

SCIT
School of Computing and
Information Technology

CSCI317
Database Performance Tuning

This paper is for students studying at the Singapore Institute of Management Pte Ltd.

S1-2019 FINAL EXAMINATION

 Date: ???

 Time: ???

Exam value: 60% of the subject assessment.

Marks available: 60 marks.

DIRECTIONS TO CANDIDATES

1. The examination paper is printed on both sides.

2. All answers must be written in the answer booklet provided.

3. Distinct parts should be started on distinct pages.

4. In case of conflict, instructions here override answer booklet instructions.

EXAMINATION MATERIALS/AIDS ALLOWED

Nil

 VERSION 1

Family Name ...

First Name ...

Student Number ...

Table Number ...

THIS EXAMINATION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 2 of 10

Copyright SCIT, University of Wollongong, 2019.

Introduction
The questions 2, 4, 5, 6, and 7 of the examination paper are related to the following simplified
version of TPC-HR benchmark database used in the laboratory classes.

CUSTOMER(C_CUSTKEY NUMBER(12) NOT NULL,

C_NAME VARCHAR(25) NOT NULL,
C_ADDRESS VARCHAR(40) NOT NULL,
C_NATIONKEY NUMBER(12) NOT NULL,

CONSTRAINT CUSTOMER_PKEY PRIMARY KEY(C_CUSTKEY));

PART(P_PARTKEY NUMBER(12) NOT NULL,

P_NAME VARCHAR(55) NOT NULL,
P_BRAND CHAR(10) NOT NULL,
P_SIZE NUMBER(12) NOT NULL,
P_RETAILPRICE NUMBER(12,2) NOT NULL,

CONSTRAINT PART_PKEY PRIMARY KEY (P_PARTKEY));

PARTSUPP(PS_PARTKEY NUMBER(12) NOT NULL,
PS_SUPPNAME VARCHAR(55) NOT NULL,
PS_AVAILQTY NUMBER(12) NOT NULL,

CONSTRAINT PARTSUPP_PKEY PRIMARY KEY (PS_PARTKEY,PS_SUPPNAME),
CONSTRAINT PARTSUPP_FKEY FOREIGN KEY(PS_PARTKEY)
 REFERENCES PART(P_PARTKEY));

ORDERS(O_ORDERKEY NUMBER(12) NOT NULL,

O_CUSTKEY NUMBER(12) NOT NULL,
O_TOTALPRICE NUMBER(12,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,

CONSTRAINT ORDERS_PKEY PRIMARY KEY (O_ORDERKEY),
CONSTRAINT ORDERS_FKEY1 FOREIGN KEY (O_CUSTKEY)

 REFERENCES CUSTOMER(C_CUSTKEY));

LINEITEM(L_ORDERKEY NUMBER(12) NOT NULL,

L_PARTKEY NUMBER(12) NOT NULL,
L_LINENUMBER NUMBER(12) NOT NULL,
L_QUANTITY NUMBER(12,2) NOT NULL,
L_SHIPDATE DATE NOT NULL,

 CONSTRAINT LINEITEM_PKEY PRIMARY KEY (L_ORDERKEY, L_LINENUMBER),
 CONSTRAINT LINEITEM_FKEY1 FOREIGN KEY (L_ORDERKEY)
 REFERENCES ORDERS(O_ORDERKEY),
 CONSTRAINT LINEITEM_FKEY2 FOREIGN KEY (L_PARTKEY)
 REFERENCES PART(P_PARTKEY));

Assume that, the relational tables listed above occupy the following amounts of disk storage:

CUSTOMER 100 Mbytes
PART 30 Mbytes
PARTSUPP 400 Mbytes
ORDERS 500 Mbytes
LINEITEM 900 Mbytes

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 3 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 1 (7 marks)

The following conceptual schema represents a database domain where owners sell real estate properties, buyers
are interested in real estate properties and sellers take care about real estate properties.

An objective of this task is to use denormalization to improve the performance of the following class of applications.

Find the phones of buyers (attributes phone in a class BUYER) who are interested in the real estate properties
located in a given city (attribute city in a class PROPERTY) and being taken care about by an agent from a
given agency (attribute agency in a class AGENT)

A sample application that belongs to a class described above could be the following.

Find the phones of buyers who are interested in the real estate property located in Sydney and being taken
care about by an agent from an agency Real Estate Demolishers.

(1) Perform simplification of a conceptual schema given above and redraw a simplified schema.

(2 marks)

(2) To improve performance of a class of database applications given above denormalize a conceptual schema
obtained in step (1) and redraw a denormalized schema.

(6 marks)

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 4 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 2 (10 marks)

For each one of SELECT statements listed below find an index that speeds up the processing of a statement in the
best possible way. Note, that an index must be created separately for each one of SELECT statements. Write
CREATE INDEX statements to create the indexes.

(1) SELECT P_BRAND, COUNT(*)
FROM PART
GROUP BY P_BRAND
HAVING COUNT(*) > 2;

(2 marks)
 (2) SELECT AVG(L_QUANTITY)
 FROM ORDERS JOIN LINEITEM
 ON O_ORDERKEY = L_ORDERKEY;

(2 marks)
 (3) SELECT AVG(OPS_AVAILQTY)
 FROM PARTSUPP
 WHERE PS_SUPPNAME = 'James';

(2 marks)
(4) SELECT P_NAME,
 FROM PART
 WHERE P_BRAND = 'RUBBISH'
 ORDER BY P_NAME;

(2 marks)
(5) SELECT C_NAME

FROM CUSTOMER
WHERE C_NATIONKEY = 'SG';
MINUS
SELECT C_NAME
FROM CUSTOMER
WHERE C_ADDRESS LIKE '%Bugis%';

(2 marks)

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 5 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 3 (10 marks)

Assume that a relational table

PRODUCT(name, manufacturer, price, description, quality, mdate)

contains information about the names, manufacturers, prices, qualities, manufacturing dates and descriptions of
products. Assume that the table has a composite primary key (name, manufacturer).

A database administrator created B*-Tree index on an attribute price. B*-tree index on a primary key has been
automatically created by a database system.

Assume that:

(i) a relational table PRODUCT occupies 104 data blocks,
(ii) a relational table PRODUCT contains 105 rows,
(iii) a height of an index on the primary key is equal to 4,
(iv) a height of an index on an attribute price is equal to 2,
(v) the total number of distinct values in a column price is equal to 103,
(vi) a leaf level of an index on the primary key consists of 500 data blocks,
(vii) a leaf level of an index on attribute price consists of 100 data blocks.

List the comprehensive descriptions of query processing plans for each one of the queries listed below and
estimate the total number of read block operations needed to compute each one of the queries (show all
calculations):

(1) SELECT price, COUNT(*)
 FROM PRODUCT
 GROUP BY price;

(2 marks)
 (2) SELECT name, manufacturer
 FROM PRODUCT

WHERE manufacturer = 'IBM' or name = 'PC';
(2 marks)

 (3) SELECT DISTINCT price
FROM PRODUCT
ORDER BY price;

(2 marks)
 (4) SELECT *
 FROM PRODUCT

WHERE manufacturer = 'IBM' or name = 'PC';
(2 marks)

 (5) SELECT *
 FROM PRODUCT

WHERE price = 100;
(2 marks)

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 6 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 4 (8 marks)

Consider the following incomplete lattice of materialized views.

Assume that a view "a" has been already materialized and a cost of its materialization is 100. The costs of
materialization of the other views "b", "c", "d", "e", and "f" are given in the diagram above.

Use an algorithm included in a presentation 19 Materialized views to find no more than two other views that can be
materialized in order to reduce the costs of view processing in the best way.

a

b cd

e

f

100

30 4050

20

10

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 7 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 5 (7 marks)

Consider a fragment of simple JDBC application listed below. It is a typical example of a pretty poor, from
performance point of view, JDBC program. Rewrite a code written below to improve the performance of the
application it is included in. There is no need to write the entire JDBC application.

Explain all details why the original application takes long time to provide the results and why your version of JDBC
code is more efficient than the original one.

try{
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery("SELECT * FROM LINEITEM");
 int counter = 0;
 float total; = 0.0;
 while (rset.next())
 {
 total = total + rset.getFloat(4);
 counter++;
 }
 System.out.println("Result: " + total/counter);
 }

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 8 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 6 (10 marks)

Consider the SELECT statements given below. Each one of the given SELECT statements joins two or more
relational tables. For each SELECT statement propose the best method for the implementation of the join
algorithm. Justify your choice ! Note, that answers without the exhaustive and correct justifications
score no marks!

Consider the following implementations of join operation:

(i) Cartesian product join
(ii) Nested loop join
(iii) Nested loop join with one or both arguments kept in transient memory
(iv) Index-based join
(v) Sort-merge join
(vi) Hash join
(vii) Hash antijoin

Assume that no more than 50 Mbytes of transient memory can be invested into the computations of join operation
and that size of a bucket in hash implementation of join operation is always less than 5 Mbytes.

The sizes of relevant relational tables are listed at the bottom of the Introduction page of the final examination
paper.

A solution of each one of the cases listed below is worth 2 marks.

(1) SELECT *

FROM ORDERS, LINEITEM
WHERE ON ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY;

(2 marks)
(2) SELECT *

FROM PART JOIN PARTSUPP
 ON PART.P_AMOUNT = PARTSUPP.PS_AVAILQTY;

(2 marks)
(3) SELECT *

FROM PART
WHERE EXISTS (SELECT *

 FROM LINEITEM
 WHERE PART.P_PARTKEY = LINEITEM.L_PARTKEY);

(2 marks)
(4) SELECT *

FROM ORDERS
WHERE NOT EXISTS (SELECT *

 FROM LINEITEM
WHERE ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY);

(2 marks)
(5) SELECT *

FROM LINEITEM
WHERE LINEITEM.L_QUANTITY > (SELECT L_QUANTITY

 FROM LINEITEM
 WHERE L_ORDERKEY = 1 AND L_LINENUMBER = 1);

(2 marks)

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 9 of 10

Copyright SCIT, University of Wollongong, 2019.

Question 7 (8 marks)

Consider three database transactions given below.

Transaction 1
UPDATE PART
SET P_SIZE = P_SIZE + 1 WHERE P_PARTKEY = 1;
UPDATE PART
SET P_SIZE = P_SIZE + 2 WHERE P_PARTKEY = 2;
UPDATE PART
SET P_SIZE = P_SIZE + 3 WHERE P_PARTKEY = 3;

COMMIT;

Transaction 2
UPDATE PART
SET P_SIZE = P_SIZE + 3 WHERE P_PARTKEY = 5;

UPDATE PART
SET P_SIZE = P_SIZE + 3 WHERE P_PARTKEY = 3;

UPDATE PART
SET P_SIZE = P_SIZE + 2 WHERE P_PARTKEY = 2;

COMMIT;

Transaction 3
UPDATE PART
SET P_SIZE = P_SIZE + 4 WHERE P_PARTKEY = 4;

UPDATE PART
SET P_SIZE = P_SIZE + 23 WHERE P_PARTKEY IN (2,3);

COMMIT;

Use a technique of SC-graphs to "chop" the transactions into smaller transactions such that their concurrent
processing is more efficient.

Draw SC-graph and rewrite the transaction with inserted COMMIT statements that "chop" the transactions into the
smaller pieces.

End of Examination

School of Computing and Information Technology University of Wollongong

SIM-2019-S1, Final Examination, CSCI317 Database Performance Tuning Page 10 of 10

Copyright SCIT, University of Wollongong, 2019.

