INTRODUCTION BY THE VICE CHANCELLOR AND CHIEF EXECUTIVE

The University of Wollongong (UOW) and South Eastern Sydney Illawarra Health (SESH) have a long history of collaboration, through joint research projects, operation of a joint Human Research Ethics Committee and student supervision and placements. A further extension of this relationship is the creation of the Illawarra Health and Medical Research Hub, which will be a focal point for health and medical research being undertaken within the Illawarra region.

Within the Hub there are two core Research Units:

• the Illawarra Health and Medical Research Institute (IHMRI); and
• the Centre for Health Service Development (CHSD).

Underpinning these research units will be a Clinical Trials Unit, which we hope in time will become a hub for clinical trial activities in Australia.

Within the Illawarra Health and Medical Research Hub, the creation of the Illawarra Health and Medical Research Institute is a particularly exciting initiative. We are convinced that SESIH and UOW will be able to build capacity within the Institute to enable it to become a national and international leader in its niche research strengths:

• cancer,
• ageing,
• metabolic disorders (heart disease, diabetes, obesity); and
• anti-infectives (bacterial, viral and protozoal).
The Illawarra Health and Medical Research Institute has three Research Programs:

- Underpinning Science - provides the core research effort to understand the causes, diagnoses and treatments of disease;
- Community Health Education - provides the core research effort to develop effective strategies to communicate the underpinning science and known health and medical research outcomes to wider society; and
- Clinical Research Practice and Training - applies and tests the underpinning science and health education programs in the clinic and develops training packages to enable clinical staff to implement program outcomes.

Research Programs

The Illawarra Health and Medical Research Institute has three Research Programs:

- Underpinning Science:
 - provides the core research effort to understand the causes, diagnoses and treatments of disease;
 - Community Health Education:
 - provides the core research effort to develop effective strategies to communicate the underpinning science and known health and medical research outcomes to wider society; and
 - Clinical Research Practice and Training:
 - applies and tests the underpinning science and health education programs in the clinic and develops training packages to enable clinical staff to implement program outcomes.

Research Themes

Within each of the three Research Programs, Institute researchers will work across four broad Research Themes:

- metabolic disorders (heart disease, diabetes, obesity);
- age-related disease prevention (e.g. neurodegenerative disease);
- anti-infective agents (e.g. targeted at new anti-bacterial, anti-viral and anti-malarials); and
- cancer treatments (including chemotherapeutics and radiation dosimetry devices).

Underpinning Science

The Underpinning Science Research Program aims to investigate the fundamental causes, modes of development, diagnosis and treatment/prevention of disease. The program has a focus on the development of novel treatment/prevention methods (particularly through novel drug and medical device design) and is supported by a statistical design research capability that ensures that experimental design and data analyses are undertaken using the most advanced methods. Specific areas of research strength include:

- fundamental research to probe the molecular basis of disease and ageing;
- translational research to discover new prevention and treatment options;
- novel drug design and development;
- epidemiological research to discover the factors affecting the development of disease and ageing; and
- statistical design and analysis for complex populations.

As you will see from the following research profiles, the Underpinning Science Research Program covers the breadth of the Institute’s Research Themes.
RESEARCH PROFILE:

FLESH EATING BACTERIA

Group A Streptococcus (GAS) colonises various human tissues and can cause infections so severe that amputation is required and repeated infection can lead to life-threatening illnesses such as rheumatic fever. GAS tissue infections are so severe that they have been referred to as “flesh-eating bacteria”.

GAS infection is at endemic levels in Aboriginal populations in the Northern Territory and worldwide 12.1 million people are infected by rheumatic fever and rheumatic heart disease, arising from GAS infections and resulting in an estimated 400,000 deaths a year.

Prof Mark Walker, of UOW’s Centre for Medical Bioscience is leading a team of researchers developing a targeted vaccine for GAS.

“The development of a GAS vaccine has potential to provide protection against a diverse range of diseases caused by GAS, including skin and throat infections, invasive diseases such as a basic shock-like syndrome, and the horrific necrotising (flesh eating) fasciitis,” says Prof Walker.

Prof Walker and his team have received two NHMRC Project grants worth more than $800,000 in total to investigate the interaction between GAS and the plasminogen activation system, to clarify the role of this system in invasive disease, examine the chain of events that result in tissue invasion, and provide potential targets for therapeutic intervention.

RESEARCH PROFILE:

QUALITY ASSURANCE IN PROSTATE CANCER TREATMENT

In Australia, more than 10,000 men are diagnosed annually with prostate cancer. Of this number, there are at least 2,600 who will die from the disease.

Brachytherapy, the application of radiotherapy at a short distance to a precise location, is a common method of treating prostate cancer. During low dose-rate prostate brachytherapy, radioactive seeds are implanted via a syringe and are positioned within the prostate in a predetermined pattern. The procedure is monitored by an ultrasound probe located in the rectum but seed placement is still highly subjective and can lead to incorrect dosing.

“This can lead to severe complications, such as impotence and urinary incontinence, which arise from overdosing of the neuro-vascular bundle and urethra,” says Prof Rozenfeld, Director of UOW’s Centre for Medical Radiation Physics.

Prof Rozenfeld has developed a dosimetry system that provides quality assurance of dose control in real time. This will lead to improved dosing of the tumour and will minimise radiation dosage to healthy tissue thereby leading to a reduction in the severity of complications and an increase in the accuracy of the procedure.

Clinical trials of the device are being planned in conjunction with SESIH’s St George Cancer Care Centre and Memorial Sloan-Kettering Cancer Centre in New York.

RESEARCH PROFILE:

THE IMPACT OF A MOTHER’S DIET ON THE LONG-TERM HEALTH OF HER CHILD

A baby’s birth weight can be used to indicate the long-term risk of obesity and diabetes. Babies with a high birth weight are more likely to suffer from chronic illness later in life.

Recently, a team led by Prof Robert Moses of SESIH, and including input from Prof Linda Tapsell of UOW’s Smart Food Centre, has shown a link between a pregnant mother’s diet (measured by the glycaemic index, GI) and pregnancy outcomes.

“Our study showed that babies of women who were on a low GI carbohydrate diet during pregnancy were of normal size but were smaller and had less body fat than babies of women who were on a moderate to high GI diet during pregnancy”, says Prof Moses.

These results suggest that a low GI diet in pregnancy may favourably influence the long-term health of the child. Further research is required to identify if the lower GI diet will also reduce the risk of gestational diabetes (diabetes that develops or is first recognised during pregnancy).

RESEARCH PROFILE:

NOVEL DRUG FORMULATION TO TREAT CANCER

Chemotherapy plays a key role in the treatment of cancer, however unpleasant side effects are still a major clinical problem. One such effective drug, 5-fluorouracil (known as 5-FU), has to be administered in an alkaline solution that results in adverse side effects.

Professor John Brenner, from UOW’s Centre for Medicinal Chemistry and Pharmacology, and Professor Phil Clingan, an oncologist from the SESIH and Clinical Professor at UOW’s Medical School, have together developed a new drug preparation involving an innovative formulation of 5-FU.

Early results suggest that the new formulation will maintain the anti-cancer effects whilst drastically reducing the side-effects currently associated with 5-FU. The research team is now performing pre-clinical analyses of toxicity and effectiveness of the novel 5-FU formulation using human cancer mouse models.

“If successful, this data will allow progression to human clinical trials and if the clinical trials show positive outcomes, the drug combination should greatly ease painful side effects on drug administration and be more effective in the treatment of certain cancers like colo-rectal cancer,” says Prof Brenner.

This research has been partially funded by donations made by the Illawarra Cancer Carers and the Robert East Memorial Fund.
RESEARCH PROFILE: PROMOTING WELLBEING IN CANCER PATIENTS

Acceptance and commitment therapy (ACT) is known to reduce distress and increase a person’s ability to pursue personally meaningful values and goals.

Dr Lisbeth Lane, a Senior Clinical Psychologist with SESIH, is collaborating with researchers at UOW’s Department of Psychology to develop an evidence based psychological treatment for cancer patients that is based on ACT.

“The purpose of the study is to better meet the psychological and emotional needs of cancer patients by reducing their distress and enhancing their psychological wellbeing, and increasing their ability to effectively pursue values and goals that are meaningful to them”, says Dr Lane.

The NSW Cancer Institute has provided funding to support a Research Fellow, Ms Danielle Forus, to work on the project and who is based half-time at UOW and half-time at the SESIH.

“The marriage of the clinical expertise of SESIH and the research expertise of UOW means that I am able to develop quality information for treating cancer patients”, says Ms Forus.

“The aim is to enable patients to make hard decisions about the rest of their lives”.

The research team is also developing innovative ways of presenting the intervention (e.g. web-based means) to increase participation and eliminate the stigma associated with an intervention.

RESEARCH PROFILE: MEMBRANE PACEMAKER THEORY OF AGEING

Prof Anthony Hulbert, from UOW’s Metabolic Research Centre, is the founder of the “membrane pacemaker theory of ageing”, which relates the variation in the fatty acid composition of cell membranes to lifespan in a range of animals.

The fatty acid composition is a result of the effects of lipid “peroxidation”. Put simply, peroxidation involves the breakdown of lipids to form free radicals. These free radicals are able to damage other cellular processes and thereby cause stresses that affect the ageing process.

“The differences in the lifespans of species can thus be attributed to the large variation in the chemical susceptibility of individual fatty acids to peroxidation and the known differences in membrane composition between these species”, says Prof Hulbert.

Further elucidation of the relationship between cell membrane fatty acid composition and ageing, may eventually lead to therapeutics that slow the ageing process.

RESEARCH PROFILE: RENALROBICS - AN EXERCISE PROGRAM FOR HAEMODIALYSIS PATIENTS

Patients with end-stage renal disease (ESRD) undergo dialysis three times per week for up to five hours at a time. This makes them tired, lethargic and lacking the time or energy to undertake regular exercise.

Researchers at SESIH’s Department of Renal Medicine and the University of Wollongong’s School of Health Sciences and School of Nursing, Midwifery and Indigenous Health, have developed a resistance exercise program, “Renalrobics”, especially for people with ESRD and who are on dialysis.

“A pilot study performed in 2005, showed that patients on the Renalrobics program had an increase in exercise capacity and major improvements in their health related quality of life (including vitality and social functioning)”, says Dr Maureen Lonergan, Director of Renal Services at Wollongong Hospital.

Funding from the Federal Department of Health and Ageing has recently been obtained to expand upon the Renalrobics program. The new project will examine the impacts of the Renalrobics program in improving functional fitness and reducing the risk of patients falling over. Falls are a major cause of injury in ESRD patients who are required to be on dialysis.

EQUIPMENT PROFILE: WHOLE ROOM CALORIMETRY IN CLINICAL TRIALS

UOW is home to the only human Whole Room Calorimeter (WRC) in the Southern Hemisphere. The WRC allows energy expenditure to be calculated based on measurements of air samples (indirect calorimetry). The person being studied remains in a closed room with a constant and measured supply of fresh air. Gas analysers attached to the unit measure oxygen consumed and carbon dioxide produced. The balance of oxygen consumed and carbon dioxide produced varies according to activity and the utilisation of different fuels by the body (i.e. carbohydrate, protein and fat). In this way, the WRC not only measures a person’s energy expenditure, it also evaluates their ability to burn different fuels.

The WRC is utilised for a wide range of strategic or industry-sponsored clinical studies. These include:

- functional food trials;
- pharmaceutical trials (e.g. evaluation of antihypertensive or lipid-lowering drugs);
- diet and exercise interventions;
- behaviour modification studies; and
- other interventions (e.g. blood glucose and triglyceride monitoring in diabetes).
INCIDENCE OF NEURODEGENERATIVE DISEASE IN WELDERS

Fumes produced during welding are known to be harmful to health. Recently, the presence of manganese in welding fume has been associated with neurodegenerative disease, specifically Parkinson’s disease (PD) and Manganism (manganese poisoning, which resembles PD). This could mean that welders are at a higher risk than non-welders for developing these diseases.

Professor Jan Pottier, Clinical Director, Aged Care, Community Health and Chronic Care, Southern Hospitals Network, SESIH is collaborating with a team of researchers from UOW’s Faculty of Engineering and Statistical Consulting Service to conduct a pilot study investigating the link between welding fumes and the incidence of neurodegenerative disease in welders compared to other metal workers in NSW.

“The pilot study will be used to develop a larger and more robust study that is able to provide high quality estimates of prevalence and statistical analysis of risk factors. Thus, if any association is identified, we will be in a strong position to influence the risks that welders will face in the future”, says Prof Pottier.

The study will also look at the distribution of age and other risk factors amongst NSW welders. The outcomes will inevitably have implications for policy and OSH in the workplace.

THE NEUROBIOLOGY OF OBESITY

It is estimated that about 75 per cent of the Australian population will be overweight or obese by 2020.

Excessive energy intake is a primary contributor to the development of obesity (and its related metabolic disorders) in people genetically susceptible to diet-induced obesity and hunger is a major cause of excessive energy intake. Over the past 10 years, numerous molecules have been found to regulate hunger and thereby regulate eating behaviour but a lack of information regarding how these molecules function has meant that no ideal drugs have yet been produced.

UOW’s Neurobiology Research Centre for Schizophrenia and Metabolic Disorders (NRC) is developing animal models that mimic human conditions and can be used to investigate the regulatory mechanisms for energy balance, and for testing obesity drugs.

“Our mouse models can be used for screening drugs and identifying key molecules relevant to obesity. This will lead to better targets for the prevention of diet-induced obesity, more effective treatments for the late stage of obesity, and a better understanding of the individual susceptibility to diet-induced obesity”, says Associate Professor Xu-Feng Huang, Director of NRC.

RESEARCH PROFILE:

THE NEUROBIOLOGY OF OBESITY

It is estimated that about 75 per cent of the Australian population will be overweight or obese by 2020.

Excessive energy intake is a primary contributor to the development of obesity (and its related metabolic disorders) in people genetically susceptible to diet-induced obesity and hunger is a major cause of excessive energy intake. Over the past 10 years, numerous molecules have been found to regulate hunger and thereby regulate eating behaviour but a lack of information regarding how these molecules function has meant that no ideal drugs have yet been produced.

UOW’s Neurobiology Research Centre for Schizophrenia and Metabolic Disorders (NRC) is developing animal models that mimic human conditions and can be used to investigate the regulatory mechanisms for energy balance, and for testing obesity drugs.

“Our mouse models can be used for screening drugs and identifying key molecules relevant to obesity. This will lead to better targets for the prevention of diet-induced obesity, more effective treatments for the late stage of obesity, and a better understanding of the individual susceptibility to diet-induced obesity”, says Associate Professor Xu-Feng Huang, Director of NRC.

RESEARCH PROFILE:

INCIDENCE OF NEURODEGENERATIVE DISEASE IN WELDERS

Fumes produced during welding are known to be harmful to health. Recently, the presence of manganese in welding fume has been associated with neurodegenerative disease, specifically Parkinson’s disease (PD) and Manganism (manganese poisoning, which resembles PD). This could mean that welders are at a higher risk than non-welders for developing these diseases.

Professor Jan Pottier, Clinical Director, Aged Care, Community Health and Chronic Care, Southern Hospitals Network, SESIH is collaborating with a team of researchers from UOW’s Faculty of Engineering and Statistical Consulting Service to conduct a pilot study investigating the link between welding fumes and the incidence of neurodegenerative disease in welders compared to other metal workers in NSW.

“The pilot study will be used to develop a larger and more robust study that is able to provide high quality estimates of prevalence and statistical analysis of risk factors. Thus, if any association is identified, we will be in a strong position to influence the risks that welders will face in the future”, says Prof Pottier.

The study will also look at the distribution of age and other risk factors amongst NSW welders. The outcomes will inevitably have implications for policy and OSH in the workplace.
ILLAWARRA HEALTH AND MEDICAL RESEARCH HUB

RESEARCH PROFILE:

LUNCHBOX SNACKS UNDER THE SPOTLIGHT

Childhood obesity rates in Australia have tripled since 1985, mainly as a result of the increasing consumption of energy-dense foods.

A new set of independent nutrition criteria has been developed by the National Centre of Excellence in Functional Food’s (NCEFF) UOW team (i.e. the Smart Foods Centre) to help Australians choose ‘better for you’ snacks in response to the increase in childhood obesity.

The report categorises snacks into either Gold, Silver or Bronze criteria and outlines the products that have the best nutritional profile and those which provide slightly higher levels of saturated fat and sodium whilst still being consistent with public health nutrition recommendations.

“The findings set acceptable standards for the healthiness of snacks, such as the amount of saturated fats and energy, and prove that there are a number of nutritious snack choices on the supermarket shelves,” says Prof Linda Tapsell, Director of NCEFF.

The report aims to provide clarity and enable parents to make confident decisions for their children when selecting nutritious snacks. Healthy food choices capitalise on components in foods that support growth, development and healthy ageing, as well as attributes that may help combat lifestyle diseases such as obesity, heart disease and diabetes.

RESEARCH PROFILE:

BEATING CHILDHOOD OBESITY

A long-term collaborative study involving UOW’s Childhood Obesity Research Centre (CORs) over three years aims to encourage children and parents in healthy exercise and healthy eating habits.

The study is supported by the NHMRC and involves overweight children between five and nine years of age, and their parents. Families are recruited into one of three programs, a physical activity program where the children are taught basic sports skills, a food and nutrition education program for the parents on behalf of their children, and a combination of both.

“Over 100 families have been involved in the study with many of them reporting significant improvements in both the children’s eating habits and level of physical activity”, says Dr Tony Okely, Director of CORs.

“The whole ethos of the study is to engender lifelong food and sports skills and an understanding of the importance of these for good health. We focus on long-term behaviour changing rather than emphasis short term ‘weight loss’ and we have been pleased with results so far,” Dr Okely says.

“If a child learns these skills at an early age, then they have them for life. Many of the families have reported that they now think differently about their health in relation to food and exercise and that their new knowledge has changed their lives. In addition, many parents have noted that their child has increased self esteem and confidence as a result of the program”.

RESEARCH PROFILE:

HEALTH BEHAVIOUR AND COMMUNICATION - PUBLIC PANIC OR INFORMED INDIVIDUALS?

Media communications regarding a potential epidemic, such as foot-and-mouth disease or SARS, can either serve to effectively inform the public or misinform and contribute to public confusion and panic.

UOW’s Centre for Health Behaviour and Communication Research (CHBCR) develops communication strategies that government, medical authorities, and other relevant organisations can use to increase the public’s understanding of health risks and prevent public panic. These strategies can then be used to effectively convey desired information at different stages of a disease outbreak.

With funding from the Federal Government, CHBCR is currently developing communication strategies for a potential bird flu outbreak in Australia. Using evidence-based guidelines for communication strategies will help to create an informed public that engages in appropriate actions to reduce disease transmission, rather than misinformed masses and public panic, in the event of a pandemic.

“Such strategies will ensure that we can minimise fear, refute misinformation the public may encounter from individuals (e.g. co-workers) or media sources, and enhance the likelihood of the public taking the recommended preventive and remedial actions should a bird flu pandemic occur”, says Associate Professor Sandra Jones, Director of CHBCR.

RESEARCH PROFILE:

ALCOHOL STUDY’S SOBERING FINDINGS

Reviewing existing communication strategies is also an important role of UOW’s Centre for Health Behaviour and Communication Research. Recently, the Centre highlighted how alcohol advertising and promotion encourages positive associations with alcohol and links drinking with attractive symbols and role models.

The finding arose from a 10 month monitoring period of television and magazine advertising for alcohol products in 2006. The study revealed that 14 advertisements appeared to be in breach of the current alcohol advertising regulation system.

As a result of the study, complaints were made to the Advertising Standards Board (ASB) who referred five advertisements to the Alcoholic Beverages Advertising Code (ABAC).

The study found that alcohol advertising and promotion during this period was heavily influenced by the world’s most popular brands. These were promoted in combination with young, successful-looking people and exotic settings.

As a result, many young people may believe alcohol consumption is linked to success and glamour. This could lead to undesirable consequences, such as binge drinking and negative health outcomes.

It is crucial to develop effective communication strategies to address such issues and promote responsible drinking.

With funding from the Federal Government, CHBCR is currently developing communication strategies for a potential alcohol epidemic in Australia. Using evidence-based guidelines for communication strategies will help to create an informed public that engages in appropriate actions to reduce disease transmission, rather than misinformed masses and public panic, in the event of an epidemic.
The Clinical Research Practice and Training Research Program will apply, evaluate, and test outcomes from the Underpinning Science and Community Health Education Research Programs, across all Research Themes, in the clinical environment. Clinical application and evaluation provide a vital step in the practical development of effective therapeutic and preventative programs. Naturally, clinicians play an important role in providing a feedback loop to validate Research Program outcomes.

This Research Program will include a training component that will ensure that clinicians are engaged in the implementation of Underpinning Science and Community Health Education Research Programs, as well as known health and medical research outcomes. This will ensure that evidence-based techniques are applied effectively in the clinic.

Individuals suffering from severe and enduring psychiatric disabilities also have to battle a sense of their own helplessness. A team of researchers at UOW’s Illawarra Institute for Mental Health (iiMH), and a team of PhD students, will train 250 mental health workers who in turn will treat over 200 patients with mental illness, primarily schizophrenia and bipolar disorder.

“This program places symptoms into context so that sufferers can have an improved quality of life and track their own progress. Medication is still part of our approach, but it’s only one aspect of treatment”, said Prof Deane.

Since the trial began in June 2003, there have been significant improvements in the trained workers including attitudes towards care and recovery, a sense of hopefulness for patients and a number of achieved outcomes and goals. While final results will not be available until the end of the trial in 2007, anecdotal reports suggest that patients are already responding extremely well to the new form of treatment which is generating interest around the country.

Understanding of the needs of individuals with dementia and their families remains limited in acute care settings, which causes distress and a burden on health services. To overcome this problem, UOW will lead a partnership of four academic institutions and four industry partners to host an Eastern Australia Dementia Training and Study Centre (EADTSC). The Centre will provide more than 7,500 health professionals around Australia with specialised tertiary dementia training and scholarships over the next three years (from 2006).

“This Centre will allow us to have an impact on the training of health professionals across disciplines to improve care to clients with dementia and their carers,” says Associate Professor Victoria Traynor, Director of EADTSC.

The overall aims of EADTSC include:
- raising awareness and understanding of dementia;
- enhancing (secondary) prevention by improving screening and detection rates of dementias;
- reducing risks by enhancing communication skills among staff; and
- improving services longer term by generating a sustained interest in dementia care.

EADTSC will develop and promote undergraduate and postgraduate dementia curricula and training resources, and offer a number of dementia-specific scholarships. Nurses, medical students, medical specialists, social workers, diversional therapists and psychologists are among the professionals who will benefit from the program.
The Centre for Health Services Development (CHSD) was established in 1993 as a collaboration between UOW and the then Illawarra Area Health Service (now SESIH) to “undertake a continuing program of active research into methods to improve the management and provision of health services with the goal of making a significant contribution to improving the funding and delivery of health services in Australia”. CHSD’s ideas for improvement included achieving greater equity in the distribution of resources, promoting fairer access to services and basing management decisions on evidence.

In addition to producing high-quality academic output, CHSD’s work results in a range of practical advice to a variety of government and non-government agencies and interest groups. CHSD designs research and information-based strategies for program coordination to help allocate resources on the basis of need, as well as tools to support decision-making and to help managers develop funding models. Part of what CHSD does is background research involving critical reviews of issues and policy analyses.

RESEARCH UNDERTAKEN BY CHSD IS CONSOLIDATED INTO SIX INTEGRATED THEMES:

- Casemix classification across settings. Casemix classifications play an important role in health finance, by allowing examination of the variation in costs of an episode of care while controlling for variation among patients or clients.
- Health and community care financing. CHSD has particular expertise in developing funding models, supported by its experience of evaluating different funding approaches such as funds pooling.
- Care coordination and integration. With Commonwealth and State governments sharing responsibilities for health policy and finance, the integration and coordination of services remains an important issue.
- Health care outcomes. CHSD has a commitment to improve the measurement of the outcomes of health care as well as measures of service activity.
- Health service delivery and organisation. Research in this theme is a natural extension of CHSD’s policy level work.
- Management decision-making. Related to CHSD’s work on improving data collections is research that aims to assist management decision making. This work covers a number of areas, from providing guidelines on the interpretation of health statistics (such as small-areas statistics), to developing novel statistical approaches to assist clinicians and managers with planning and resource allocation decisions.

ILLAWARRA HEALTH AND MEDICAL RESEARCH HUB MEMBER:

CENTRE FOR HEALTH SERVICES DEVELOPMENT

PALLIATIVE CARE
An estimated 64,000 Australians die each year from an “expected death” from a terminal illness. As a result, there has been an expansion in the provision of palliative care services.

CHSD is currently involved in the evaluation of two of the key programs funded under the National Palliative Care Program – the Caring Communities Program (CCP) and the Rural Palliative Care Program (RPCP).

“Our involvement in these programs has highlighted two important issues. The first relates to the potential difficulties in obtaining Human Research Ethics Committee (HRECs) approval for palliative care projects involving human subjects. The second relates to the need for a consistent and measured approach to evaluation of palliative care services and programs,” says Professor Eagar, Director of CHSD.

As a result, CHSD was commissioned by the Australian Government to produce two information booklets to provide additional information relating to navigating palliative care research through a HREC and evaluating palliative care projects, programs and services.

These resources are not only useful for projects funded by the National Palliative Care Program but also for the broader research community conducting research in palliative care.
FOR MORE INFORMATION CONTACT:

Professor Don Iverson,
Director, Illawarra Health and Medical Research Institute
Phone: +61 2 4221 4677
Email: iverson@uow.edu.au

Prof Iverson has been the Dean of Health and Behavioural Science at UOW since 2001 and also headed UOW's Graduate School of Medicine Development Unit. Prior to this, he was the Chief Scientific Officer for the OpTx Corporation, a Canadian/USA-based company which was involved in the design and application of information and data management technologies for use in cancer treatment facilities and systems. During this time he was a Clinical Professor in the graduate teaching faculty in the Institute for Health Systems Leadership and Research at the University of Denver, and a Clinical Professor of Family Medicine at the University of Colorado School of Medicine.

Professor Iverson's previous experiences include senior positions in the U.S. National Cancer Institute within the National Cancer Institute (Associate Director of Cancer Control Science), the National Cancer Institute of Canada (Director of Behavioural Research and Program Evaluation), the AMC Cancer Research Center (Director of Cancer Control Research, Deputy Director, Acting Director), the School of Family Medicine at the University of Colorado School of Medicine (Professor, Vice-Chairman for Research and Academic Affairs, Acting Chairman), and the University of Toledo (Professor). In addition, Professor Iverson has held positions in the U.S. Department of Health and Human Services (Office of the Surgeon General), the Connecticut State Department of Health Services (Director of Preventable Diseases), the Rocky Mountain Foundation for the Advancement of Family Medicine and Primary Care (Executive Director), and the Ambulatory Sentinel Practice Network (Research Director).

He has served on a number of governing/advisory committees including the Alberta Cancer Board, the American Cancer Society, the Fred Hutchinson Cancer Research Center, the National Breast Cancer Centre of Australia, the Biological Sciences Curriculum Studies, the US Agency for Health Care Policy and Research, the Self-Care Institute, and the World Health Network.