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10 The period-doubling cascade to chaos

10.1 Behaviour in the logistic map when 0 < r < 1 +
√

6

In section 4 we found that the logistic model (16) has two fixed points

x∗0 = 0, x∗1 = 1− 1

r
. (83)

When 0 < r < 1 the only fixed-point of biological interest is the trivial solution (x∗0). This
is stable for 0 < r < 1 and unstable for 1 < r ≤ 4. The second fixed point (x∗1) only makes
biological sense for 1 < r ≤ 4. It is stable for 1 < r < 3 and unstable for 3 < r ≤ 4. When
r > 3 both fixed points are unstable. In section 8.1 we showed that for 3 < r ≤ 4 there is
period-2 orbit which is stable for 3 < r < 1 +

√
6 and unstable for 1 +

√
6 < r ≤ 4.

This behaviour is best appreciated using a diagram on which one plots the fixed points, as
functions of r, and also indicates their stability. Figure 9 (a) shows such a diagram. Stability is
indicated by showing stable orbits with solid lines and unstable ones as dashed lines. Observe
that the two points comprising the period-2 orbit ‘sandwich’ the now unstable period-1 point
(x∗1) that generated them. Usually the unstable solution branches are not shown, resulting in
a figure similar to figure 9 (b).

When r = 3 the eigenvalue of the non-trivial fixed point decreases through the value
¨
§

¥
¦λ = −1 .

This corresponds to a
¨
§

¥
¦pitchfork bifurcation .

For 3 < r < 1 +
√

6 the solutions xt simply oscillates between the two points which are the
intersections of a vertical line through the r-value. Numerically the map f 2 (u) converges to
one of these two points. What happens when r > 1 +

√
6?

10.2 Behaviour in the logistic map when 1 +
√

6 < r < r∞(r∞ ∼ 3.57)
— the period-doubling cascade to chaos

When r = 3 the fixed point x∗1 destabilised, producing two points that comprised the period-
2 solution. As r increases from r = 3, the eigenvalues λ at A and C in figure 8 decrease,
eventually passing through λ = −1. At this point (r = 1 +

√
6) the period-2 solutions become¨

§
¥
¦unstable . The mechanism that produced the period-2 solution from the period-1 solution

is repeated: each of the period-2 points is destabilised, producing two additional solutions. A¨
§

¥
¦period-4 solution therefore appears at the point r = 1 +

√
6. Thus if r4 < r < r8, where r8

is the bifurcation value to a period-8 solution, xt exhibits a period-4 solution with the values
given by the intersection of the curve of equilibrium states with the vertical line through the

r-value in figure 9 (b). The period-4 points are found by solving the equation
¨
§

¥
¦x∗ = f 4 (x∗) .

The function f 4 (u) tends to one of the four period-4 points unless for some n, fn (u) equals
one of the points of period 1 or 2.

The eigenvalue of the period-4 solution decrease as r increases and eventually pass through

the value
¨
§

¥
¦λ = −1 . At this point the stable period-4 solutions become

¨
§

¥
¦unstable and a stable
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Figure 9: Steady-state diagrams for the logistic model. Figure (a) shows the locus of the stable
and unstable branches for the period-1 and period-2 solutions. Period doubling at r = 3; a
period 2 orbit is born as a fixed point becomes unstable. Stable solutions are denoted by solid
lines and unstable solutions by dashed lines. (b) Stable solutions for the logistic model as r
passes through bifurcation values. At each bifurcation the previous state becomes unstable.
The sequence of stable solutions have periods 2, 22, 23, . . ..

¨
§

¥
¦period-8 solution is formed. The

¨
§

¥
¦period-8 solution is stable if r8 < r < r16. Table 1 shows

the first few values of r2n . These numbers show that the distance between bifurcations in

r-space become progressively
¨
§

¥
¦smaller as n increases. As a result, the higher the value of n,

the smaller the interval of r over which the period 2n solution is stable. As the parameter r
increases through the region 3 ≤ r ≤ r∞(r∞ ∼ 3.57) there is a hierarchy of solutions of period
2n for every n, and associated with each, is a parameter interval in which it is stable. Orbits

of period 2n are successively supplanted by stable solutions of period
¨
§

¥
¦2n+1 and this transition

occurs as the eigenvalue of the former decreases through
¨
§

¥
¦λ = −1 (which is the condition for

a period doubling bifurcation). The lower period solutions remain but are no longer stable.

The sequence 1 → 2 → 22 → 23 → · · · is known as an infinite cascade of periodic orbits .

At the critical value r∞ ≈ 3.57 all periodic solution of period 2n are
¨
§

¥
¦unstable and ‘chaos
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r2 3
r4 3.4494897428
r8 3.5440903596
r16 3.5644072661
r32 3.5687594195
r64 3.5696916098
r∞ 3.5699456. . .

Table 1: The values of r at which an orbit of period 2n becomes stable in the logistic map
un+1 = run (1− un).

Figure 10: Stable solutions for the logistic model (16). This picture is typical of discrete models
which exhibit period doubling and eventually chaos and the subsequent path through chaos.
Picture downloaded from www.pha.jhu/̃ldb/seminar/logdiffeqn.html.

sets in’. This process in which an orbit of period-2n successively lose stability to an orbit of

period-2n+1, ending at a limiting value at which all periodic solutions are
¨
§

¥
¦unstable is known

as the period doubling route to chaos .

10.3 Behaviour in the logistic map when r∞ < r ≤ 4

Is r∞ the end of the story? What happens when r∞ < r ≤ 4?2

As the parameter r is increased from r∞ there are regions where the solution is not chaotic but
is instead periodic. These regions of periodicity are known as ‘windows’ and for r∞ < r < 4
parameter windows of periodicity are interlaced with windows of aperiodicity. The interlacing
of periodicity and aperiodicity is apparent from figures 10 & 11.

If the regions of periodicity are blow-up it is seen that each window contains it’s own period-
doubling sequence. For instance, the period-doubling cascade associated with the period-3

window will be
¨
§

¥
¦3 → 2× 3 → 22 × 3 → 2m × 3 → r3,∞ , where r3,∞ is the accumulation point

at which the period-3 period-doubling cascade becomes chaotic. In fact for r > r∞ there is

2The material in this section will not be tested. If you find it interesting you can do a project on it.
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Figure 11: Stable states of the logistic model (16) and enlargement
of various ‘windows of stability’ within it. Pictures downloaded from
www.computermusic.ch/files/articles/Chaos%2CSelf-Similarity/Chaos.html

a periodic window of base period for any k (with k odd) and an associated period-doubling

cascade
¨
§

¥
¦k → 2× k → 22 × k → 2m × k → rk,∞ ending in a chaotic region. This behaviour

is illustrated in figures 10 & 11. In particular the sequence of aperiodicity - periodicity -
aperiodicity is shown in the enlargements of figure 11 (a). There exist an infinite number of
windows with a finite width. The period-3 window around r ∼ 3.84 is the largest window.

Although we have concentrated here on the logistic model (16) the phenomena of period-
doubling cascades to chaos and of windows surrounded by regions of aperiodicity is typical of
difference equation models with the dynamics like (1) and schematically illustrated in figure 1.


