
A Simulation Study of the IEEE 802.15.3 MAC

Kwan-Wu Chin and Darryn Lowe
Telecommunications Information Technology Research Institute

University of Wollongong
Northfields Avenue, Australia 2522
{kwanwu, darrynl}@uow.edu.au

Abstract— The IEEE 802.15.3 medium access control
(MAC) protocol is an emerging standard for high bit-rate
wireless personal area networks, specifically for supporting
high quality multimedia streams. To date there are no
published work on the performance of the IEEE 802.15.3
MAC with respect to some of its configurable parameters
and there has been no work related to simulation of the
MAC using the popular ns-2 simulator. This paper aims
to address the aforementioned shortcomings by presenting
an implementation of the IEEE 802.15.3 MAC in the ns-2
simulator and some preliminary results from our studies
of the IEEE 802.15.3 MAC in a variety of scenarios
with mixed traffic. We present results from our experi-
mentations the impact of the following MAC’s operating
parameters on TCP and real-time flows: (i) channel access
and time allocation periods, (ii) superframe length, (iii)
ACK policies, (iv) size of channel time allocation periods
(CTAPs), (v) contention channel access scheme, and (vi)
performance of TCP flows when run in the CTAP.

I. INTRODUCTION

The ubiquity of consumer devices with high storage
and processing capacity enables the sharing or streaming
of different media types, such as digital images and
high quality audio/video, from one device to another
anywhere, anytime. For example, a user might want to
stream movies from his/her personal computer to a high-
definition television (HDTV). To help realize this vision,
the IEEE 802.15.3 working group [1] is working on
technologies targeted at enabling high-rate multimedia
applications operating in a wireless personal area net-
work (WPAN). These technologies include both medium
access control (MAC) and physical layer protocols that
enable a WPAN to support up to 245 devices operating
over an area of at least 10 meters with speeds ranging
from 11 to 55 Mb/s. Other features include power saving
capabilities, security, and co-existence with interfering
networks [2].

To date, little or no published work provides a quan-
titative measure of IEEE 802.15.3’s performance. Fur-
thermore, to the best of our knowledge, the widely used
ns-2 simulator does not implement the IEEE 802.15.3
MAC. Therefore, this paper aims to bridge these gaps by
presenting both our implementation of IEEE 802.15.3 in
ns-2 as well as some preliminary results obtained from

our investigations into the impact of some of the IEEE
802.15.3 MAC operating parameters on the performance
of real-time and best-effort traffic. In addition, we also
present results concerning the fairness of the MAC’s
contention channel access scheme under heavy load and
the overheads of various ACK policies.

The rest of this paper is structured as follows. Section
II presents an overview of the IEEE 802.15.3 MAC
followed by a description of our MAC implementation
in ns-2 in Section II-B. Section III outlines the IEEE
802.15.3 parameters used in all our simulations. We
then present our results in Section IV before giving our
conclusion and identifying future work in Section V.

II. THE IEEE 802.15.3 MAC
A. Overview

The IEEE 802.15.3 MAC protocol [2] uses a master
and slave model whereby a master device, called the
piconet controller (PNC) controls the piconet. Figure 1
shows an example of a IEEE 802.15.3 piconet that forms
part of a home network. The network is formed in an ad-
hoc manner where devices may leave or join the network
at any time. Further, the piconet can support different
types of traffic. For example, in Figure 1 there are audio
and video streams in addition to the best-effort traffic that
is transmitted in the contention access period (CAP) of
the superframe.

A device is elected as the PNC based on a set of
criteria which include: its preference for becoming a
PNC, whether it is receiving power from the mains, and
its ability to act as a security key originator. Once chosen
as a PNC, a device’s main responsibility is to coordi-
nate channel access amongst the other devices within
a piconet. Other responsibilities include associating and
disassociating devices, coordinating wake-up times when
in power-save modes, and co-existing with other piconets
or networks that share the same wireless spectrum.

The PNC coordinates channel access by sending a bea-
con that marks the start of a superframe. The superframe

Hi−Fi

HDTV
B CAP HDTV HiFi

Superframe

CTAP

Controller
Piconet

MH 1 Node 1

Fig. 1. Example of the IEEE 802.15.3 MAC being used to support
home devices.

is composed of two periods, namely the CAP and the
channel time allocation period (CTAP). Devices in the
piconet synchronize with the PNC after receiving the
beacon and then transmit in either the CAP or CTAP. To
transmit in the CTAP, a device requests CTAs from the
PNC by specifying the time units required in order to
support its relevant real-time streams. If the PNC grants
the device’s request, the device then has exclusive rights
to transmit during its CTA slots. Figure 1 shows two
CTA slots, belonging to the HDTV and Hi-Fi devices
respectively, within the CTAP of the superframe. During
its respective CTA slot, each device can immediately
transmit any packets it has without having to contend
for the channel, thus saving on the overheads and delay
associated with channel contention.

A piconet can have one or more PNCs in the form
of child PNCs. These child PNCs are dependent on the
parent PNC to allocate them a CTA slot within which
they can send out their respective beacons in order to
coordinate channel access between the devices that are
associated to them. To become a child PNC, a device
requests a private CTA. A private CTA is similar to an
ordinary CTA, but has both the source and destination
fields of the request set to the requesting device’s address
and has a stream index of zero. The IEEE 802.15.3
specification does not specify the level or number of
child PNCs that a piconet can have. However, the finite
size of the original superframe imposes a practical limit
since each child PNC must be allocated time units from
its parent PNC’s CTAP for it to be able to create its own
beacon.

B. Implementation

We have implemented the IEEE 802.15.3 MAC in
the ns-2 simulator (ns-allinone-2.26)[3] on top of the

Ultra Wide-Band (UWB) physical layer developed by the
Swiss Federal Institute of Technology [4]. Their physical
layer uses pulse position modulation and, at the lowest
coding rate, it is able to transmit at 18 Mb/s. Further, this
physical layer takes into account interference, bit errors
and implements a realistic path loss channel model.
The following sections describe our implementation of
the IEEE 802.15.3 MAC’s in ns-2. We separate our
discussions into two parts: device and PNC.

1) Devices:
Association/Disassociation: Before simulation starts,

each node is given the PNC’s address and PNCid. Once
simulation starts, a device sends an Association Request
message to the PNC in the CAP of the superframe. Upon
receiving the request, the PNC records the requesting
device’s address and assigns it a randomly generated
identifier. The PNC then replies to the associating device
with an Association Reply message to complete the join
process.

After associating with a PNC, a device is then able
to request CTAs from the PNC by sending the PNC the
information shown in Table I. Alternatively, a private
CTA can be requested by setting the source and desti-
nation address fields to the requesting device’s address
and setting the stream index to zero.

Parameters Description
Target ID List A list of devices involved in sending or

receiving the stream
Stream Request ID The ID used to identify the current stream

before being allocated an unique piconet-wide
stream identifier.

Stream Identifier A piconet-wide stream identifier assigned by
the PNC.

CTA Type Determines whether the requested CTA is
pseudo-static

CTA Rate Type Sub-rate or super-rate CTA. Sub-rate CTAs
occur once every CTA-rate-factor superframes
whereas super-rate CTAs occur every superframe

CTA Rate Factor This is used in conjunction with sub-rate CTA
type where this indicates the number of
super-frames that must pass before a stream’s
CTA reoccurs.

CTA Rate Time Units Specifies the unit of time used to describe
a CTA.

Minimum Time Units Indicates to the PNC the minimum number of
TUs required in order to support the stream.

Desired Time Units The ideal number of time units desired
for the given flow.

TABLE I

REAL-TIME STREAM SPECIFICATION PARAMETERS [2]. THESE

PARAMETERS DESCRIBE THE QOS REQUIRED FOR A GIVEN FLOW

AND CAN ALSO BE USED BY A BANDWIDTH MANAGER WHEN

DECIDING WHETHER TO ADMIT THE FLOW.

ACK Policies: We have implemented all three ACK
policies defined in the IEEE 802.15.3 standard: no ACK,
immediate ACK and delayed ACK. These policies are
specified from the simulation script on a per-flow basis.
The immediate ACK policy can be used in both the CAP
and CTAP whereas delayed acknowledgment can only be
used in the CTAP.

10 11 12 13 14 CTA Queue

Burst Size

0 1 2 3 4

MAC Header 10 11 12 1414

Group ACK

Fig. 2. Delayed ACK Processing. Burst size indicates the number
of unacknowledged packets that are allowed before the sender stops
sending and waits for an acknowledgment packet. In this example, the
group acknowlegement packet sent by the receiver is missing packet
13 and contains two ACKs for packet 14 due to the expiration of the
probe timer that resulted the sender retransmitting the last packet in
the burst.

Figure 2 shows how our delayed ACK implementation
works. First, assuming delayed ACK is enabled, the
MAC queues packets up to the allowed burst size. For
example, in this case, the burst size is five. Each packet
is then transmitted one after another with a minimum
interframe spacing (MIFS) between them. After trans-
mitting the entire packet burst, the MAC waits for a
group acknowledgment from the receiver. If no group
acknowledgment is forthcoming, the MAC resends the
last transmitted data packet to the receiver and resets
the probe timer. In our implementation, the probe timer
is set to twice the time it takes to transmit the last
packet plus the retransmit interframe spacing (RIFS).
For example, Figure 2 shows that packet 13 is lost
which results in the retransmission of packet 14 after
the expiration of the probe timer. It can be seen that the
group acknowledgement will allow the sender to remove
packets 10, 11, 12 and 14 from its queue and then send a
new packet burst that contains a retransmission of packet
13 as well as new packets 15, 16, 17 and 18.

In addition to the above, our implementation uses
different interframe spacing (IFS) between frame trans-
missions depending on which ACK policy is used. For
example, for the no ACK policy, each frame is separated
by a minimum IFS (MIFS) whereas the immediate ACK
policy separates each frame with a short IFS (SIFS),
followed by an ACK transmission, and then another SIFS
before the next frame is transmitted.

Packets Scheduler: Our implementation maintains
three types of queues. The first queue, called the CAP-
queue, is for packets to be transmitted during the CAP.
Applications mark each flow with a unique stream
identifier which is used by the MAC to ensure that a
stream’s packets are transferred into the correct queue.
Any packets from unidentified streams will be placed
into the CAP-queue. The second queue, called manage-
queue, is for all MAC management related packets,
such as association request and reply messages. Manage-
queue has a higher priority over the CAP-queue in that
packets are transmitted from the manage-queue first.
Note that although management packets have higher
priority locally, these packets still need to contend for
the channel with both management packets and data
packets from other devices. Finally, there are the real-
time queues that belong to each real-time flow. The
unique stream identifier is also used by the MAC to
maintain a data structure called StrmInfo that contains
per-stream information such as the minimum number of
allocated TUs and ordering, packet queue, and channel
time request information.

input : StrmInfo and StrmOrder
output: Next packet to be transmitted
for i ← 1 to Number of Streams do1

if StrmOrder == StrmInfo[i].Order then2
if not StrmInfo[i].Private CTA then3

pkt = LookupPacket(StrmInfo[i].UnACKcounter);4
pktttime = CalculateTxTime(pkt);5
CTAstart =6
BeaconT ime + CAPlength + CTAloc;
CTAend = CTAstart + CTAlength;7
if CTAend-CurrentTime > pktttime then8

if pkt is first in CTA then9
ScheduleTransmit(pkt, ACKPolicy,10
CTAstart);

end11
else12

ScheduleTransmit(pkt, ACKPolicy,13
MIFS);

end14
end15
else16

StrmOrder++;17
PickNextOrderPacket();18

end19
end20
else21

Beaconpkt = ConstructBeaconPacket();22
ScheduleTransmit(Beaconpkt , NIL, CTAstart);23
StrmOrder++;24

end25
end26

end27

Algorithm 1: Packet scheduling algorithm im-
plemented by the function PickNextOrderPacket.

The PNC is responsible for the transmission order of
each device. Once a beacon arrives, a device searches
for its CTA allocation information and determines the
transmission order of its flows. These flows are marked
in ascending order, so a flow marked with one means
that its CTA slot occurs earlier than a flow marked
with two. After setting the order of its flows, a device
then iteratively uses Algorithm 1, implemented by the

function PickNextOrderPacket, to pick the next packet
from the desired stream.

Algorithm 1 takes as input the StrmInfo data struc-
ture, which contains information on all streams, and
StrmOrder, the index of the stream currently under
consideration. First, the algorithm finds the stream that
is specified in StrmOrder. Once found, the algorithm
proceeds to determine whether the flow has sufficient
time left in its CTA to transmit another data packet. In
line 6-7, the algorithm determines the start and end times
of the stream’s CTA which is then used to determine
whether there is sufficient time left in the CTA to trans-
mit a packet. If so, the packet is transmitted. If not, the
algorithm moves onto the next stream by incrementing
StrmOrder and then making a recursive call to itself.

The ScheduleTransmit function accepts three parame-
ters, one of them being the ACK policy used by a given
flow. The ACK policy determines which IFS to use as
well as whether it should wait for an acknowledgment
packet. Further, this policy also determines when the
PickNextOrderPacket function should be called again
to schedule the transmission of the next packet. For
example, for the no-ACK policy, it is called after waiting
until the end of the previous packet plus a MIFS time.

If the allocated CTA is private, denoting a time slot
for a child PNC, the algorithm calls the ConstructBea-
conPacket function to fill the CTABlocks data structure,
containing the relevant devices’ CTA slots, which is
included in beacon for advertisement to child devices.

Contention Channel Access: The CAP uses a con-
tention channel access algorithm [2] that works as fol-
lows:

• Calculate a random backoff counter by drawing ran-
domly from the interval [0, BOwin(retrycount)],
where the function BOwin(retrycount) returns a
window size depending on the value of retrycount
by indexing into the array [7, 15, 31, 63].

• Whenever the channel is sensed idle, the backoff
counter is decremented by one. Once the backoff
counter is zero, the packet is transmitted.

• In the event of a retransmission timeout, the
retrycount is incremented by one. Then, if
retrycount is no more than three, a new backoff
counter is calculated with a larger window size.
Otherwise, the packet is dropped.

Algorithm 2 shows the pseudocode of our implemen-
tation of the IEEE 802.15.3 MAC’s contention channel
access algorithm. One consideration in our implementa-
tion is that when backoffCounter is zero and there is no
time left in the CAP, we delay the packet’s transmission

until the start of the next CAP at which time the packet
is sent immediately.

input : A packet, outPkt, queued for transmission.
output: Packet transmitted or setting of the backoff timer.
// If we have not started backoff counter yet1
if backoffCounter==-1 then2

if MAC and Channel is idle then3
backoffCounter = Random(cwvalues[retrycount]);4

end5
// We call this function after BIFS time has elapsed.6
BackoffTimer(BIFS);

end7
else if backoffCounter==0 then8

if MAC and Channel have been idled for BIFS Time then9
backoffCounter=-1;10
Trem = CheckTimeLeft in CAP();11
Ttx = CalculateTxTime(outPkt);12
if Ttx < T rem then13

Transmit Packet(outPkt);14
end15
else16

ScheduleTx(outPkt, TNextCAP Period);17
end18

end19
else20

BackoffTimer(BIFS);21
end22

end23
else24

if MAC and Channel have been idled for BIFS Time then25
backoffCounter–;26

end27
BackoffTimer(BIFS);28

end29

Algorithm 2: Contention Channel Access [2].

2) Piconet Controller: In our implementation, a de-
vice is designated as a PNC (parent or child) by setting a
flag in the simulation script. If a device is designated as
a child PNC, it must first associate with a parent PNC
before requesting private CTAs. After being allocated
a private CTA, the device then becomes a child PNC
within the allocated CTA time slot.

The beacon transmitted by a PNC contains key infor-
mation describing each device’s CTA slot assignments in
addition to the CAP and CTAP start times. To determine
the type and amount of “air-time” allocated to a given
flow, the PNC solicits the help of a bandwidth manager
(BM) in order to perform admission control and adapt
existing flows.

Algorithm 3 shows the BM we have implemented.
This BM uses a flow’s minimum and desired number of
time units (TUs) to determine whether there are sufficient
TUs in the CTAP to meet the flow’s request, including
guard times1 and IFS. If there is sufficient time left in
the CTAP to satisfy the flow’s desired number of TUs,
the flow is admitted and the requesting device is notified.

1Our clock’s accuracy is 10ppm

input : StrmInfo, and Flow CTA requirements for flow-i
output: Time Units for flow-i
while not Finish Allocating CTAs do1

Talloc=Total Allocated TimeUnits(StrmInfo, NumbStreams);2
Tmin=Min Allocated TimeUnits(StrmInfo, NumbStreams);3
Tguard = NumberofCTAs × GuardT ime;4
Tfree = CTADur − Talloc − Tguard;5
TfreeMin = CTADur − Tmin − Tguard;6
// Calculate requested CTAs for flow-i7
Treq = F lowi.DesiredTU × F lowi.CTRq TU ;8
TreqMin = F lowi.MinTU × F lowi.CTRq TU ;9
if Treq < Tfree or TreqMin < TfreeMin then10

if Treq < Tfree then11
F lowi.AllocCTA = F lowi.DesiredTU ;12

end13
else14

F lowi.AllocCTA = F lowi.MinTU ;15
end16
StoreStreamInfo(F lowi);17
FinishedAllocating = TRUE;18

end19
else20

if TfreeMin >= TreqMin then21
FreeTUs Pool = Tfree;22
while FreeTUs Pool < TreqMin do23

strmIdx =24
FindStream With Max Allocation(StrmInfo);
FreeTUs Pool +=25
StrmInfostrmIdx.AllocCTA-
StrmInfostrmIdx.MinTU;
StrmInfostrmIdx.AllocCTA =26
StrmInfostrmIdx.MinTU;

end27
end28

end29
end30

Algorithm 3: Bandwidth Manager.

In the case when there are insufficient TUs to admit
the flow, the BM will reduce the TUs allocated to exist-
ing flows. The BM does this by first checking the number
of free TUs that can be made available if all flows were
allocated their minimum TUs. If the resulting TUs are
insufficient to meet the requesting flow’s minimum TUs,
the BM rejects the incoming flow’s request.

On the other hand, if there are sufficient TUs, the
BM searches for the flow that has requested the highest
number of additional TUs, that is, the flow with the
largest difference between its allocated and minimum
TUs. Once found, the BM reduces the flow’s allocated
TUs to its minimum required TUs. The BM then de-
termines whether the additional TUs are sufficient to
meet the requesting flow’s minimum TUs. If not, the
BM adds the freed TUs to its pool of available TUs and
searches for the next flow with the highest requested
TUs. This process is iterated until the BM is able to
meet the requesting flow’s minimum TUs.

III. SIMULATION METHODOLOGY

This section presents our investigations into how the
IEEE 802.15.3 operating parameters shown in Table II
affect the performance of real-time and best-effort flows.
We experimented with various values and quantitatively
determined their impact on both real-time and TCP traf-
fic. In all our simulation runs, we retained the physical
layer parameters presented in [4]. Although the UWB
physical layer has multi-rate capabilities, we did not use

this feature. Instead, we specified that all nodes use the
highest 18Mb/s rate.

Parameters Studied Values
Superframe length 20 to 30 msec
Durations of CAP 1 to 3 msec
Desired CTAs time units 5 to 10 msec.
ACK policies no-ACK, Imm-ACK, Dly-ACK

TABLE II

MAC PARAMETERS AND STUDIED VALUES IN OUR SIMULATION

STUDIES.

RT1

RT2

PNC/Sink

F 1

F 2

BE1
BE3

TCP 2

BE4

TCP 1
BE2

Fig. 3. Simulation topology with two real-time CBR flows and two
TCP flows. The acronyms RT and BE mean real-time and best-effort
respectively.

Figure 3 shows the network topology used in all
our studies, with the exception of the scalability study
presented in Section IV-D. Nodes in our network topol-
ogy remained stationary in all the simulation runs. Our
network had two constant bit rate flows, F1 and F2 that
transmit packets of 564 bytes to the PNC at a rate of 6
Mb/s. At the start of each simulation, each of these flows
sent a CTA request containing the variables shown in Ta-
ble I to the PNC. In all our simulations, we ensured that
both real-time flow requested the appropriate minimum
number of TUs so that their requests were not rejected
by the PNC.

In addition to real-time flows, we had two competing
TCP (NewReno) flows, TCP1 and TCP2, that were
started randomly. Except for the experiments in Sec-
tion IV-E, packets from these TCP flows were only
transmitted in the contention access period, meaning no
additional CTAs were allocated for these flows in the
CTA period. Further, the packet size for these TCP flows
was set to 1000 bytes. Each simulation was run ten times,
each for a duration of ten seconds.

IV. RESULTS

A. Effect of Superframe Duration

In this experiment, we varied the length of the su-
perframe whilst keeping the length of the CAP constant
at 1ms. We also investigated CTA allocations of various

sizes. Figure 4 shows the average throughput of the real-
time flows when allocated CTAs with time durations
of five, seven, and nine milliseconds. Further, the ACK
policy used was no-ACK.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 20 22 24 26 28 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
b/

s)

Superframe Duration (msec)

5-ms
7-ms
9-ms

Fig. 4. Average throughput of real-time flows versus superframe
duration. The graph also shows the average throughput for each of
the two real-time flows under varying CTA slot times.

Figure 4 shows decreasing throughput as the super-
frame’s duration increases; the reason being that the
real-time flow must wait longer before it can send more
packets in the next occurrence of its CTA. The slope of
the curve shows that when a real-time flow’s throughput
is limited by channel time, every one millisecond incre-
ment in superframe duration corresponds to an average
reduction of 0.21 Mb/s in throughput. The size of CTAs
also play a crucial role in the recorded throughput of
the real-time flows. On average, increasing the CTA size
from 5ms to 9ms provides an increase of 2.15 Mb/s in
throughput.

B. Effect of CAP Duration

Figure 5 shows the effect of increasing the superframe
duration on TCP throughput for several different CAP
sizes. Similar to the previous case for real-time flows,
the TCP traffic showed a reduction in throughput as the
superframe period increased. Since the superframe time
must be shared between the CAP and the CTAP, we can
improve the throughput of the TCP flows by increasing
the CAP duration. However, if this is done, less time
will be available to the real-time flows in the CTAP. For
example, Table III shows the reduction in throughput for
the real-time flows when the CAP durations is increased.
The reason for the reduction is that when the CAP is
2ms, there is sufficient time in the CTAP for only one
real-time flow to receive its full desired CTA allocation
– the other real-time flows is reduced to its minimum
CTAs. Further increasing the CAP to 3ms means that

both flows are now allocated their minimum CTAs and
thereby suffer further reduced throughput.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 22 24 26 28 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
b/

s)

Superframe Duration (msec)

1-ms
2-ms
3-ms

Fig. 5. Average TCP throughput versus superframe duration for
different CAP durations.

CAP Duration Change in RT
Throughput (Mb/s)

1ms 0.00
2ms 0.92
3ms 1.61

TABLE III

REDUCTION IN REAL-TIME FLOWS’ THROUGHPUT DUE TO

INCREASES IN CAP DURATION.

C. ACK Policies

The IEEE 802.15.3 MAC has three ACK policies, with
the delayed ACK policy used only in the CTA period.
Therefore, we present results showing the impact of the
different ACK policies on two real-time flows. For the
delayed ACK policy, we experimented with burst sizes
from 10ms to 30ms. In all cases, the CTA TUs of both
flows was 9ms, with a superframe duration of 20ms.
Further, given the close proximity of the sender and
receiver devices, we did not record any errors or dropped
packets.

Table IV shows the average throughput as well as the
percentage of traffic that was due to the acknowledgment
messages for each ACK policy. Without exception, the
overheads due to the acknowledgment messages were
marginal. This means that efforts to reducing the quantity
of acknowledgment messages can gain only a slight
increase in throughput.

D. Contention Channel Access’s Impact on TCP Fair-
ness and Throughput

In this experiment, we investigated whether the IEEE
802.15.3 channel access algorithm is fair, especially as

Average Percentage of
ACK Policy Throughput (Mb/s) Total Traffic
NO-ACK 13.10 0.00
Imm-ACK 12.64 0.92

Dly-ACK-10 12.86 0.59
Dly-ACK-20 13.03 0.47
Dly-ACK-30 13.10 0.43

TABLE IV

IMPACT OF ACK POLICIES ON THROUGHPUT AND THE

PERCENTAGE OF ACKNOWLEDGMENT TRAFFIC VERSUS DATA

TRAFFIC.

the number of TCP sessions increases. For this study,
the CAP was fixed at 1ms and the number of TCP
sessions was varied from two to fifteen. Moreover, we
investigated TCP packets with sizes of 1000, 500, and
100 bytes and increased the number of simulation runs to
50. To measure fairness we used Jain et al. [5]’s fairness
index.

Figure 6 shows the fairness index versus the number
of concurrent TCP sessions. It can be seen that the
fairness index is low when there are a small number
of connections, and fairness improves with increasing
flows but starts declining again when there are a high
number of flows. Interestingly, TCP flows using packet
size of 100 bytes have better fairness with increasing
number of flows Figure 7 shows the corresponding
average throughput when we increased the number of
competing TCP connections. We can see that as the
number of TCP flows increase, the average throughput
drop drmatically and fairness starts to decline. Despite
having better fairness TCP flows with 100 bytes packet
size have very low throughput.

The poor fairness property and wide disparaties in
throughput experienced by a given flow is due to
the contention channel access method not employing
RTS/CTS exchange in order to combat the hidden ter-
minal problem. We found that some flows experienced
high number of errors which led to these flows having
lower throughput, and enabling other flows to dominate
the channel by taking over these flows’ “air-times”. At
smaller packet size, flows have a better chance of gaining
access to the channel due to higher collisions among
flows, hence giving access opportunities to other flows
that are awaiting to transmit a packet albeit at a lower
throughput.

E. TCP Flows in the CTAP

This section presents the results of our experiments on
running TCP in the CTAP instead of the CAP. In order

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 2 4 6 8 10 12 14

F
ai

rn
es

s
In

de
x

Number of TCP Sessions

Packet Size=1000
Packet Size=500
Packet Size=100

Fig. 6. Fairness index versus increasing TCP sessions (CAP set to
1ms). Packet size is in bytes.

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14

A
vg

. T
hr

ou
gh

pu
t (

K
b/

s)

Number of TCP Sessions

PacketSize=1000
PacketSize=500
PacketSize=100

Fig. 7. Average throughput versus increasing number of TCP
sessions (CAP set to 1ms). Also shown is the 95% confidence interval
for the sample mean. Packet size is in bytes.

to support a single TCP flows, two reservations need
to be made because the IEEE 802.15.3 MAC allows
for only unidirectional data transmissions in a single
CTA slot. Therefore, both the sender and receiver are
required to request CTA slots from the PNC so that
there are transmission slots available for both data and
acknowledgement packets (subsequently referred to as
down and up channels respectively). In this experiments,
the TCP packet size was set to 1000 bytes.

Our first investigation was on the impact of different
CTA sizes on the down and up channels. Firstly, we
defined a TU block, Tblk = 10msec, that was used
to partition the CTAP into discrete blocks. We then
experimented with different CTA allocation ratios be-
tween the up and down channels, Tblk, by increasing the
TDownChannel from 1ms to 9ms in Equ. 1, where the
denominator corresponds to the up channel’s CTA size.

CTAAllocationRatio =
TDownChannel

Tblk − TDownChannel
(1)

Figure 8 shows the effect of different CTA allocation

ratios on the throughput of a single TCP flow under
two different superframe durations. For a superframe
duration of 10ms, the TCP flow’s throughput is initially
very low as almost all the CTAP is allocated to the up
channel and the down channel has very little time to
send data packets. As the down channel CTA increases,
the TCP flow’s throughput increases and reaches a peak
of 8076 Kb/s when the sender and receiver CTA sizes
are at 6ms and 4ms respectively. As the down channel
allocation is increased further, the limited up channel
time becomes a bottleneck and quickly results in a severe
reduction in throughput.

In a different experiment, we set the superframe
duration to 20ms. Figure 8 shows that a reduction in
throughput occurred, compared to the case when a su-
perframe of 10ms duration was used. This is because in
addition to the size of the CTA slot mentioned before, the
increased in superframe length translates to longer RTT;
approximately equal to the length of the superframe.
This means a flow requires more round trips before it
is able to take advantage of its allocated CTA size. This
coupled with the effect of CTA size lead to a reduction
in throughput.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t (

K
b/

s)

CTA Allocation Ratio (sender/receiver)

SuperFrame Duration=10ms
SuperFrame Duration=20ms

Fig. 8. Throughput versus CTA allocation ratio.

Lastly, we experimented with the idea of having TCP
flows transmit their acknowledgement packets in the
CAP. The advantage of this approach is that we save on
having to reserve a discrete acknowledgement channel
for each flow. In these experiments, we only allocated
1ms CTA for the down channel time for each of ten
TCP flows.

Figure 9 shows the impact of varying the CAP du-
ration on TCP throughput. Initially, as the CAP time is
increased, the throughput of all flows improves. How-
ever, after a CAP time of 7ms, the throughput begins to
decrease since the time being allocated to the CAP for
acknowledgements could be better used in the CTAP to

send more data.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
b/

s)

CAP Sizes (msec)

Aggregate

Fig. 9. Aggregated throughput of ten flows with fixed down channel
at 1msec, and all acknowledgement messages are sent in the CAP of
varying size

V. CONCLUSION AND FUTURE WORK

We have presented our implementation of the IEEE
802.15.3 MAC in the widely used ns-2 simulator, and
also our implementation of a simple packet scheduler
and bandwidth manager. From our studies we find that
the IEEE 802.15.3 CAP channel access mechanism to be
unfair due to the hidden terminal problem. Apart from
that, when running TCP in the CTAP we find that data
and acknowledgment slot sizes and superframe duration
affect how fast a TCP flow grows its congestion window.

Currently, we are carrying out more experiments and
studying in greater detail the impact of fairness as well
as the choice of bandwidth managers and scheduling
algorithms. Further, we are implementing and studying
other features of the MAC, including PNC handover,
channel probing and switching, coexistence, and power
saving modes.

REFERENCES

[1] IEEE, “802.15 WPAN task group 3 (TG3).”
http://www.ieee802.org/15/pub/TG3.html.

[2] IEEE 802.15.3 Working Group, “Part 15.3: Wireless medium
access control (MAC) and physical layer (PHY) specifications
for high rate wireless perosnal area networks (WPAN).” IEEE
Draft Standard, Draft P802.15.3/D16, Feb. 2003.

[3] S. McCanne and S. Floyd., “ns network simulator-2.”
http://www.isi.edu/nsname/ns/.

[4] J. Widmer, “EPFL ns-2 UWB implementation.” Ns-2 simulation
source code. http://icapeople.epfl.ch/widmer/uwb/index.html.

[5] R. Jain, D.-M. Chiu, and H. Hawe, “A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer Systems.” DEC RR TR-301.

