
Numbers - the evolution of an idea

The first numbers that we encounter as children are the posi-

tive integers, or counting numbers, which we often learn by num-

bering off the fingers on one hand, one two, three, four, five -

and, not long after, the fingers on both hands 1, 2, 3, 4, 5, 6, 7,

8, 9, 10. It’s interesting that our most familiar counting mode,

and representation of numbers is determined by our biology. If we

only had 4 digits on each hand, we would probably be living in

an octal world rather than a decimal one. A little while later, we

learn to do arithmetic on those numbers, usually in the context of

counting some objects Starting with addition, for example ” 5

bananas plus 3 bananas = 8 bananas ”, which we can make more

abstract by writing ” 5 + 3 = 8”, because we know that we will

get the same result whether we are adding bananas, or fingers, or

apples.

Often we learn the notion of subtraction in a similar con-

text: ” 5 bananas take away 3 bananas leaves 2 bananas”, or

abstracting again, ” 5 - 3 = 2 ” And if you are old like me, you

will remember the song ” yes, we have no bananas...” and in math-

ematics we introduce the symbol ”zero, or 0”, so that we could

sing instead ”yes, we have zero bananas” or write ” yes, we have

0 bananas”.

So far, so good, then someone asks us ”3 - 5 = what?”. If

we refer back to our concrete example, and ask the question ” 3

bananas take away 5 bananas leaves what?” then clearly the only

sensible answer is that we can’t do it. So, as mathematicians,

how do we proceed? Well, we invent a whole set of negative

integers ” -1, -2 , -3, -4, .......... ” with the property that for

each positive integer ”n”, there is a matching integer ”-n”, with

the property that ”n + (-n) = 0”. Armed with this new invention

we can say ” 3 - 5 = -2 ”, even though it still won’t make any
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sense to go into the fruit shop and try to buy ” -2 bananas”. The

place where you might see both positive and negative numbers in

the ”real world” might be in your bank account, where the total

might be ”+ $100 ”, written ”$100 CR”, or ” - $100 ” written

”$100 DR” or ”$100” in red ink.

The next invention of the mathematician is multiplication,

which embodies the idea of repeated addition. Thus, we write ”8

+ 8 + 8 + 8 + 8 = 5 times 8 = 5 * 8”. I am using the ” *

” symbol to represent multiplication, because it is the common

multiplication symbol in all computer languages, where ” x ” is

likely to be the name of a variable. I imagine that you all learnt the

”times tables” in primary school which make mental arithmetic so

much easier than it would be if we had to do repeated addition.

Once we want to apply multiplication to zero and the negative

integers, we need some new rules to ensure that our expanded

arithmetic remains consistent. The extra rules we live by are:

• ” 1 * n = n ” for any n. ”1 ” is called the ”multiplicative

identity” in the same way as ”0” is called the additive identity

because ” 0 + n = n ” but you don’t have to remember these

names for now.

• ”m * (-n) = - (m * n)” for any m and n.

• and of course you know from counting, and from your tables,

that ” m + n = n + m” and ”m * n = n * m”.

Now we come to a familiar problem at birthday parties. There

are 6 lollies left, and 3 children at the party, so we can divide

them equally and give 2 lollies to each child: ” 6 / 3 = 2 ” However

there are only 5 balloons. ”5 / 3 = what? ” This presents an

insoluble problem to the party organiser, but none to the visiting

mathematician, who says” No problem: we will invent fractions

or rational numbers and give each child 5
3 balloons. I know
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some people find fractions harder to deal with, because we have

to invent a number of new rules to process them, and there is just

more arithmetic involved.

• addition m
n + p

q = m∗q+n∗p
n∗q

• subtraction m
n −

p
q = m∗q−n∗p

n∗q

• multiplication m
n ∗

p
q = m∗p

n∗q

• division m
n /p

q = m∗q
n∗p

The one fraction that we cannot manage is m
0 for any non-zero

m. We say that the result is infinite and use the symbol ∞ to

represent it.

The other way that we represent numbers is as a decimal

expansion, for example 12.345 which we interpret as 1 ∗ 101 + 2 ∗
100 + 3 ∗ 10−1 + 4 ∗ 10−2 + 5 ∗ 10−3

We can recognise any fraction as a repeating decimal expan-

sion. For example

• 1
4 = 0.2500000000 . . .

• 5
3 = 1.66666666666 . . .

If we see a repeating decimal expansion, we can turn that into

its fractional form fairly easiiy:

• x = 0.123123123123 . . .

• 1000 ∗ x = 123, 123123123 . . .

• so 999 ∗ x = 123 and x = 123
999 = 41

333

Just as an aside, how did we know that 123 was divisible by

3 ? 999 is pretty obvious. Well, if we did not see it straight away,

we could have used the rule ”An integer is divisible by 3 if the sum
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of its decimal digits is divisible by 3”. Have you ever wondered

why that rule is true? If you look at the following, it should be

fairly clear:

123 = 1∗100+2∗10+3∗1 = 1∗(99+1)+2∗(9+1)+3 = 1∗99+2∗9+(1+2+3)

and 3 divides each term on the right. This immediately suggests

the way to show a second rule that you might not be familiar

with: ” An integer is divisible by 9 if the sum of its decimal digits

is divisible by 9.” Try it for 34254.

One of the trickier ideas associated with the fractions, or ra-

tionals, comes when we try to count how many of them there are.

If we think about the number of positive integers that there are,

we can start counting 1, 2, 3, 4, 5, 6 . . . and we say that there are

a countable infinity of these positive integers. Now, obviously

there are more rationals than there are positive integers, but if we

can find a way of writing the rationals down in an order where

we can say where each appears, we say that we can find a map-

ping from the rationals to the integers. Here is such a mapping :
1
1,

1
2,

2
1,

1
3,

2
2,

3
1,

1
4,

2
3,

3
2,

4
1,

1
5 . . . Having found that mapping, we can

say there are a countable infinity of rational numbers as well. Ob-

viously the term countable infinity is somewhat elastic. If you

have trouble getting your head around this idea, join the other

99.9% of the population, including me.

We will need to use the notion of prime integers before we

go too much further, so we might as well talk a little about them

now. There is a lot known about primes, so we will just mention

a few ideas. Firstly, an integer n is prime, if the only integers that

divide it with no remainder, are 1 and the number n itself. The

first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 . . . In fact

we know that this sequence of primes goes on forever, and that

there are a countable infinity of primes, because again we can lay

them out in order to define a mapping from the integers. The
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proof is interesting, because you might not already have encoun-

tered a proof by contradiction. Assume that there only a

finite number M of primes p1, p2, p3, . . . pM Consider the integer

p1p2p3 . . . pm + 1 It is not exactly divisible by any of the primes

pi , which all leave a remainder of 1, so it must be prime itself.

But this contradicts our assumption that there are only a finite

number M of primes, so that assumption must be false. That is

to say, there must be an infinite number of primes.

We can write any integer as the product of its prime factors.

For example, we can write 3600 = 24∗32∗52, or 343 = 73. Looking

at these two prime factorisations, we can see immediately that the

highest common factor of the two is 1. Whereas, if we compare

3600 with 375 = 3 ∗ 53 we can read off the common factor as

3 ∗ 52 = 75. There are many fascinating properties of primes that

mathematicians over the centuries have been able to prove, but

there is one fairly simple proposition that people have been unable

to prove or disprove. The Goldbach conjecture is that any

even integer can be written as the sum of two primes. For example

6 = 3 + 3, 8 = 3+ 5, 10 = 5 + 5, or 10 = 3 + 7, 12 = 5 + 7, and so

on. If you can’t go to sleep at night, you can see how far up the

chain of even numbers you can get, instead of counting sheep.

One of the important uses of prime numbers that we rely on

increasingly, is the RSA algorithm that secures our internet trans-

actions when we make a https:// connection. I hope we might have

time to look at the RSA algorithm one day. It relies on the fact

that if we generate two very large primes and multiply them to-

gether, it will be beyond the capability of present-day computers

to find those two factors, whch can be used to decrypt messages

encoded with the composite product number. If you follow the

popular press, you might see that quantum computers might one

day be able to break the composite number into its prime factors
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using an algorithm already described by Peter Shor. So the race

to build a quantum computer is not entirely academic, and Mi-

crosoft is already specifying a computer language with which to

program them.

One of the important numerical operators we use regularly is

the square root. For example,
√

9 = 3, which we can define

to be the number, which when multiplied by itself, gives us the

number we started with. That is to say, x solves the equation

x2 = y where y is any number. Just introducing this one operator

forces us to expand our whole idea of what a number can be. For

example, consider
√

2 = 1.41421 . . .. If you have a calculator, or

computer, it will give you lots more digits than I have quoted, but

because it doesn’t give you an infinite number of digits, you can’t

tell whether we can write
√

2 = a rational, m/n, but we can fairly

easily establish that it is not, by another proof by contradiction.

Suppose m = 2p2 ∗ 3p3 ∗ 5p5 ∗ . . . and n = 2q2 ∗ 3q3 ∗ 5q5 . . ..

•
√

2 = m/n

• n ∗
√

2 = m

• 2 ∗ n2 = m2

• 2 ∗ 22q2 ∗ 32q3 ∗ 52q5 . . . = 22p2 ∗ 32p3 ∗ 525 . . .

and we see that on one side the power of 2 is even, while on the

other side it is odd, which gives us our contradiction. So
√

2

cannot be rational. In fact
√

2 is just one of the uncountably

infinite family of irrational numbers which do not have a

repeating decimal representation. I won’t burden you with the

proof that it’s an uncountably infinite set. You can look it up if you

want to. Together the integers, rationals, and irrationals, make up

the set of real numbers which you can imagine stretched out

along a line from −∞ to +∞. Two of the most notable irrational
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numbers are π, known for millenia as the ratio of the circumference

of a circle to its diameter, and e the factor underlying the term

exponential growth, so beloved of our politicians.

You might think at this stage our zoo of numbers is now fully

occupied, but nothing could be further from the truth. Math-

ematicians over the centuries have continued to exercise their

imaginations, and many of our modern day physical phenomena,

such as electromagnetic radiation, or the quantum mechanical be-

haviour of atoms can be described mathematically using their

next invention. You all know the formula for solving for the roots

of a quadratic equation a ∗ x2 + b ∗ x + c = 0 The roots are

x =
−b±
√

(b2−4∗a∗c)
2∗a

What happens when we apply that formula to the quadratic

equation x2 − 2 ∗ x + 2 = 0? If you graph the function y(x) =

x2 − 2 ∗ x + 2, you will see that the graph never crosses the x

axis so there are no real roots. ” No problem, says the Italian

mathematician Cardano, visiting from the 16th century. We will

invent a new imaginary number i =
√
−1, and complex

numbers with the form z = x+i∗y with a real and an imaginary

part. This new invention immediately gives us an answer to our

quadratic equation problem.

• x =
−(−2)±

√
(−2)2−4∗1∗2
2∗1 = 2±

√
4∗i2

2

• x = 1± i

Of course, once Cardano had invented these complex numbers

he had to define a whole set of arithmetic operations for these

entities which were consistent with the arithmetic operations on

real numbers. The theory of complex numbers is too large to

explore here, so I will show the simple set of operations, and we

will stop. If we had more time we could explore the Argand

diagram and the (r, θ) representation of complex numbers.

7



• z1 = x1 + i ∗ y1

• z2 = x2 + i ∗ y2

• z∗2 = x2− i∗y2 , the complex conjugate of z2 which helps

with division.

• z1 + z2 = (x1 + x2) + i ∗ (y1 + y2)

• z1 − z2 = (x1 − x2) + i ∗ (y1 − y2)

• z1 ∗ z2 = (x1 ∗ x2 − y1 ∗ y2) + i ∗ (x1 ∗ y2 + x2 ∗ y1)

• z1/z2 = (z1 ∗ z∗2)/(z2 ∗ z∗2) = (z1 ∗ z∗2)/(x2
2 + y2

2)

Long after complex numbers were defined, and used over the

centuries, people like Babbage, Alan Turing, and John von Neu-

mann came up with the invention of digital computation, and

Ada, the Countess of Lovelace, and others, started to program

them. Modern electronic computers use transistors which essen-

tially can store binary information as a 0 or a 1. So to represent

the decimal numbers we are more familiar with, we have to follow

the arithmetic that we would have used if we only had 2 fingers

and not 10, and learn to play with binary numbers.

When we write a decimal integer like 1234 we mean

1234 = 1 ∗ 103 + 2 ∗ 102 + 3 ∗ 101 + 4 ∗ 100

In binary arithmetic, we only have the digits 0 and 1 at our dis-

posal, and powers of 2 and not powers of 10, so to represent the

decimal number 1234 in binary, we have to say:

1234 = 1024 + 128 + 64 + 16 + 2

= 1 ∗ 210 + 0 ∗ 29 + 0 ∗ 28 + 1 ∗ 27 + 1 ∗ 26 + 0 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20

= 10011010010 (1)

You can see that binary representations of large integers will

quickly became unmanagable by us poor humans, so it’s lucky that
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they are childs play for the modern digital computer, whether it’s

in your laptop or iphone. To make binary numbers produced by

computers more readable, we often print them out in groups of

three (octal) or groups of four (hexadecimal). These are sum-

marised in the tables below:

binary octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

binary hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F
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You should try writing the decimal number 1234 in octal and

hexadecimal just to see that you have the hang of it. If we have

more time, we can explore how negative integers are stored (two’s

complement), and and real numbers like 12345.6789 are stored,

using Kahan’s IEEE754 format. Of course digital computers also

have to store alphanumeric data, such as peoples’ names, and web

addresses, and these have specially defined formats like ASCII.

You should google ”character encoding” if you want to know more

about how different character sets in different languages are han-

dled.

Finally, you might occasionally wonder, when we have chosen

to embrace the metric system of weights and measures, and deci-

mal currency, why we still have 60 seconds in a minute, 60 minutes

in an hour, 360 in degrees in a circle. We have to thank the an-

cient Sumerians and Babylonians for handing us this legacy. 60 is

a very useful number to use as a base. We can divide it exactly

by 2, 3, 4, 5, 6, 10, 15, 20 and 30, as we routinely do every day with

time and angles.
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