
Barycentric coordinates

This is a brief introduction to barycentric coordinates in the plane.

We begin with a result not as widely known as one might expect.

Let P1(x1, y1), P2(x2, y2), P3(x3, y3) be points defining a triangle

in the plane. We will assume that the points are labelled in

counter-clockwise order, for reasons that will become clear. Then

the determinant ∣∣∣∣∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣∣
= A

is twice the area of the triangle P1P2P3.

Perhaps the easiest way to see this is to note that∣∣∣∣∣∣∣∣∣∣∣
1 0 0

x1 x2 − x1 x3 − x1

y1 y2 − y1 y3 − y1

∣∣∣∣∣∣∣∣∣∣∣
= A

Let

x2 = x1 + a ∗ cos(θ),

y2 = y1 + a ∗ sin(θ)

x3 = x1 + b ∗ cos(φ)

y3 = y1 + b ∗ sin(φ)

Then

A = a ∗ b ∗ (cos(θ) ∗ sin(φ)− sin(θ) ∗ cos(φ))

= 2 ∗ (
1

2
∗ a ∗ b ∗ sin(φ− θ)) (1)

where the second term is easily recognisable as the area of the

triangle in the form 1
2a ∗ b ∗ sin(C) It also explains the reason for

numbering the vertices of the triangle in counterclockwise order,

so that sin(φ− θ) will be positive.
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Next we turn to the definition of barycentric coordinates (b1, b2, b3)

for a point P (x, y) in the plane, in relation to the triangle P1P2P3.

They are defined by the relation
1 1 1

x1 x2 x3

y1 y2 y3




b1

b2

b3

 =


1

x

y


Some properties that flow easily from the definition are as follows:

1. The bi are linear functions of x and y.

2.

b1 =

∣∣∣∣∣∣∣∣∣∣∣
1 1 1

x x2 x3

y y2 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣∣
shows b1 = Area(PP2P3) / Area(P1P2P3)

3. Similar results hold for b2 and b3.

4. For points P (x, y) inside the triangle, 0 ≤ bi ≤ 1

5. For all points P (x, y) in the plane, b1 + b2 + b3 = 1.

These coordinates are used to define bivariate splines of degree

d, Bezier-Bernstein polynomials, which are polynomials in x and

y at each point P (x, y) in the plane.

Bd
i,j,k(b1, b2, b3) =

d!

i!j!k!
bi
1b

j
2b

k
3, i + j + k = d

For d = 0, B0
0,0,0 = 1

For d = 1, B1
1,0,0 = b1, B

1
0,1,0 = b2, B

1
0,0,1 = b3
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These span the same space as 1, x, y

For d = 2, B2
2,0,0, B

2
1,1,0, B

2
1,0,1, B

2
0,2,0, B

2
0,1,1, B

2
0.0.2

which are, respectively, b2
1, 2b1b2, 2b1b3, b2

2, 2b2b3, b2
3,

span the same space as 1, x, y, x2, xy, y2.

So, for example, any polynomial of degree 2 in x and y in the

triangle, or indeed the plane, can be written

p(v(x, y)) =
∑

i+j+k=2
ci,j,kB

2
i,j,k(b1, b2, b3)

where the b1, b2 , b3 are evaluated at the point v(x, y).

If we wanted to fit the surface p(x,y) to a set of experimental

observations (xi, yi, fi) using the usual least squares criterion, we

would simply minimise with respect to the c vector, the function

R(c) =
1

2

∑
i
(p(xi, yi)− fi)

2

This is a relatively simple problem if we have only one triangle.

Complications arise as soon as the plane is subdivided into a set

of touching triangles, and we want to approximate a function over

the whole region.

If we performed the calculation, triangle-by-triangle in isolation,

we would get an optimum fit to the points in each triangle, but the

overall surface generated by this approach would be discontinuous

along the edges between adjacent triangles. To obtain a smoother

surface we need to impose continuity relations between the func-

tions on different triangles, which amount to linear relationships

between the c vectors on adjacent triangles.

We can illustrate the procedure in the more familiar basis setting

for d = 1. Suppose on triangle 1:

p1(v(x, y)) = c1
0 + c1

1 ∗ x + c1
2 ∗ y
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and on triangle 2:

p2(v(x, y)) = c2
0 + c2

1 ∗ x + c2
2 ∗ y

and that the equation of the edge connecting the triangles is

y = α ∗ x + β

So, along the edge

p1(v) = c1
0 + c1

1 ∗ x + c1
2 ∗ (α + β ∗ x)

is continuous. ie

d1 ∗ c1
1 + d2 ∗ c1

2 = d1 ∗ c2
1 + d2 ∗ c2

2

For the direction along the edge (1, α) this condition is already

satisfied, so if we choose any other d, it will be true for any linear

combination of directions, and hence for any direction.

Similar arguments can be applied when the functions p(x, y)

on neighbouring triangles are expressed in the Bezier spline ba-

sis. I will simply quote the general result derived by Lai and

Schumaker (2007). If the first triangle has vertices (v1, v2, v3), in

clockwise order, with a common edge (v2, v3) with a second tri-

angle (v4, v3, v2), in clockwise order, the polynomial functions of

degree d, and their derivatives up to order r, are continuous on

the edge if

Cn,j,k =
∑

f+g+h=n
cf,k+g,j+hB

n
f,g,h(v4)

for j + k = d− n, and n = 0 . . . r.

Ci,j,k refers to the coefficients on the second triangle, and ci,j,k

refers to the coefficients on the first triangle.

Again you can see that these are linear relations between the co-

efficients on different triangles.
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If we return now to the problem of fitting the splines to a set of

measurements (xi, yi, fi), spread across a collection of neighbour-

ing triangles, we now have to minimise the least squares function

R(c) =
1

2

∑
(p(vi)− fi)

2

which we could solve as a series of ATAc = AT f problems on

individual triangles, but which is now subject to a set of linear

constraints Ec = 0 spread across all the triangles. Firstly, we

can consolidate the individual problems of minimising the least

squares function in each triangle into one large minimisation prob-

lem of the function

R(c) =
1

2
(Ac− f)T (Ac− f)

subject to

Ec = 0

We can introduce a vector of Lagrange multipliers λ and solve the

matrix problem  ATA ET

E 0


 c

λ

 =

 AT f

0



which we can solve using the standard LAPACK routines. Inspec-

tion of the Lagrange multipliers λ can tell us the importance of

insisting on a particular order of continuity across the edges of the

triangles.
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