10 The period-doubling cascade to chaos

10.1 Behaviour in the logistic map when $0 < r < 1 + \sqrt{6}$

In section 4 we found that the logistic model (16) has two fixed points

$$x_0^* = 0, \quad x_1^* = 1 - \frac{1}{r}.$$ \hspace{1cm} (83)

When $0 < r < 1$ the only fixed-point of biological interest is the trivial solution (x_0^*). This is stable for $0 < r < 1$ and unstable for $1 < r \leq 4$. The second fixed point (x_1^*) only makes biological sense for $1 < r \leq 4$. It is stable for $1 < r < 3$ and unstable for $3 < r \leq 4$. When $r > 3$ both fixed points are unstable. In section 8.1 we showed that for $3 < r \leq 4$ there is a period-2 orbit which is stable for $3 < r < 1 + \sqrt{6}$ and unstable for $1 + \sqrt{6} < r \leq 4$.

This behaviour is best appreciated using a diagram on which one plots the fixed points, as functions of r, and also indicates their stability. Figure 9 (a) shows such a diagram. Stability is indicated by showing stable orbits with solid lines and unstable ones as dashed lines. Observe that the two points comprising the period-2 orbit ‘sandwich’ the now unstable period-1 point (x_1^*) that generated them. Usually the unstable solution branches are not shown, resulting in a figure similar to figure 9 (b).

When $r = 3$ the eigenvalue of the non-trivial fixed point decreases through the value $\lambda = -1$. This corresponds to a pitchfork bifurcation.

For $3 < r < 1 + \sqrt{6}$ the solutions x_t simply oscillates between the two points which are the intersections of a vertical line through the r-value. Numerically the map $f^2(u)$ converges to one of these two points. What happens when $r > 1 + \sqrt{6}$?

10.2 Behaviour in the logistic map when $1 + \sqrt{6} < r < r_\infty (r_\infty \sim 3.57)$ — the period-doubling cascade to chaos

When $r = 3$ the fixed point x_1^* destabilised, producing two points that comprised the period-2 solution. As r increases from $r = 3$, the eigenvalues λ at A and C in figure 8 decrease, eventually passing through $\lambda = -1$. At this point $(r = 1 + \sqrt{6})$ the period-2 solutions become unstable. The mechanism that produced the period-2 solution from the period-1 solution is repeated: each of the period-2 points is destabilised, producing two additional solutions. A period-4 solution therefore appears at the point $r = 1 + \sqrt{6}$. Thus if $r_4 < r < r_8$, where r_8 is the bifurcation value to a period-8 solution, x_t exhibits a period-4 solution with the values given by the intersection of the curve of equilibrium states with the vertical line through the r-value in figure 9 (b). The period-4 points are found by solving the equation $x^* = f^4(x^*)$.

The function $f^4(u)$ tends to one of the four period-4 points unless for some n, $f^n(u)$ equals one of the points of period 1 or 2.

The eigenvalue of the period-4 solution decrease as r increases and eventually pass through the value $\lambda = -1$. At this point the stable period-4 solutions become unstable and a stable
Figure 9: Steady-state diagrams for the logistic model. Figure (a) shows the locus of the stable and unstable branches for the period-1 and period-2 solutions. Period doubling at $r = 3$; a period 2 orbit is born as a fixed point becomes unstable. Stable solutions are denoted by solid lines and unstable solutions by dashed lines. (b) Stable solutions for the logistic model as r passes through bifurcation values. At each bifurcation the previous state becomes unstable. The sequence of stable solutions have periods $2, 2^2, 2^3, \ldots$.

The sequence $1 \rightarrow 2 \rightarrow 2^2 \rightarrow 2^3 \rightarrow \cdots$ is known as an infinite cascade of periodic orbits. At the critical value $r_\infty \approx 3.57$ all periodic solution of period 2^n are unstable and ‘chaos
Table 1: The values of r at which an orbit of period 2^n becomes stable in the logistic map $u_{n+1} = ru_n(1-u_n)$.

<table>
<thead>
<tr>
<th>n</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3.4494897428</td>
</tr>
<tr>
<td>8</td>
<td>3.5440903596</td>
</tr>
<tr>
<td>16</td>
<td>3.5644072661</td>
</tr>
<tr>
<td>32</td>
<td>3.5687594195</td>
</tr>
<tr>
<td>64</td>
<td>3.5696916098</td>
</tr>
<tr>
<td>∞</td>
<td>3.5699456...</td>
</tr>
</tbody>
</table>

Figure 10: Stable solutions for the logistic model (16). This picture is typical of discrete models which exhibit period doubling and eventually chaos and the subsequent path through chaos. Picture downloaded from www.pha.jhu/~ldb/seminar/logdiffeqn.html.

sets in’. This process in which an orbit of period-2^n successively lose stability to an orbit of period-2^{n+1}, ending at a limiting value at which all periodic solutions are unstable is known as the **period doubling route to chaos**.

10.3 Behaviour in the logistic map when $r_\infty < r \leq 4$

Is r_∞ the end of the story? What happens when $r_\infty < r \leq 4$?\(^2\)

As the parameter r is increased from r_∞ there are regions where the solution is not chaotic but is instead periodic. These regions of periodicity are known as ‘windows’ and for $r_\infty < r < 4$ parameter windows of periodicity are interlaced with windows of aperiodicity. The interlacing of periodicity and aperiodicity is apparent from figures 10 & 11.

If the regions of periodicity are blow-up it is seen that each window contains its own period-doubling sequence. For instance, the period-doubling cascade associated with the period-3 window will be $3 \rightarrow 2 \times 3 \rightarrow 2^2 \times 3 \rightarrow 2^m \times 3 \rightarrow r_{3,\infty}$, where $r_{3,\infty}$ is the accumulation point at which the period-3 period-doubling cascade becomes chaotic. In fact for $r > r_\infty$ there is

\(^2\)The material in this section will not be tested. If you find it interesting you can do a project on it.
a periodic window of base period for any \(k \) (with \(k \) odd) and an associated period-doubling cascade \(k \rightarrow 2 \times k \rightarrow 2^2 \times k \rightarrow 2^m \times k \rightarrow r_{k,\infty} \) ending in a chaotic region. This behaviour is illustrated in figures 10 & 11. In particular the sequence of aperiodicity - periodicity - aperiodicity is shown in the enlargements of figure 11 (a). There exist an infinite number of windows with a finite width. The period-3 window around \(r \sim 3.84 \) is the largest window.

Although we have concentrated here on the logistic model (16) the phenomena of period-doubling cascades to chaos and of windows surrounded by regions of aperiodicity is typical of difference equation models with the dynamics like (1) and schematically illustrated in figure 1.