Abstract

We study the relations between boolean functions and symmetric groups. We consider elements of a symmetric group as variable transformation operators for boolean functions. Boolean function may be fixed or permuted by these operators. We give some properties relating the symmetric group \(S_n \) and boolean functions on \(V_n \).

2 Background

2.1 Boolean space and boolean functions

The set of \(n \)-tuple vectors,

\[
V_n = \{ \alpha = (a_1, \ldots, a_n) \mid a_i \in GF(2), i = 1, \ldots, n \},
\]

is a boolean space if its arithmetic is in a Galois field. A boolean space \(V_n \) contains \(2^n \) vectors. Clearly, all the vectors in \(V_n \) are binary sequences. A boolean function is defined on \(V_n \) by the mapping

\[f(x) : V_n \rightarrow V_1 \]

where \(x \) is a variable vector in \(V_n \).

There are several ways to represent a boolean function: by a polynomial; by a binary sequence; and by a \((-1, 1)\) sequence. Here we use the polynomial representation to discuss boolean functions. Let \(x^\alpha = x_1^a_1 x_2^a_2 \cdots x_n^a_n \) denote a monomial on \(V_n \). Then a boolean function on \(V_n \) is a linear combination of monomials

\[f(x) = \bigoplus_{\alpha \in V_n} c_\alpha x^\alpha \quad c_\alpha = 0 \text{ or } 1, \]

where the sign \(\oplus \) denotes boolean addition (XOR).

For any two binary sequences \(\xi \) and \(\eta \) with the same length \(s \), we define their multiplication (\(\times \)) and binary addition (\(\oplus \)) as follows;

\[\xi \times \eta = (a_1, a_2, \ldots, a_s) \times (b_1, b_2, \ldots, b_s) = (a_1 b_1, a_2 b_2, \dots, a_s b_s) \]

(2)

\[\xi \oplus \eta = (a_1, a_2, \ldots, a_s) \oplus (b_1, b_2, \ldots, b_s) = (a_1 \oplus b_1, a_2 \oplus b_2, \ldots, a_s \oplus b_s). \]

(3)
So $\xi \times \eta$ and $\xi \oplus \eta$ are still binary sequences. If $f(x)$ corresponds to the binary sequence ξ and $g(x)$ corresponds to η, then the functions $f(x)g(x)$ and $f(x) \oplus g(x)$ correspond to formulae (2) and (3) respectively.

We call the number of 1s in a binary sequence, ξ, its Hamming weight that is denoted by $wt(\xi)$. A vector in V_n is a binary sequence with length n and the values of a boolean function for each vector in V_n also form a length 2^n binary sequence that we call the trace of the function. For any two functions $f(x)$ and $g(x)$, their Hamming distance is the number of 1s in the sequence of the function $f(x) \oplus g(x)$. The function (1), with the restriction such that $c_0 = 0$ for all α where $wt(\alpha) > 1$, is called an affine function and denoted by $\varphi(x)$. Using the dot product we can write affine functions with the form

$$\varphi(x) = \alpha \cdot x \oplus c,$$

where $\alpha \in V_n$, $c = 0, 1$. An affine function is called a linear function if $c = 0$ (which corresponds $c_0 = 0$ in the function (1)). The following definitions are the most important cryptographic parameters for a boolean functions in cryptography [3, 9, 10].

Definition 1 Let $f(x)$ be a function on V_n. If, as x runs through all vectors in V_n, $f(x) = 1$ is true 2^n-1 times $f(x) = 1$, then the function $f(x)$ is said to be balanced.

Definition 2 Let $f(x)$ be a function on V_n. The nonlinearity (denoted by N_f) of the function $f(x)$ is defined by the minimum Hamming distance from $f(x)$ to all affine functions over V_n, i.e.,

$$N_f = \min \{ wt(f \oplus \varphi) \mid \text{for all } \varphi \text{ on } v_n \}.$$

Definition 3 Let $f(x)$ be a boolean function on V_n. If for a vector $\alpha \in V_n$ the function $f(x) \oplus f(x \oplus \alpha)$ is balanced, then the function $f(x)$ is said to have propagation criteria with respect to the vector α. If $f(x)$ has propagation criteria with respect to all vectors with $0 < wt(\alpha) \leq k$, then $f(x)$ has propagation criteria of degree k denoted by $PC(k)$. If $k = 1$, the function is said to satisfy the strict avalanche criteria (SAC).

Definition 4 Let $0 \leq k \leq n$. The function $f(x)$ on V_n is k-th order correlation immune if the following equation

$$\sum_{x \in V_n} (-1)^{f(x) \oplus \alpha \cdot x} = 0, \text{ for } 1 \leq wt(\alpha) \leq k,$$

is satisfied, where $wt(\alpha)$ is the Hamming weight of a vector $\alpha \in V_n$.

2.2 Symmetric group

For an n-tuple vector, $\alpha = (a_1, a_2, \ldots, a_n) \in V_n$, we consider an operation on the vector which permutes the positions of a_i and a_j. Then the vector becomes

$$(a_1, \ldots, a_j, \ldots, a_i, \ldots, a_n).$$

We denote the operation of permuting the positions of a_i and a_j by the operator $\pi = (ij)$ and then we write

$$\pi(a_1, a_2, \ldots, a_n) = (a_1, \ldots, a_j, \ldots, a_i, \ldots, a_n).$$

The permutations for an n-tuple vector in V_n may apply to more than two entries. Thus the operation $\pi = (ijk \cdots)$ is defined by the ith entry goes to jth position, the jth entry goes to kth position, and so on. Thus the operator $\pi = (ij \cdots k)$, acting on the vector α, for example, gives the vector

$$(a_1, \ldots, a_i-1, a_k, a_{i+1}, \ldots, a_{j-1}, a_i, a_{j+1}, \ldots, a_n).$$

Let π_i and π_j be any two operators for a vector $\alpha \in V_n$. Then the combination of the operators is defined by $\pi = \pi_i \pi_j$ such that

$$\pi \alpha = (\pi_i \pi_j) \alpha = \pi_i(\pi_j \alpha).$$

The inverse of an operator exists. For $\pi = (ij \cdots k)$, $\pi^{-1} = (k \cdots ji)$ is its inverse because $\pi \pi^{-1} = \pi^{-1} \pi = e$, the unit permutation.

Definition 5 For an n-tuple vector (a_1, a_2, \ldots, a_n) in the boolean space V_n, we consider operations π that permute the positions of the n-tuple. Then all possible operations on the n-tuple form a group which is called the symmetric group defined on V_n and denoted by S_n (or permutation group).
If a subset of S_n forms a group under the same laws of combination used in S_n, then the group is called subgroup of S_n. Any group has at least two trivial subgroups: the group containing only one element \{e\}; and the group itself. For a symmetric group S_n, the following properties hold.

1. The order of S_n (the number of all elements) is $n!$, i.e. $|S_n| = n!$.

2. We take some elements in S_n as the generators of the group, if any element in S_n can be equivalently expressed by those generators. Then the minimum set of generators for S_n is of size $n - 1$. Let \{(12), (13), \ldots, (1n)\} be a set of generators of S_n. Then the element (123\ldots n), for example, is equal to (1n)\ldots (13)(12).

3. The transitive relations of symmetric groups S_1, S_2, \ldots, S_n are as follows:

$$S_1 \subset S_2 \subset \cdots \subset S_{n-1} \subset S_n.$$

The following statements from group theory will be used later. Let G and G' be any two groups and elements g and g' be elements with $g \in G$ and $g' \in G'$.

1. (Homomorphism). If there is a mapping $G \to G'$ and the laws of combination for the two groups are preserved, i.e.

$$g_i \to g'_i \quad g_j \to g'_j \quad \Rightarrow \quad (g_ig_j) \to (g'_ig'_j),$$

then the two groups, G and G', are said to be homomorphic.

2. (Isomorphism). For two homomorphic groups, G and G', if the mapping is invertible, then the two groups are said to be isomorphic.

3. (Kernel). For the homomorphic mapping of G and G', the unit element in G maps to a subset H_e in G'. The subset H_e in G' corresponding to the unit element e in G is called the kernel of the homomorphic mapping.

4. (Lagrange’s theorem). The order of a subgroup of a finite group is a divisor of the order of the group.

5. (Cayley’s theorem). Any group with order n is isomorphic with a subgroup of S_n.

For a boolean space V_n, we say that the symmetric group S_n is defined on the space, if each element in S_n just permutes the vectors in V_n. Let V_m and V_n be subspaces of V_{m+n}. Let S_m be the symmetric group for the space V_m and S_n for the space V_n. Then for any elements $\pi \in S_m$ and $\pi' \in S_n$, it is obviously that $\pi\pi' = \pi'\pi$. We say that the two groups are commutative (both the two groups are subgroups of S_{m+n} and S_{m+n} is on V_{m+n}). Obviously, the set, \{\pi\pi' | \pi \in V_m, \pi' \in V_n\} denoted by $S_m \times S_n$ (direct product), is a subgroup of S_{m+n} with order $m! \times n!$.

Let H be a subgroup of S_n. Then the subset $\pi H, \pi \in S_n, \pi \notin H$, is called the (left) coset associated with H in S_n. The subgroup H is called a normal subgroup (or invariant subgroup) of S_n if $\pi H \pi^{-1} = H$ for any $\pi \in S_n$. For any subgroup H of S_n, there exists $|S_n|/|H|$ elements $g_i; (g_i \notin H, g_i \in S_n)$ such that

$$S_n = H \cup (g_1H) \cup \cdots \cup (g_{s-1}H), \quad (4)$$

where $s = |S_n|/|H|$. In the above formula, if H is a normal subgroup, the set, \{ $H, g_1H, \ldots, g_{s-1}H$\}, forms a group (called quotient group or factor group of S_n) with order $s!/|H(f)|$. For more detail about group theory, one can refer the books [7][5].

3 Relationships between symmetric group and boolean functions

Now we turn our discussion to the relationships between the symmetric group and boolean functions on finite boolean spaces V_n. We highlight features of a boolean function under the operations of a symmetric group.

Definition 6 Let π denote an element of the symmetric group S_n. We take all the elements of S_n as permuting operators on a vector α in V_n. We say that a permuting operator acts on a func-
tion on V_n as follows

$$
\pi f(x) = \pi \left(\bigoplus_{\alpha \in V_n} c_\alpha x^\alpha \right)
= \bigoplus_{\pi \in V_n} c_{\pi \alpha} x^{\pi \alpha}
= \bigoplus_{\beta \in V_n} c_\beta x^\beta
$$

where $\pi \alpha = \beta$ and $c_\alpha = c_\beta \in GF(2)$.

We denote by H_f a subgroup of S_n associated with the boolean function $f(x)$ over V_n. Then the subgroup H_f is described by the following lemma.

Lemma 1 Let H_f denote the subset that contains all the elements $\pi \in S_n$ such that $\pi f(x) = f(x)$. Then H_f is a subgroup of S_n.

Proof. For the subset H_f to be a group, we only need to show the set is closed under the laws of group combination of S_n. In fact if π_i and π_j are in the set H_f, then $\pi_i \pi_j$ and $\pi_j \pi_i$ are also in H_f, because

$$
\pi_i \pi_j f(x) = \pi_i (\pi_j f(x)) = \pi_i f(x) = f(x).
$$

The set H_f is closed. Therefore it is a subgroup of S_n. \qed

Associated with the function $f(x)$ on V_n and the symmetric group S_n, we have another group, denoted by G_f, which is described by the following lemma.

Lemma 2 If $ef(x) = f(x)$ (e the unit of S_n) is the unit of the set $\{\pi f(x) \mid \pi \in S_n\}$, then the set of functions forms a group, denoted by G_f, where the group operation "o", stands for composition of functions, defined as follows

$$
[\pi_i f(x)] \circ [\pi_j f(x)] = (\pi_i \pi_j) f(x) = \pi_k f(x).
$$

Proof. To be a group, the set G_f with the operation \circ must satisfy the following conditions: (i) the unit element must exist; (ii) each element must have an inverse in the set and the left inverse must be equal to the right inverse; (iii) the associative rule must hold for the operation; (iv) the set must be closed under the group operation. The unit element of the set is defined by the function itself $f(x)$. Let $\pi_i f(x)$ be an element of the set. Then the element has its inverse $\pi_j f(x)$, such as $\pi_j = \pi_i^{-1}$, in the set, since

$$
[\pi f(x)] \circ [\pi^{-1} f(x)] = [\pi^{-1} f(x)] \circ [\pi f(x)] = f(x).
$$

According to the definition of the group operation,

$$
[\pi_i f(x) \circ \pi_j f(x)] \circ \pi_k f(x) = \pi_i f(x) \circ [\pi_j f(x) \circ \pi_k f(x)]
$$

holds. Hence the associative law holds. The set, $G_f = \{\pi f(x) \mid \forall \pi \in S_n\}$, contains all the different boolean functions generated by permutations in S_n. Therefore, the set is closed. So we have proved that the set, $\{\pi f(x) \mid \pi \in S_n\}$, with composition \circ is a group. \qed

The group operation \circ on G_f is not the group operation of S_n. The equality

$$
(\pi_i \pi_j) f(x) = \pi_k f(x)
$$

does not restrict $\pi_i \pi_j$ to equal π_k, because any element in $H_{\pi \pi f}$ will leave the function $\pi_k f(x)$ unchanged. For convenience, we use the element $\pi_k = \pi_i \pi_j$ to identify the function $\pi_k f$. The group G_f is a set of polynomials on a finite boolean space, which is generated by a boolean function $f(x)$ on V_n and the symmetric group S_n. Each element, $\pi f(x)$, in G_f corresponds to a subgroup, $H_{\pi f}$, of S_n. Then for the function $f(x)$, we have the left coset πH_f and right coset $H_{\pi f} \pi$ that give the function $\pi f(x)$. Therefore among the elements in G_f, the following lemma holds.

Lemma 3 Let $\pi_i f(x)$ and $\pi_j f(x)$ be any two elements in G_f associated with the function $f(x)$ over V_n. Then

(i) $|H_f| = |H_{\pi_i f}| = |H_{\pi_j f}| = \cdots$;

(ii) There exists a subset of elements $\{e, \pi_1, \pi_2, \cdots\}$, called representative set of S_n, denoted by C_f, such that

$$
S_n = H_f \cup \pi_1 H_f \cup \pi_2 H_f \cdots;
$$

(iii) Let π_i and π_j belong to C_f. If $\pi_i \neq \pi_j$, then $\pi_i f(x) \neq \pi_j f(x)$ and $C_f f(x) = G_f$.

Proof. The group $H_{\pi f}$ is the group of the function $\pi f(x)$. So $H_{\pi f}$ contains all the elements in S_n such that $\pi_j(\pi f(x)) = \pi f(x)$. The left coset, $\pi H_{\pi f}$, acting on the function $f(x)$, also produces the function $\pi f(x)$. So $|\pi H_{\pi f}| \leq |H_{\pi f}|$. On the other hand, $\pi H_{\pi f}$ contains all elements in S_n such that $(\pi \tau_i)f(x) = \pi f(x)$ for each $\pi_i \in H_{\pi}$. Thus we have $|\pi H_{\pi f}| \geq |H_{\pi f}|$. Therefore $|H_{\pi f}| = |H_{\pi f}|$ which proves (i).

Since the intersection of distinct cosets is empty and all cosets contain $|S_n|$ elements, then (ii) holds.

The part (iii) is obvious. According to the definition of G_f, each function is uniquely generated by the function $f(x)$. The set of functions, $C_f f(x)$, contains all the different functions. Therefore $C_f f(x) = G_f$.

The subset C_f is not the only subset. We can choose one representative from each group $H_{\pi f}$ to form a subset C_f. But the group G_f is unique. Any C_f in S_n generates the group G_f and so may be used as the identity set for the function $f(x)$. Each element π in the identity set may be used as the identity element for the function $\pi f(x)$. Note that the class C_f may not contain the unit element.

It is clear that an operator acting on a function $f(x)$ is equivalent to a one-to-one linear transformation. The functions $f(x)$ and $\pi f(x)$ in G_f have many properties in common.

Lemma 4 Let $f(x)$ be a boolean function on V_n. Then the all functions in G_f have the same (1) Hamming weight, (2) nonlinearity, (3) propagation criteria PC(k) and (4) correlation immunity.

Proof. Since each function in G_f relates to another by a one-to-one linear transformation, they have the same Hamming weight $wt(f)$ and nonlinearity N_f.

Let $f(x)$ on V_n have k-th order propagation criteria. According to definition 3, $f(x) \oplus f(x \oplus \alpha)$ is balanced for all $0 < wt(\alpha) \leq k$. The function $\pi f(x) = f(\pi x)$ and then

\[f(\pi x) \oplus f(\pi x \oplus \pi \alpha) = f(x') \oplus f(x' + \beta) \]

Of course $wt(\pi \alpha) = wt(\beta)$. As α runs through all vectors such that $1 \leq wt(\alpha) \leq k$, β runs through all vectors with $1 \leq wt(\beta) \leq k$.

According to definition 4, the if f has k-th order correlation immunity, then it satisfies

\[\sum_{x \in V_n} (-1)^{f(x) \oplus \alpha \cdot x} = 0, \text{ for all } 1 \leq wt(\alpha) \leq k. \]

Let $\pi f(x)$ be a function in G_f. Since the map from $f(x)$ to $\pi f(x)$ is a one-to-one linear transform and the vector α has been chosen for such that $1 \leq wt(\alpha) \leq k$, $\pi f(x)$ has the same correlation immunity as $f(x)$ has.

Lemma 5 Let the $f(x)$ be a boolean function on V_n and r_i the number of x_i occurs in the function. (i) The numbers of repetitions of each variable of the x_{i_1}, \cdots, x_{i_k} in $f(x)$ being equal (i.e. $r_{i_1} = \cdots = r_{i_k}$), is a necessary condition for the group S_k associated with variables x_{i_1}, \cdots, x_{i_k} to be a subgroup of H_f. (ii) The order of G_f is greater than or equal to the number of all different patterns of (r_1, \cdots, r_n).

Proof. We prove the lemma by contradiction. By the lemma 1 the element in H_f operating on the function $f(x)$ does not change the function itself. Suppose $r_i \neq r_j$. After the operation, x_j in the function $\pi f(x)$ is transformed to x_i. Obviously, the number of repetitions of x_j in $\pi f(x)$ is r_j that induces $\pi f(x) \neq f(x)$. Therefore $\pi \notin H_f$.

Assume that $r_i \neq r_j$ for all $i \neq j$, $1 \leq i, j \leq n$. Any operation from S_n will change the representation of the function $f(x)$. So $G_f = S_n$. For all $r_i \neq r_j$ we have $\pi_i f(x) \neq \pi_j f(x)$. Therefore we have proved (ii).

Lemma 6 Let $f(x)$ and $g(x)$ be any two boolean functions on V_n and H_f and H_g be their groups respectively. Then in the group $H_f \oplus H_g$ formed by the function $f(x) \oplus g(x)$, at least the intersection of H_f and H_g is a subgroup i.e. $H_f \cap H_g \subseteq H_f \oplus H_g$.

Proof. Since the intersection set is a subset of S_n, all the laws of combination for S_n are preserved. The first we prove the intersection $H_f \cap H_g$ is a subset of $H_f \oplus H_g$. Let $\pi_i, \pi_j \in H_f$ and $\pi_i, \pi_j \in H_g$. Then π_i, π_j are in the intersection set $H_f \cap H_g$. Because

\[\pi_i \pi_j (f(x) \oplus g(x)) = \pi_i (f(x) \oplus g(x)) = f(x) \oplus g(x), \]

Therefore $\pi_i \pi_j \in H_f \cap H_g$. The proof is now complete.
the elements π_i, π_j and $\pi_i\pi_j$ are in the group $H_{f\oplus g}$. Therefore $H_f \cap H_g \subset H_{f\oplus g}$. The unit element is in $H_f \cap H_g$. To prove $H_f \cap H_g$ is a group, it is enough to show it is self closed under the laws of combination that are used in S_n. The above formula shows that the element $\pi_i\pi_j$ is in $H_{f\oplus g}$ and also in $H_f \cap H_g$. So $H_f \cap H_g$ is self closed. Therefore it is a group. Because the elements in $H_{f\oplus g}$ are all elements in S_n that leave the function $f(x) \oplus g(x)$ unchanged, $H_f \cap H_g$ is a subgroup of $H_{f\oplus g}$ for the function $f(x) \oplus g(x)$.

Note: The groups $H_{f\oplus g}$ and $H_f \cap H_g$ may equal, since the function $f(x) \oplus g(x)$ may increase the symmetric properties but also may reduce the properties. If $f(x) \oplus g(x) = 0$, $H_{f\oplus g} = S_n$ and $H_f \cap H_g$ is a subgroup. If $f(x)$ and $g(x)$ do not contain any common term, then $H_{f\oplus g} = H_f \cap H_g$.

The following are a few trivial facts for some boolean functions

1. Let k be an integer with $0 \leq k \leq n$. Then the function

 $$ h_k(x) = \bigoplus_{\forall \alpha \in V_n, \text{wt}(\alpha) = k} x^\alpha $$

 has group S_n, i.e. $H_h = S_n$.

2. Let $\{i_1, i_2, \cdots\}$ be a subset of $\{1, 2, \cdots, n\}$. Based on lemma 6, for the function

 $$ h(x) = h_{i_1}(x) \oplus h_{i_2}(x) \oplus \cdots, $$

 the group H_h is S_n.

3. Let H_f be the group for the function $f(x)$ on V_n. Then H_f is also the group for the function $f(x) \oplus h(x)$, where $h(x)$ is the function (10) over V_n.

4. Let $\{i_1, i_2, \cdots, i_d\}$ be a subset of $\{1, 2, \cdots, n\}$ and

 $$ f(x) = x_{i_1}x_{i_2}\cdots x_{i_d} $$

be an algebraic degree d boolean function on V_n. Then the group $H_f = S_d \times S_{n-d}$, where S_d is the symmetric group associated with the subset and S_{n-d} is the group associated with the subset $\{1, 2, \cdots, n\}\setminus\{i_1, i_2, \cdots, i_d\}$.

4 Discussion

For a fixed boolean space V_n, there are 2^m boolean functions and the size of the permutation group is $n!$. Although this is very large, we can use the permutation groups to discuss boolean functions. The boolean functions in the group G_f share the same cryptographic properties such as Hamming weight, nonlinearity, propagation criteria and correlation immunity. For a group G_f, there exist subsets, $R = \{f|f \in G_f\}$, of functions such that R is an additive group (f, \oplus) if we add the zero to the subset and regard the zero as the unit element. There are trivial additive groups, for example, $\{0, \pi_i f(x)\}$ (since $\pi_i f \oplus \pi_i f = 0$). If such a subset contains m functions (of course $m \leq |G_f|$), the additive group is a S-box design $n \times m$ (note the group order is $m+1$). Good S-box designs need to satisfy some cryptographic properties such as (1) any nonzero linear combination $c_1 f_1 \oplus \cdots \oplus c_m f_m$ is balanced, (2) any nonzero linear combination has high nonlinearity, (3) any nonzero linear combination satisfies the same and good propagation criteria, (4) the mapping of the S-box is regular i.e. each vector in V_m corresponds to 2^{n-m} vectors in V_n as x runs through all vectors in V_n once, and (5) the S-box has good differential distribution [1, 2, 4, 12]. If all components of an S-box are in an additive group R and G_f at the same time, then the discussion of the S-box concerns the one function $f(x)$ on V_n only.

References

