HSC Mathematics - Extension 1 Workshop 4

Presented by

Richard D. Kenderdine

BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat

School of Mathematics and Applied Statistics

University of Wollongong

Moss Vale Centre

July 2009

HSC Mathematics - Extension 1 Workshop 4 Richard D Kenderdine University of Wollongong July 2009 ¹

Estimation of roots

Halving the interval

Suppose x_1 and x_2 are two values of x such that $f(x_1)$ and $f(x_2)$ are of different sign. Then the solution to f(x) = 0 must lie in the interval (x_1, x_2) . Then find the sign of $f(\frac{x_1+x_2}{2})$ to determine which half of the interval the root must lie. Repeat the process until convergence is achieved.

Newton's Method

Here we take an initial estimate of the root x_0 and calculate the gradient of the tangent to the curve f(x) at $x = x_0$, $f'(x_0)$. This curve intersects the x-axis at x_1 which should be closer to the root than x_0 .

The gradient of the curve can also be calculated from $\frac{f(x_0)}{x_0-x_1}$

Therefore

$$f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

Which gives on rearrangement

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \tag{1}$$

1. Exercise:

- (a) Use two steps of halving the interval to find an approximation to $\sqrt[3]{40}$ using the starting interval (3,3.5).
- (b) Use two steps of Newton's Method to find an approximation to $\sqrt[3]{40}$ using the starting value $x_0 = 3$.
- (c) In what situations does Newton's Method fail?

Inverse Functions

A function has an inverse if it is monotonic or restricted to a domain where it is monotonic.

Rule for obtaining the inverse - swap x and y and make y the subject.

¹email: richardk@uow.edu.au

- 2. **Exercise:** (a) Find the domain for which $f(x) = x^2 + 4x 1$ is monotonic increasing.
 - (b) Find the inverse function, $f^{-1}(x)$, for this domain.

The domain of f(x) is the range of $f^{-1}(x)$ and the range of f(x) is the domain of $f^{-1}(x)$.

3. **Exercise:** Determine the domain and range of $f^{-1}(x)$ found in Exercise 2. Check that they are respectively the range and domain of f(x).

Sketching a function and its inverse

The inverse function is the reflection of the original function in the line y = x.

Sometimes this is not easy to do. A simple method which works in all cases is:

- Use a sheet of plastic and a marking pen to trace f(x) and the axes
- Rotate the plastic 90° anticlockwise so that the +ve y-axis becomes the -ve x-axis
- Flip the plastic 180°
- Copy the function from the plastic to the original plot

The graph shows $f(x) = x^2 + 4x - 1$, the plot when rotated 90° anticlockwise, the resulting plot of $f^{-1}(x)$ when flipped over and the line y = x.

4. Exercise:

Consider the function $f(x) = \frac{1}{x^2+1}$

- (a) Sketch the function.
- (b) For what domain including 0 is the function monotonic decreasing?
- (c) Sketch the inverse function f^{-1} for the domain in (b).

Note in the previous graph that f(x) intersected with $f^{-1}(x)$ and the point of intersection lay on the line y = x.

This is always true:

if a function and its inverse intersect they do so on the line y = x.

5. **Exercise:** Find the coordinates of the point of intersection of f(x) from Exercise 2 and its inverse. Check your result.

Relationship between the derivatives of f(x) and $f^{-1}(x)$

Let (x_0, y_0) be a point on the curve y = f(x).

The derivative of the inverse function at y_0 is the reciprocal of the derivative of the function at x_0 :

$$(f^{-1})' at y_0) = \frac{1}{f' at x_0}$$

Or, given y = f(x) then $x = f^{-1}(y)$ and:

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \tag{2}$$

6. Exercise:

Given $f(x) = \frac{x}{x+1}$ for x > 1, find the derivative of the inverse function

- (a) using Equation (2)
- (b) by finding the inverse function $x = f^{-1}(y)$, finding $\frac{dx}{dy}$ and expressing in terms of x.

Composition of a function and its inverse

We know that $\sqrt{x^2} = x$ and $(\sqrt{x})^2 = x$. This is because the square and square root functions are inverses - applying one then the other yields the

original value.

In the same way

$$f^{-1}[f(x)] = x \tag{3}$$

and

$$f[f^{-1}(x)] = x \tag{4}$$

7. Exercise:

Taking $f(x) = x^2 + 4x - 1$ from Exercise 2 and your definition of f^{-1} , choose a value of x in the domain and show that both $f^{-1}[f(x)]$ and $f[f^{-1}(x)]$ are equal to the chosen value.

Inverse Trigonometric Functions

The Inverse Trigonometric Functions are denoted by the power of -1, or the prefix arc or just a. For example the inverse sin function is denoted by $sin^{-1}x$, $arcsin\ x$ or $asin\ x$. Why are there different notations?

I shall use the power of -1 as it is more common at the school level.

8. Exercise:

Using the graphs of the trig. functions, restricted to a domain including 0 for which the functions are monotonic, sketch the inverse trig functions.

Note the domain and range of the inverse trig. functions.

How can we vary the domain and range?

Consider $y = \sin^{-1} x$ and generalize to $y = k \sin^{-1} f(x)$ where k is a

The domain is determined from $-1 \le f(x) \le 1$. The range is $-\frac{k\pi}{2} \le y \le \frac{k\pi}{2}$.

9. Exercise:

Find the domain and range of:

- (a) $2\sin^{-1}(1-x)$
- (b) $\frac{1}{3}$ $\cos^{-1}\sqrt{x}$
- (c) $4 \tan^{-1} 3x$
- (d) $-3\sin^{-1}(\ln x)$ (e) $-\frac{1}{2}\cos^{-1}(4x+1)$

The derivatives of the inverse trig. functions are:

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}} \tag{5}$$

$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}\tag{6}$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \tag{7}$$

10. **Exercise:** Derive the formulae for the derivatives of (a) $sin^{-1}x$ (b) $tan^{-1}x$

To differentiate more complicated inverse trig. functions we need to use the function-of-a-function rule.

Example: Differentiate $y = \sin^{-1} \sqrt{x}$

- 11. Exercise: Differentiate: (a) $\tan^{-1} \frac{1}{r}$
 - (b) $2\cos^{-1}(x^2-1)$
 - (c) $\sin^{-1}(\ln x)$
 - (c) $\sin^{-1}(x)$ (d) $4\cos^{-1}(e^x)$ (e) $x\sin^{-1}x$ (f) $\ln(\sin^{-1}x)$

 - (g) $\sin^{-1}(\cos x)$ (h) $\frac{\tan^{-1}\sqrt{x}}{x}$

Inverse Trig. Functions as primitives

The Table of Standard Integrals at the back of the exam paper gives:

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \tag{8}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \tag{9}$$

Notice the similarity of

$$\int \frac{x}{a^2 + x^2} dx$$

and

$$\int \frac{1}{a^2 + x^2} dx$$

Both integrands are fractions with denominator to the power of 1. The numerator of the first integrand is related to the derivative of the denominator (thus the integral is a natural log) while the numerator of the second is a constant.

12. Exercise:

Some examples of integrals from past HSC papers:

Evaluate:

- (a) $\int_0^1 \frac{1}{\sqrt{2-x^2}} dx$ (b) $\int \frac{1}{x^2+49} dx$ (c) $\int_{-1}^1 \frac{1}{\sqrt{4-x^2}} dx$ (d) $\int_0^{\sqrt{3}} \frac{4}{x^2+9} dx$

13. Exercise:

- (a) Find the area enclosed by the function $f(x) = \frac{1}{\sqrt{4-x^2}}$, the x-axis and the lines x = -1 and x = 1.
- (b) Find the volume of the solid of revolution formed when the function $y = \frac{1}{\sqrt{4+x^2}}$ is rotated around the x-axis from x = 0 to x = 2. (c) Find the area bounded by the curve $y = \sin^{-1} x$, the x-axis and the
- line $x = \frac{1}{2}$.

An Inverse Trig. Identity

A property of $\sin^{-1} x$ and $\cos^{-1} x$ is

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \tag{10}$$

14. Exercise: Prove this relationship in two different ways.