
Language translators

This is a brief introduction to the techniques of automated

language translation which is now becoming a reality in handheld

devices. If you have ever tried to learn a foreign language, you will

have had to go through the process of learning vocabulary - for

example that ”cheese’” in French is ’”fromage” Then we have to

learn the rudiments of grammar, which has been de-emphasised in

teaching English in our schools to the point where foreign language

teachers have to introduce their students to grammar, and some of

our politicians are happy enough to say ”That is news to him and

I” without a second thought as to whether it is grammatically

correct. Then finally we have to understand meaning, common

usage, and colloquialisms well enough to carry on a reasonable

conversation.

So, how have we arrived at the situation where a tiny hand-

held device can match a skilled translator and easily outperform

a novice? Instead of our human paths to translation, these de-

vices use machine learning with neural networks, which have been

trained on very large databases of the same sentences in differ-

ent languages, and statistical modelling, rather than learning the

vocabulary, grammar and semantics that we poor humans must.

Where do such databases exist? For example, the digital cor-

pus of the European Parliament contains the majority of the doc-

uments of the Parliament as full documents in the different lan-

guages and as sentence aligned versions for language pairs such as

French and English.An example of a sentence aligned pair might

be ” Do you know CPR? aligned with ”connalissez-vous le mas-

sase cardiaque?” These documents are the feedstock of machine

language translators. They contain literally many millions of sen-

tences which are used in the training. Most of humanity would

have neither the interest nor the capacity to wade through this

1



amount of material.

The underlying idea of artificial intelligence is the neural net-

work. The mathematical description of a single node (neuron)

i of a network takes inputs xi,j from other neurons j, applies a

function f (), typically involving weights wi,j, and a bias bi, so that

outputi = f (
∑
j

wi,jxi,j + bi)

. One popular function is the relu function defined as follows:

relu(x) = 0; x < 0.0

relu(x) = x; x > 0.0

This neuron ”fires” with a strength proportional to its positive

input and fails to fire if its input is negative. A major reason for

its popularity is its ease of differentiation.

The nodes are usually arranged in layers, with an input layer,

consisting of a tokenised sentence in the case of language trans-

lation, and a final out output, again in this case consisting of a

tokenised sentence in the translated language. Between the input

layer and the output layer are a set of ”hidden layers’. Each layer

will consist of multiple neurons, each with its own set of weights

and bias.

Such neural nets were developed last century. Interest waned

when it was realised that the computational power to implement

efficient nets simply did not exist at the time. The current resur-

gence of AI in general is due to the spectacular improvement in

computational power over the decades and in particular the gpu.

The basic idea of ”training” a neural net is to take a set of (input,

output) pairs - in the case of language translation, input being a

sentence in one language and output being its translation in the

other, and adjust all the individual weights and biasses so as to

minimise the aggregate differences between the output predicted

by the neural net and the actual translation of the input.

2



Various measures of the aggregate discrepancy have been used

when machine learning has been applied in different arenas, most

of them fairly sophisticated and not easy to encapsulate. A com-

mon measure used in machine translation is cross-entropy which

you can google for a tutorial explanation. One measure of entropy

itself is the number of bits required to transmit information about

a variable selected from a probability distribution.

We use this idea of a probability distribution in lots of differ-

ent contexts.For example, if we were compressing a text file using

Huffman coding, we would compute the probabilities of each let-

ter occurring, and then develop a bit code so that the most fre-

quently occurring letters had the shortest bitcodes, and the least

frequentlly occurring had the longest bitcodes. Thiis is in contrast

to ASCII where the bitcode of each character has the same length,

and enables us to compress ASCII text.

Cross entropy calculates the average number of bits needed

to transmit data from one distribution, in this case tokens of one

language, into another distribution, tokens of the second laguage.

H(P, Q) =
∑

x∈X
P (x)log2(Q(x))

where P (x) is the probability of occurrence of x in distribution

P , and Q(x) is the probability of x occurring in the distribution

Q.

In the case of binary machine learning classification, we can

assign a probabliity distribution P (x) of 1 for the target target

identification and 0 for the the others, and obtain a probability

distribution Q(x) for possible predicted outputs from the neural

network output. For more than two categories we need to apply

categorical cross entropy which is yet more complex, but adequate

material is available on the net, and machine learning environ-

ments such as keras have implementations available to choose.

3



Part of the machine translation process is to turn sentences

into words, and eventually into numbers that can be used in the

algebraic training training process . If we start with with the

sentence ”What’s gone wrong for NSW today? ” the tokenis-

ing process will probably reduce that to something like ”<start>

what s gone wrong for nsw today ? <end> ”. At the start of the

training process, the program will have to digest sufficient of these

sentences to create a working vocabulary, and then form a dictio-

nary where each word is mapped to an integer, so that the sentence

might now map to a sequence something like {1 27 6 15 36 18 2}
Obviously the vocabulary and dictionary size will expand with

the number of sentences digested. In training with limited com-

puting resources, words which occur with low frequency might

be mapped to a single token <unknown > with just one dictio-

nary entry. This will reduce the training computation time at the

expense of the fidelity of translation.

I note in passing that with speech recognition applications

such as Apple Siri, there are other steps where the analog sound

input has to be processed to produce a word sentence, probably

with another neural net, to produce a digital version of the input,

and a digital to analog conversion of the digital output to produce

a synthetic speech output at the other end of the process.

So, at the end of the sentence ingestion phase, we have a

numeric representation of each sentence. If we are doing English

to French translation, we have an English vocabulary dictionary,

a French vocabulary dictionary, and a huge collection of pairs of

sentences with the same meaning - that collection having been

produced ”manually” by expert translators over the years. The

task now is to ”train” a neural network using that collection, by

adjusting the weights and biasses of each neuron so as to minimise

an aggregate loss function, such as the categorical cross entropy

4



mentioned earlier.

Mathematically, what we have is a function of millions of vari-

ables to minimise, which is why machine learning has only come

into its own since the capability of our computer hardware has

reached its present strength. The collection of sentences is split

into a larger training set and a test set, still of substantial size.

As far as the training process is concerned, the members of the

test set are unknown and are used to evaluate the accuracy of the

network weights produced by the training process.

Many AI applications share this training step, which is imple-

mented in environments such as google’s tensorflow, on hardware

such as nvidia’s gpu and the steadily expanding range of custom

chips aimed at inference processing. The computations associated

with each neuron are the simple function evaluations mentioned

earlier:

outputi = relu(
∑
j

wi,jxi,j + bi)

where

relu(x) = 0; x < 0.0

relu(x) = x; x > 0.0

which is relatively cheap to compute. This means that once

trained, a neural network can process its input quickly, to translate

a sentence, or classify an image, or whatever. The training process

is what takes the time and computational power, because we will

have a large number of (input, output) training examples, often

a huge number of weights and biasses, depending on the number

and width of the hidden layers, and an aggregate loss function

which is the sum over all the training collection of the loss for

each training pair, which in turn is a function of all the weights

and biasses.

5



For a function F (x) the uphill direction at a point x in multi-

dimensional space is the gradient vector

∇F = (
∂F

∂xi
)

We can lower F by taking a step in the negative gradient direction,

with the step magnitude reduced by a factor, called the ”learn-

ing rate” in machine learning”, which typically might be as small

as 0.001 per step. Remember that at this stage we have an loss

function aggregated over thousands of samples , with hundreds of

thousands of weights and biasses, so taking a small step in the neg-

ative gradient direction is computationally intensive. Addressing

this problem has been the subject of ongoing research, resulting in

recommended algorithms such as Adam, which are implemented

in machine learning environments such as keras and tensorflow.

Firstly the gradient of the aggregate loss function requires the

sum of the gradients for the individual members of the training

set. Rather than use the aggregate, A simple stochastic algorithm

could choose to cycle through the gradients one at a time in a

random order and apply the gradient step to the weights and bi-

asses at each step. A refinement of this approach is to compute

the aggregate gradient for randomly chosen batches of training

examples, to reduce the amount of work involved in each applica-

tion of the gradient step.A further refinement was the introduction

of ’momentum’, where the gradient used is a linear combination

of gradient currently computed and the one used at the previous

step - based on the analogy of keeping a ball rolling downhill. The

Adam variant computes individual adaptive learning rates from

estimates of the first and second moments of the gradients, and

incorporates variable learning rates.

An essential detail of the process is how the the gradients are

computed for the individual weights and biasses, in each layer of

6



the network, - backpropagation. If the output of an individual

neuron in a layer is

ai = f (
∑

wi,jxj + bi)

where the xj are the outputs from the previous layer, then for the

relu() function
∂ai

∂wi,j
= 0 for

∑
wi,jxj + bi ≤ 0 , else xj.

and
∂ai
∂bi

= 0 for
∑

wi,jxj + bi ≤ 0, else 1.

. Using the chain rule, backpropragation works its way back from

the output layer, computing elements of the gradient function for

all the weights and biasses.

Language translation as implemented in tensorflow uses the

additional notion of attention in the sequence to sequence seq2seq′

model. Each of the input words is assigned a weight by the atten-

tion mechanism to predict the next word in the sentence, which is

then chosen from a softmax of possible choices. This is described

more fully in the online literature, often using Bahdanau attention

model for the encoder.

The input is put through an encoder model which gives an en-

coder output of shape(batchsize, maxlength, hiddensize) with

an encoder hidden state of shape (batchsize, hiddensize). The

aim is to predict the next word, based on a context of maxlength

previous words in the sentence by assigning weights to the previ-

ous words in the context.. The whole process is too detailed to

explain here, and is well documented in the tensorflow tutorial

https://www.tensorflow/tutorials/text/nmt_with_attention

To give some idea of the training effort required, on the nvidia

jetson, training to translate between English and French on a

subset of 80, 000 paired sentences, mostly simple, using 15 epochs

7



(passes through the entire training set) using batch sizes of 64

pairs, takes an average 8 minutes per epoch, for a total of 2 hours

compute time, to reduce the aggregate categorical cross entropy

loss function to 0.047 from tts value at the end of the first epoch

of 1.5.

The fidelity of the translation. could be improved by taking

larger training sets of paired sentences. As I previously noted. the

entire corpus of the European Parliament is available as a training

set if one wanted to use it. The translation of individual sentences,

even those which are part of the training set, will not necessarily

be accurate , due to the statistical nature of the process. The

actual translations offered by google and the coming handheld

devices will no doubt be much better than that achieved with the

tutorial example I followed.

8


