Course Number: AMAT.2110
Course Name: Discrete Dynamics

Question 5. (20 marks)

(a) The logistic difference equation is

\[x_{n+1} = rx_n (1 - x_n) . \]

(i) Show that the fixed points of the logistic difference equation are \(x^* = 0 \) and \(x^* = (r - 1)/r \). \[2 \text{ marks}\]

(ii) Determine the stability of the fixed points as a function of \(r \) and explain the biological implications of your answer. \[6 \text{ marks}\]

(iii) How does the solution to the logistic equation change as the parameter \(r \) is increased from 2.9 to 3.1? \[1 \text{ mark}\]

(b) Consider the difference equation

\[x_{n+1} = 0.1 + x_n^2. \]

(i) Find the fixed points of this map and determine their stability. \[3 \text{ marks}\]

(ii) If \(x_0 = 0.8 \) explain what happens as \(n \to \infty \). \[2 \text{ mark}\]

(iii) If \(x_0 = 0.9 \) explain what happens as \(n \to \infty \). \[2 \text{ mark}\]

(c) Consider the difference equation

\[x_{n+1} = f (x_n) , \]

(i) What do we mean when we say that the pair \(x_0^* \) and \(x_1^* \) is a period-2 orbit of the function \(f \)? \[1 \text{ mark}\]

(ii) Write down the conditions for the pair \(x_0^* \) and \(x_1^* \) to be stable and unstable. \(\text{(Remember to carefully define all the terms that appear in your solution).} \) \[3 \text{ marks}\]
Question 5. (13 marks)

Consider the logistic equation with fixed harvesting

\[x_{n+1} = rx_n (1 - x_n) - h, \]

where the positive quantities \(r \) and \(h \) are the static birth rate and the number of animals that are harvested respectively.

(a) Show that the fixed points of the above difference equation are given by

\[x^* = \frac{(r - 1) \pm \sqrt{(1 - r)^2 - 4rh}}{2r}. \]

[2 marks]

(b) Hence show that there is a critical value of the harvesting parameter, \(h = h_{\sigma} \), such that if \(h > h_{\sigma} \) harvesting is not sustainable. Identify this value \(h_{\sigma} \).

[3 marks]

(c) Suppose that \(r = 2 \) and \(h = 0.1 \).

(i) Sketch the graph \(y = rx_n (1 - x_n) - h \).

[1 mark]

(ii) Using your graph explain why the population will become extinct if the initial value \((x_0) \) is either ‘too small’ or ‘too large’.

[2 marks]

(iii) Locate the values ‘too small’ and ‘too large’ on your graph.

[1 mark]

(d) Suppose that \(x \) represents the population of scallops in a particular location and that \(r = 2 \). A company decides to harvest the scallops using fixed harvesting. The profit \(P \) that the company makes is given by the formulae

\[P = h - 0.06. \]

The company asks you to recommend a value for its annual harvest. What would you suggest to the company? (Give reasons for your suggestions.)

[4 marks]