MATH141 – Autumn 2008
Tutorial Sheet – Week 4

Solutions available as of Friday at the MATH141 web site:

1. Simplify \(\sum_{k=1}^{m} c_{ik} \delta_{kj} \), where \(i, j, k \) are integers, when
 (a) \(1 \leq j \leq m \),
 (b) \(j > m \).

2. Find the value(s) of \(k \) so that \(2x^3 - 3x^2 - kx + 20 \) is divisible by \(x - 5 \).

3. (a) Evaluate \(\sum_{k=0}^{n} \alpha r^k \).
 (b) Use the result in (a) to prove that
 \[
 \sum_{k=0}^{n} \alpha r^k = \frac{\alpha - \alpha r^{n+1}}{1 - r}, \quad (r \neq 1).
 \]

4. Determine \((12x^3 - 11x^2 - 25) \div (3x - 5) \).

5. Given
 \[
 A = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -3 & -1 \\ 2 & 1 \end{pmatrix},
 \]
 compute the following.
 (a) \((AB)^T \)
 (b) \(B^T A^T \)
 (c) \(A^T B^T \)
 What conclusions do you draw?

6. Test whether \((x - 2) \) is a factor of \(f(x) = 2x^3 + 2x^2 - 17x + 10 \). If so, factorise as far as possible.

7. Compute \(ABC \) where
 \[
 A = (2 - 1), \quad B = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}, \quad \text{and} \quad C = \begin{pmatrix} 6 \\ -5 \end{pmatrix}.
 \]

8. Write down the complete binomial expansion of the following.
 (a) \((2 - x)^5 \)
 (b) \((y + 3)^7 \)

9. Find the set of value that satisfy \(\left| \frac{3x + 2}{5} \right| < 4 \).

10. By taking logarithms to base three convert the equation
 \[3^2 8^{1/5} = k \]
 to the quadratic equation
 \[x^2 + \log_3 \left(\frac{72}{k^2} \right) x - \log_3 (k^2) = 0. \]
 Solve this equation for the cases
 (a) \(k = 1 \).
 (b) \(k = 6 \).

Note. Part (b) is optional — it is much much harder then any question you will be asked on the MST/exam. Hint Before you start part (b) solve the equation \(x^2 + ax - (a + 1) = 0\).

Week 4 Lecture Material

FUNDAMENTALS

(Mark Nelson) Sections 1.13 & 2.1

ALGEBRA

(Tim Marchant) Read upto Section 5.12

Exercises 1.13.7, 2.1.4

Exercise 5C