download,
and we assume these three packets can be compressed
into one packet. The table in Figure 1 shows the num-
ber of data packets at each satellite in the optimal down-
loading scheme over five time slots. Satellite S1 and S2
transmit their data packet to S3 in time Slot-1 and Slot-
2 respectively. Then S3 compresses three data packets
into one packet and downloads it to GS in Slot-3. We
see that this example requires a total of three time slots
to download all packets.
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Figure 1. An example of data downloading
with in-network data aggregation. The col-
umn labeled Slot-0 indicates each satellite has
one packet. In Slot-1, satellite S1 transmits its
packet to satellite S3; this means satellites S1
and S3 have zero and two packets, respectively.
Satellite S2 transmits its data to S3 in Slot-2.
Consequently, satellite S3 has total three pack-
ets. In Slot-3, satellite S3 compresses three
packets into one packet and downloads it to
the ground station GS. The data download pro-
cess ends in Slot-4.

When downloading data, we have to consider the
following issues: 1) time-varying topology. This is due
to the high orbiting speed of small satellites. In the fore-
gone example, in Slot-3, if S3 loses its connection with
GS and satellite S2 establishes communication with GS
instead, then the compressed data will be transmitted
to S2 which incurs another time slot, 2) limited battery
capacity. Considering the size of small satellites, the
battery capacity of each is very limited. Referring to
Figure 1, after receiving data from S1 and S2, if satellite
S3 does not have sufficient energy, it cannot compress or
download data until it has harvested sufficient energy in
the following time slots. Thus, the total download time
will be much longer than the optimal result, 3) limited
buffer size. In Figure 1, even when satellite S3 has suf-
ficient energy and a download connection with GS, it
cannot receive data from its neighbors if it has insuf-

ficient buffer space. As we will see later, any of the
aforementioned issues will cost more time slots.

In this paper, we consider the joint problem of
routing, link scheduling and data aggregation subject
to buffer and energy constraints. Our objective is to
download a given amount of data from each satellite
to ground stations within the shortest time period. As
explained in Section 2, this work is the first that con-
siders in-network data aggregation in order to speed
up downloads in satellite networks. We formulate the
aforementioned problem as a Mixed Integer Linear Pro-
gramming (MILP). Its objective is to minimize the total
number of time slots required to drain data from a satel-
lite network; see Section 3 and 4. Numerical results
in Section 5 show that introducing in-network data ag-
gregation is able to significantly reduce the total down-
load time by 52% to 84% as compared to experiments
without data aggregation. In addition, we also consider
minimizing the total compressed data and consumed
energy given a limited download period. The simula-
tion results and analysis in Section 5 show that the total
compressed data and consumed energy decrease with
increasing download time.

2. Related Works

The authors in [4] consider joint routing and link
scheduling to achieve the maximum data download
throughput to one GS by using ISLs to offload data
among LEO satellites. Based on [4], the authors pro-
posed another iterative data offloading algorithm in [5].
This algorithm constructs a bipartite graph and finds the
maximal matching in each time slot to offload data from
nodes with more data to nodes with spare time. The
work in [9] focuses on energy-efficient data download
from satellite swarms to ground stations. The authors
formulate and solve the problem using Lyapunov opti-
mization techniques [10]. However, none of the fore-
gone works consider data aggregation nor aim to empty
a given amount of data from satellites.

Data aggregation has been considered in Wireless
Sensor Networks (WSNs) or wireless ad-hoc networks.
In [11], the authors aim to minimize the total amount of
uploaded sensory data by using data aggregation among
mobile devices in crowd-sensing systems. The work
in [12] aims to minimize the total energy cost for both
communication and in-network computation in wireless
ad-hoc networks while satisfying QoI requirement. In
order to determine the optimal data aggregation rate,
the authors formulated the problem as a Non-Linear
Program (NLP) and solves its dual. Nevertheless, both
works in [11] and [12] do not consider the energy har-
vesting capability of nodes.



The authors in [13] address the joint problem of
sensing, link scheduling, routing and in-network data
processing for Energy Harvesting Wireless Sensor Net-
works (EH-WSNs). They solve the problem using Lya-
punov optimization [10]. In [14], the authors propose
a data aggregation scheme that considers the residual
energy of nodes. However, these two works assume a
fixed network topology. We, on the other hand, consid-
ers nodes with neighbors that change over time. More-
over, the work in [13] and [14] do not aim to empty a
given amount of data within the shortest time period.

We emphasize that data aggregation has never been
considered in small satellite networks. Conventional
data aggregation and transmission approaches that are
developed for stationary networks cannot be applied to
dynamic satellite networks directly. This is because
they required a fixed topology. Thus, our work is
the first that introduces in-network data aggregation to
small satellite networks in order to empty the network
in the shortest possible time. Critically, our aim is to
empty a given amount of data from each satellite to one
or more GSs. We believe this aim is novel.

3. Network Model

We assume time is divided into time slots and in-
dexed by t ∈ N. The network topology varies over time
but predictable; this is reasonable as an operator knows
the orbit and speed of deployed satellites [2]. Let St be
the set of satellites and Gt is the set of ground stations
at slot t. The network topology is fixed in each time slot
but may vary over different slots. Let V t be the set of
nodes at time t; here, nodes refer to both satellites and
ground stations. We write Nt

u ⊆ V t as the set of neigh-
bors of node u in time slot t, where u ∈ V t . The set of
links between nodes in V t is denoted as Et ; this set con-
tains both ISLs and links between satellites and ground
stations. Hence, the network in slot t can be modeled as
a graph G(V t ,Et). In the sequel, we will use Lt ⊆ Et to
denote the set of ISLs at time t and Dt ⊆ Et the set of
downlinks between satellites and ground stations.

All satellites have identical hardware components
and operate in a swarm. Without loss of generality, we
assume each satellite is a CubeSat [1]. Satellites are
equipped with an adaptive array. This allows a satellite
to beamform as well as null interference to/from neigh-
boring satellites via appropriate antenna weights [15].
In each time slot, each satellite can only transmit to or
receive from at most one neighboring satellite.

Each satellite has a radio that operates over the
Very High Frequency (VHF) band (30 MHz) and is used
to download data to GSs. Satellites also have a radio
that operates over the S-band (2.45 GHz) and this ra-

dio is used for communication with other satellites [1].
Satellites can only pair with one GS at a time to en-
sure there is no collision between downlinks. Note that
given the different operating band of ISLs and down-
links, a node can communicate with a neighbor satellite
whilst downloading data to a stationary GS. We assume
GSs have unlimited energy and storage, and can com-
municate with each other via the Internet.

3.1. Communication Model

Active links must not interfere. Let At be a |Et |×M
matrix that contains a collection of transmission sets,
where each column represents a set of non-conflicting
links. Each column of At forms an independent set.
Specifically, we write the j-th column as At

j. Each ele-
ment of column j is denoted as at

(u,v), j ∈ {0,1}, where
a value of one indicates link (u,v) is active in transmis-
sion set At

j. For example, if we have a column [1010]T

corresponding to four links in a topology, then the first
and third links can be activated together.

We generate transmission sets or columns of matrix
At by employing the following heuristic: (1) define and
initialize two node sets: Set1 and Set2; (2) all nodes
are included in Set1, and Set2 is initially empty; (3)
for each node in Set1, move it into Set2 if an edge can
be established from Set1 to Set2 while ensuring no two
ISLs or no two download links share an endpoint; (4)
extract paired nodes or edges between Set1 and Set2
and construct a transmission set; (5) remove the edges
and endpoints in step (4) and repeat from step (3) to (5)
to generate the next transmission set until Set1 is empty.
Note, to generate a different sequence of transmission
sets, we can use a different node ordering and repeat
the above steps. The total number of transmission sets
generated for each slot is denoted as M. Notice that
we do not generate all possible transmission sets due to
computational complexity.

Let xt
j ∈ [0,1] denote the active time of the trans-

mission set At
j. A TDMA-based link schedule in

time slot t consists one or more transmission sets
with non-zero active time. This can then be repre-
sented as non-zero elements of the column vector Xt =
[xt

1,x
t
2, . . . ,x

t
M]T . For example, if transmission sets At

1
and At

2 are activated in the first and second half of slot
t, then we have Xt = [0.5,0.5,0, . . . ,0]T . This means all
links in At

1 (or At
2) will be activated for 0.5 seconds. The

schedule length in every slot is constrained by,

M

∑
j=1

xt
j = 1 (1)

We use c(u,v) to represent the capacity of link (u,v).



The corresponding link rate at time t can be calculated
by c(u,v) ∑

M
j=1 at

(u,v), j× xt
j. Let f t

(u,v) denote the amount
of data transmitted through link (u,v) at slot t. The
value of f t

(u,v) is constrained by,

0≤ f t
(u,v) ≤ c(u,v)

M

∑
j=1

at
(u,v), j× xt

j, ∀(u,v) ∈ Et (2)

Recall that Nt
u denotes the neighbors of satellite u

at slot t. Thus, the total outgoing and incoming data of
node u at slot t can be calculated as follows,

f out,t
u = ∑

v∈Nt
u

f t
(u,v), ∀u ∈ St ,∀v ∈V t ,u 6= v (3)

f in,t
u = ∑

v∈Nt
u

f t
(v,u), ∀u ∈V t ,∀v ∈ St ,u 6= v (4)

3.2. Storage and On-Board Processing

Each satellite has storage to store raw and pro-
cessed data; e.g., images. We use Qt

u ≥ 0 to denote the
amount of data stored at node u ∈ St at time slot t. Each
satellite has a storage capacity of Qmax. We assume at
time t = 1, each satellite has identified Q1

u ∈ [0,Qmax]
amount of data to be sent to a ground station. Our goal
is to download ∑u∈St Q1

u amount of data to GSs. Con-
sequently, we only consider forwarding the data in Q1

u
to a ground station directly or via other satellites. If
new data is collected after time t = 1, we assume they
are scheduled for downloading after all data in Q1

u of
each satellite u ∈ S has been downloaded to a ground
station. This is reasonable as an operator may want to
schedule data downloads after satellites have collected
the required data. Thus, in the sequel, we ignore new
data arrivals.

Each satellite node is equipped with On-Board Pro-
cessing (OBP) capability [7]. Hence, a node can carry
out data aggregation and compression. Let δ ∈ [δmin,1]
represent the aggregation rate, which is defined as the
ratio between the the amount of stored data before and
after OBP. If the value of δ is equal to one, the data
in storage is not compressed. The value of δmin > 0
indicates the compression limit which is varied ac-
cording to different type of data. To model the por-
tion of aggregated and compressed data that arrives at
ground stations, we associate each node u with a vir-
tual sink u′. Let the set of virtual sinks be S′, and the
amount of aggregated or compressed data by node u
is denoted by f t

u′ . Specifically, the value of f t
u′ equals

f t
u′ = (1−δ )Qt

u ≥ 0. To ensure a node u does not aggre-
gate or compress more data than its compression limit,
we set the capacity of its virtual link (u,u′) as follows,

0≤ f t
u′ ≤ (1−δmin)Qt

u, ∀u ∈ St (5)

Notice that the value of f t
u′ is always less than Qt

u be-
cause the compression limit δmin cannot be equal to
zero. We do not consider the time used to process data
thanks to the application of FPGA boards in CubeSats
such that the processing time is negligible compared
with the length of each time slot [8].

Considering the total amount of incoming, outgo-
ing and processed data at a node in each slot, we have
the following constraints,

Qt+1
u = Qt

u− f out,t
u − f t

u′ + f in,t
u , ∀u ∈ St (6)

0≤ Qt
u ≤ Qmax, ∀u ∈ St (7)

Constraint (6) indicates the evolution of a node’s queue.
Constraint (7) provides the feasible range of Qu(t).

3.3. Energy Model

Let λ t
u denote the total energy expended by node u

at slot t. The total energy expenditure includes energy
incurred by data transmission/reception among satel-
lites, in-network processing and data downloading. For-
mally, let Et and Er represent the energy cost of trans-
mitting and receiving one unit of data via ISLs, respec-
tively. Let Ed denote the energy cost of downloading
one unit of data to GSs. It is worthwhile noting that the
energy consumption of on-orbit data processing can be
a linear or a non-linear function of f t

u′ [13]. We con-
sider linear function in this work and use Ea to denote
the energy cost of processing one unit of data. We will
consider non-linear function in a future work. Hence,
for each satellite u ∈ St and each ground station g ∈ Gt ,
the total energy consumption of satellite u at slot t is,

λ
t
u = f out,t

u Et + f in,t
u Er + f t

u′Ea + f in,t
g Ed (8)

Each satellite is equipped with a solar panel. Let ht
u

be the harvested energy by node u at slot t, and its value
will be drawn from the range [0,hmax] according to the
normal distribution. Note that ht

u is fixed for time t but
has a different value for different time slot t. We note
that predicting solar energy arrivals based on historical
records can be carried out accurately; see [16] and [17].

Let Et
u represent the stored energy at node u at the

beginning of slot t. We consider all satellites have the
same finite battery capacity Emax. At t = 1, each satellite
has an initial energy storage E1

u ∈ (0,Emax]. The stored
energy is constrained as follows:

Et+1
u = MIN{Et

u−λ
t
u +ht

u,Emax}, ∀u ∈ St (9)
λ

t
u ≤ Et

u, ∀u ∈ St (10)
0 < Et

u ≤ Emax, ∀u ∈ St (11)

Constraint (9) ensures energy storage will never exceed
Emax. Constraint (10) ensures each satellite only spends



its available energy in each time slot. Constraint (11)
ensures no satellites deplete their battery.

4. Optimization Models

Given data Q1
u at satellite u ∈ S1, our aim is to

empty or download Q1
u worth of data from each satel-

lite u to a ground station. In other words, we are in-
terested in emptying Q1

u from a swarm of satellites sub-
ject to capacity and energy constraints. The problem at
hand is then to determine (i) the activation time of each
transmission set xt

j, which governs the link capacity in
each time slot t, (ii) the amount of data to be forwarded
over each link in each time slot, i.e., f t

(u,v), and (iii) the
amount of aggregated and compressed data at each node
u, i.e., f t

u′ , in each time slot t.

4.1. Shortest Download Time

We first consider the following objective: minimize
the number of time slots taken to download a given
amount of data at satellites. Let φ t ∈ {0,1} indicate
whether the downloading process is complete at slot t.
That is, if φ t = 1 is true, then the data queue of all satel-
lites is not equal to zero at slot t; otherwise, we have
φ t = 0. Let T be a large integer number. The value of
T can be set as follows. Let Tu denote the total number
of time slots required by satellite u to download all its
data to one or more ground stations without using ISLs.
Then the value of T can be set to the sum of Tu over all
satellites, where u ∈ St . Mathematically, we have the
following Mixed Integer Linear Program (MILP),

MIN
T

∑
t=1

φ
t (12)

s.t. Kφ
t ≥ ∑

u∈St
Qt

u,∀t = {1, . . . ,T} (13)

∑
u∈St

Q1
u =

T

∑
t=1

(
∑

g∈Gt
f in,t
g + ∑

u′∈S′
f t
u′

)
(14)

(1) - (11)

Constraint (13) forces the value of φ t to be one when-
ever any satellite’s data storage is non-empty, where
K� Qmax. Otherwise, if all satellites have downloaded
their data, then φ t = 0 for some t. Constraints (14) en-
sures that all data stored on satellites have been pro-
cessed or downloaded to a ground station.

4.2. Minimum Compressed Data

Data that can be highly compressed will have a low
QoI when the objective is to minimize the total down-

load time. In order to satisfy the QoI requirements of
different applications, it is necessary to minimize com-
pressed data during a download process. Henceforth,
we consider the objective of minimizing the total com-
pressed data while ensuring the downloading process
finished within a given period, say T time slots. The
new MILP is shown below,

MIN
T

∑
t=1

∑
u′∈S′

f t
u′ (15)

s.t. (1) - (11), (14)

4.3. Minimum Energy Consumption

The last aim is to minimize the total energy con-
sumed in a given downloading period. In practice, en-
ergy arrives randomly. Thus minimizing energy cost is
necessary to prolong the lifetime of each satellite and
to optimize the sustainability of the whole system. We
have the following modified MILP,

MIN
T

∑
t=1

∑
u∈St

λ
t
u (16)

s.t. (1) - (11), (14)

5. Evaluation

We solve our MILPs using the commercial solver
Gurobi [18]. In each time slot, we randomly generate
a topology with ten satellites and four GSs. To model
time varying topology, the probability that an edge ex-
ists between two satellites is 0.5. We assume the buffer
size of satellites is 10 Mbits, and the battery capacity
is 50 Joules. All links have the same capacity 1 Mbps.
Based on [6] and [8], the energy used to transmit, re-
ceive, process or download 1 Mbits data is 1J, 0.75J,
1.6J and 1J, respectively. In each time slot, each satel-
lite receives energy in the range [0,1] (Joules). Initially,
we have δmin = 0.8. The large integer K is 100, and
T is 50. We compare against the case without data ag-
gregation. This is represented as the case with δ = 1
Lastly, every point in our figures is an average of five
simulation runs.

First, we study different amounts of initial buffered
data and the data reduction rate δ . The initial data in-
creases from 1 to 10 Mbits with an interval of 1 Mbits.
The value of δ increases from 0.5 to 1.0 with an interval
of 0.1. From Figure 2, we can see the number of slots
taken to download increases with the initial buffered
data for all δ values. When δ = 1 and the initial data
is 10 Mbits, meaning all data needs to be downloaded
without any aggregation/compression, the total down-
load time is the longest at 25 slots. The download time



can be reduced by 52% when the value of δ is 0.9.
Moreover, when δ = 0.5, downloading 10 Mbits data
per satellite only requires four slots, which is 16% of
the download time used in the case with no in-network
data aggregation.
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Figure 2. Minimum number of slots with dif-
ferent amount of initial buffered data and data
reduction rate δ .

We then study increasing number of GSs, e.g., two
to six, while the initial data increases from 1 to 10
Mbits. From Figure 3, we can see that the number of
slots taken to download decreases with more GSs. This
is reasonable because more GSs provide more down-
load opportunities at the same time. When the initial
data is 10 Mbits, download time reduces from 11 to 7
slots while the number of GSs increases from 2 to 6.
The third experiment studies the effect of the number
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Figure 3. Minimum number of time slots with
different amount of initial buffered data and
number of GSs.

of edges. From Figure 4, we can see the number of
time slots for data download increases with higher ini-
tial data. However, with different number of edges, the
download time is remains roughly the same. This indi-
cates that the number of edges has no effect on down-
load time. This is because when there are a small num-
ber of ISLs, nodes can choose to process its own data

before downloading, which also helps reduce download
time as we discussed in Section 1.
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Figure 4. Number of time slots versus varying
initial buffered data and edges.

The first three experiments are concerned with the
MILP model in Section 4.1. In this fourth experiment,
we now study the next model, see Section 4.2. Specifi-
cally, its aim is to minimize compressed data to ensure
QoI requirements. The total number of download slots
T increases from 5 to 14 with an interval of 3. From
Figure 5, we can see the total compressed data increases
with more initial data. This also translates to a decrease
in total download time. When the available download
time is short, e.g., 5 slots, satellites have to compress
80 Mbits data and sacrifice QoI to finish downloading.
On the other hand, when the download time is suffi-
cient, satellites choose to download data directly and
only compress 44 Mbits of data to ensure a high QoI.
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Figure 5. Minimum compressed data versus
varying initial data and total download time.

The last experiment studies the minimum con-
sumed energy with different amount of initial buffered
data and download time as described in Section 4.3.
With the same setting of T as in the fourth experi-
ment, we changed the objective to minimizing the to-
tal consumed energy considering the limited resources



of small satellites. From Figure 6, we can see that en-
ergy cost increases when satellites have higher amounts
of initial data and shorter download time. However, the
difference in energy cost between the cases when the
download time is 5 and 14 slots is only 21.6 Joules when
the initial data is 10 Mbits. The reason is when down-
load time is short, satellites will spend more energy on
data compression to reduce the amount of data to down-
load. On the other hand, when the download time is
sufficient, more energy will be spent on downloading.
As we mentioned at the beginning of this section, data
compression costs more energy than data downloading.
Thus, these different selections of satellites lead to a dif-
ference in the energy cost shown in Figure 6.
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Figure 6. Minimum consumed energy with
different amount of initial buffered data and
download time.

6. Conclusion

This paper studies for the first time in-network data
aggregation in small satellite networks. Our aim is to
minimize the number of time slots used to download
a given amount of time while satisfying constraints re-
lated to capacity and energy. This problem is formu-
lated as an MILP. We also proposed an extension to
minimize the total compressed data and consumed en-
ergy. Our results indicate that in-network data aggrega-
tion is able to significantly reduce download time. In
future works, we plan to consider random channel gain
and energy arrivals.
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