
CSCI317 Database Performance Tuning
Sample problems to be solved as a preparation before a class test

Denormalizations

Task 1
Consider a conceptual schema of a simple ordering system given below.

 Assume, that the following queries are frequently submitted for execution by the
database applications. The objective of this task is to minimize their execution time by
the transformations of the conceptual schema.

(1) For each manufacturer find the total number of customers who purchased the

products manufactured by the manufacturer.
(2) Find the names and numbers of all customers who purchased at least one part

supplied by a supplier with a given name.
(3) For each frequent customer find the total value of all parts ordered by the frequent

customer.

LINEITEM

ORDER
ord# ID
odate
handled-by

CUSTOMER
cust# ID
name
address
phone

PART
part# ID
name
price
manufacturer

SUPPLIER
sname ID
address
phone#
fax#

PART-SHIIPPED-
BY

shipment-date

1..*

0..1
1..*

1..* 1..*

line#

FREQUENT-
CUSTOMER

STANDARD-
CUSTOMER

RARE-
CUSTOMER

Lists

Is-shipped-by Consists-of

Submits

Perform the simplifications of the conceptual schema given in Appendix A. Individually
consider each one of the queries listed above and propose the transformations of the
schema to minimize execution time of the queries given above. Integrate the results into a
single schema.

Task 2

Consider a conceptual schema of a hospital system given below. Assume, that we would
like to denormalize the conceptual schema in order to improve the performance of the
following class of queries:

Find a location (city, hospital-name, bldg#, room#) of a patient being treated by
the doctors with a given last name (lname).

For example, a query like "find city, hospital name, building
number, room number of a patient treated by a doctor whose
last name is Smith" belongs to a class of queries described above.

Transform a conceptual schema given below A such that any query that belongs to a class
of queries described above can be computed faster than before a transformation. A
transformation must consist of two steps. First transform the conceptual schema into
simplified form. Next, perform implementation of generalizations (if any) and migrations
of attributes to denormalize a schema obtained in the previous step.

0..1 HOSPITAL
city ID1 ID2
street ID1
main-bldg# ID1
hospital-name ID2

bldg#

wname

BUILDING

room#
level

ROOM
 0..1

WARD

PATIENT
fname ID
mname ID
lname ID
dob ID
address
phone

e#

STAFF
fname
lname
dob
address
phone

0..1
Is located in

Involved in treatment

1..* *

Works at

0..1

*

1..*

NURSE DOCTOR ADMIN

Task 3

The conceptual schema given below represents a database domain where submit orders
that consist of many lines.

(1) Perform simplification of the conceptual schema above and re-draw the
simplified conceptual schema.

(2) We would like to improve the performance of the following class of
applications:

Find the names and manufacturers (attributes item-name, manufacturer in a
class ITEM-LINE) of all items delivered to the frequent customers in a given year
(attribute delivery-date in a class ORDER).

A sample application that belongs to a class described above is a as follows:

Find the names and manufacturers of all items delivered to the frequent customers 2010.

Find the denormalizations of the simplified conceptual schema that improves the
performance of the class of applications described above. When performing the
denormalizations apply the following transformations of the simplified conceptual
schema: migration of attributes, partitioning of classes of objects, and elimination of
generalization. Re-draw the simplified conceptual schema after the denormalizations.

1..*
ORDER

order# ID
delivery-date

ITEM-LINE
item-name
manufacturer
quantity

CUSTOMER
cname ID1
address ID1
phone ID2
points

FREQUENT-CUSTOMER
discount

ORDINARY-CUSTOMER

0..1
Consists-of

Submits

(t,e)
line-number

Quantitative analysis of indexing

Task 4
Consider a relational table
TRANSACTION(t#,address,price,seller,buyer,agent,contract)
that contains information about the real estate transactions. An attribute t# is a primary
key.

Assume that:

(i) a relational table TRANSACTION occupies 103 data blocks,
(ii) a relational table TRANSACTION contains 5*103 rows,
(iii) an attribute address has 4500 distinct values,
(iv) an attribute price has 2000 distinct values,
(v) an attribute agent has 100 distinct values,
(vi) a primary key is automatically indexed,
(vii) the attributes price and address are indexed,
(viii) all indexes are implemented as B*-trees with a fanout equal to 10,
(ix) a leaf level of an index on attribute price consists of 50 data blocks,
(x) a leaf level of an index on attribute address consists of 100 data blocks.

Find the total number of read block operations needed to compute the following queries:

(1)
SELECT DISTINCT price
FROM TRANSACTION;

(2)
SELECT *
FROM TRANSACTION
WHERE agent = 'James';

(3)
SELECT *
FROM TRANSACTION
WHERE t# = 777 AND seller = 'Kate';

(4)
SELECT *
FROM TRANSACTION
WHERE address = 'Sydney, Station St. 5';

(5)
SELECT *
FROM TRANSACTION
WHERE agent = 'James' AND price = 100000;

Task 5
Consider a relational table:

TRANSACTION(t#, product, amount, salesman, customer,
amount, delivery-date, comments)

that contains information about the industrial transactions. An attribute t# is a primary
key.

Assume that:

(i) a relational table TRANSACTION occupies 106 data blocks,
(ii) a relational table TRANSACTION contains 2*106 rows,
(iii) an attribute product has 1000 distinct values,
(iv) an attribute amount has 2000 distinct values,
(v) an attribute salesman has 100 distinct values,
(vi) an attribute customer has 106 distinct values,
(vii) an attribute amount has 104 distinct values,
(viii) an attribute delivery-date has 3*103 distinct values
(ix) an attribute comments has 103 distinct values
(x) a primary key is automatically indexed,
(xi) the attributes product, amount, delivery-date are indexed,
(xii) all indexes are implemented as B*-trees with a fanout equal to 10,
(xiii) a leaf level of an index on attribute product consists of 100 data blocks,
(xiv) a leaf level of an index on attribute amount consists of 200 data blocks.
(xv) a leaf level of an index on attribute delivery-date consists of 500 data

blocks.
(xvi) a leaf level of an index on attribute t# consists of 100 data blocks.

For each one of SELECT statements listed above describe the best query processing plan
and find the total number of read block operations needed to compute each statement.

Note, that each processing plan must be precisely described and it must be the best plan
for a given indexing schema. A solution without the best plan scores no marks.

(1)
SELECT DISTINCT product
FROM TRANSACTION;

(2)
SELECT *
FROM TRANSACTION
ORDER BY PRODUCT;

(3)
SELECT *
FROM TRANSACTION
WHERE salesman = 'James' and customer = 'George'

(4)
SELECT *
FROM TRANSACTION

WHERE t# = 777;

(5)
SELECT *
FROM TRANSACTION
WHERE amount > 0;

(6)
SELECT *
FROM TRANSACTION
WHERE product = 'bolt' AND amount = 100;

(7)
SELECT delivery-date, count(*)
FROM TRANSACTION
GROUP BY delivery-date;

(8)
SELECT count(customer)
FROM TRANSACTION;

(9)
SELECT customer
FROM TRANSACTION
WHERE TO_CHAR(delivery-date,'YYYY') = '2009';

(10)
SELECT COUNT(*)
FROM TRANSACTION
WHERE COMMENT IS NOT NULL;

Task 6
Consider a relational table:

PRODUCT(name, manufacturer, price, description, quality, mdate)

where a pair of attributes (name, manufacturer) is a primary key.

A database administrator created B*-Tree index on an attribute price. B*-tree index on
a primary key has been automatically created by a database system.

Assume that:

(i) a relational table PRODUCT occupies 104 data blocks,
(ii) a relational table PRODUCT contains 105 rows,
(iii) a height of an index on the primary key is equal to 4,
(iv) a height of an index on an attribute price is equal to 2,
(v) the total number of distinct values in a column price is equal to 103,
(vi) a leaf level of an index on the primary key consists of 500 data blocks,
(vii) a leaf level of an index on attribute price consists of 100 data blocks.

Find the total number of read block operations needed to compute the following queries
(show all calculations):

(1)
SELECT *
FROM PRODUCT
WHERE manufacturer = 'IBM' AND name = 'computer';

(2)
SELECT name, manufacturer
FROM PRODUCT
WHERE price = 500 OR quality = 'A';

(3)
SELECT *
FROM PRODUCT
WHERE price = 300;

(4)
SELECT COUNT(DISTINCT manufacturer)
FROM PRODUCT;

(5)
SELECT name, COUNT(*)
FROM PRODUCT
GROUP BY name;

Indexing relational tables

Task 7
The following SELECT statements suppose to retrieve information from TPC R
benchmark database:

(1)
SELECT P_NAME, P_TYPE, P_SIZE
FROM PART
ORDER BY P_BRAND;

(2)
SELECT COUNT(P_NAME)
FROM PART;

(3)
SELECT P_BRAND, P_TYPE, COUNT(*)
FROM PART
GROUP BY P_BRAND, P_TYPE;

(4)
SELECT COUNT(DISTINCT P_NAME)
FROM PART;

(5)
SELECT P_RETAILPRICE, P_COMMENT
FROM PART
WHERE P_NAME = 'BOLT' AND P_SIZE = 10;

Find the smallest collection of indexes that speeds up the processing of all of the queries
listed above. Write SQL script that creates the indexes and lists the execution plans for
each one of SELECT statements given above after the indexes have been created.

Task 8
Indexing
Implement the queries listed below as SELECT statements and for each one of the
queries propose the indexing schema (one or more indexes) that speeds up query
processing. Consider all queries as independent such that each indexing schema for one
query is independent from an indexing schema for another query.

(1)
Find name (P_NAME) and retail price (P_RETAILPRICE) of all parts in a brand
(P_BRAND) Brand#51 and supplied by a supplier from CANADA (N_NAME).

(2)
Find the total number of orders issued by a customer (C_NAME)
Customer#000000374 and an order includes at least one part
with quantity (L_QUANTITY) greater than 40.

(3)
Find the total number of lines included in each order, list order status
(O_ORDERSTATUS), order date (O_ORDERDATE), and order total price
(O_TOTALPRICE).

(4)
Find the names of customers (C_NAME) from EUROPE (R_NAME) who did not include
into their orders the parts supplied by a supplier Supplier#000000400 (S_NAME).

(5)
Find the quantities of items (L_QUANTITY) that got discount equal to 0.1. Do not
display the same quantities more than one time and display the quantities ordered in an
ascending way.

Task 9
Find the smallest collection of indexes that speed up the processing of ALL SELECT
statements listed below. Note, that it is not allowed to use the "hints" in order to force the
system to use an index for query processing.

SELECT *
FROM LINEITEM
WHERE L_DISCOUNT = 0.1 AND
L_TAX = 0.05 AND
L_QUANTITY = 37
ORDER BY L_QUANTITY;

SELECT *
FROM LINEITEM
WHERE (L_TAX > 20 OR L_QUANTITY = 40) AND

 L_DISCOUNT = 0.1;

SELECT DISTINCT(L_TAX)
FROM LINEITEM
ORDER BY L_TAX ASC;

SELECT L_QUANTITY, L_DISCOUNT, COUNT(*)
FROM LINEITEM
GROUP BY L_QUANTITY, L_DISCOUNT;

SELECT COUNT(*)
FROM LINEITEM
WHERE L_DISCOUNT = 0.1 AND

 L_QUANTITY = 10;

Task 10
Implement the queries listed below as SELECT statements and for each one of the
queries propose the indexing schema (one or more indexes) that speeds up query
processing in the best possible way. Consider all queries as independent such that each
indexing schema for one query is independent from an indexing schema for another
query.

(1)
SELECT *
FROM ORDERS
WHERE O_ORDERDATE = '12-DEC-2004' AND
 O_TOTALPRICE = 777;

(2)
SELECT *
FROM SUPPLIER
WHERE S_NAME = 'JONES' AND
S_PHONE = 1234567;

(3)
SELECT *
FROM SUPPLIER
WHERE S_PHONE = 9999999;

(4)
SELECT *
FROM SUPPLIER
WHERE S_NAME = 'JONES' OR
 S_PHONE = 1234567;

(5)
SELECT *
FROM SUPLIER
WHERE S_NAME = 'JONES';

(6)
SELECT COUNT(O_ORDERDATE)
FROM ORDERS;

(7)
SELECT O_TOTALPRICE, COUNT(*)
FROM ORDERS

Clustering relational tables

Task 11
Consider the following SELECT statements that join the relational tables included in the
TPC R benchmark database owned by a user CSCI315.

(1)
SELECT CUSTOMER.C_NAME,
 CUSTOMER.C_ADDRESS,

 ORDERS.O_ORDERDATE
FROM CUSTOMER JOIN ORDERS
ON CUSTOMER.C_CUSTKEY = ORDERS.O_CUSTKEY;

(2)
SELECT CUSTOMER.C_NAME,
 CUSTOMER.C_ADDRESS,
 NATION.N_NAME
FROM CUSTOMER JOIN NATION
ON CUSTOMER.C_NATIONKEY = NATION.N_NATIONKEY
WHERE NATION.N_NAME = 'SINGAPORE';

(3)
SELECT SUPPLIER.S_NAME,
 SUPPLIER.S_PHONE,

 PARTSUPP.PS_AVAILQTY
FROM SUPPLIER JOIN PARTSUPP
ON SUPPLIER.S_SUPPKEY = PARTSUPP.PS_SUPPKEY;

(4)
SELECT SUPPLIER.S_NAME,
 SUPPLIER.S_PHONE,

 NATION.N_NAME
FROM SUPPLIER JOIN NATION
ON SUPPLIER.S_NATIONKEY = NATION.N_NATIONKEY;

Assume that the statements listed above are frequently executed by the database
applications and we would like to improve performance of the applications through
clustering of the relational tables. Implement SQL script task8.sql that performs the
following actions:

(1) Creates the cluster that speeds up the processing of the queries given above.
(2) Creates the copies of relational included into the clusters and loads and load data into

the relational table included in the clusters.
(3) Lists an execution plan for the queries given above after the cluster have been

created. Note, that you have to change the names of relational tables used in the
queries.

(4) Drops the relational tables included in the clusters.
(5) Drops the clusters.

Make sure that you pick for the clustering right relational tables.

Task 12
Consider a relational database created by the execution of the following CREATE
TABLE statements.
/* ~~ */
CREATE TABLE SKILL(
sname VARCHAR(30) NOT NULL, /* Skill name */
 CONSTRAINT SKILL_pkey PRIMARY KEY (sname));
/* ~~ */
CREATE TABLE SREQUIRED(
sname VARCHAR(30) NOT NULL, /* Skill name */
requires VARCHAR(30) NOT NULL, /* Skill required */
slevel NUMBER(2) NOT NULL, /* Level required */
 CONSTRAINT SREQUIRED_pkey PRIMARY KEY (sname, requires),
 CONSTRAINT SREQUIRED_fkey1 FOREIGN KEY (sname)
 REFERENCES SKILL(sname),
 CONSTRAINT SREQUIRED_fkey2 FOREIGN KEY (requires)
 REFERENCES SKILL(sname));
/* ~~ */
CREATE TABLE APPLICANT(
anumber NUMBER(6) NOT NULL, /* Applicant number */
fname VARCHAR(20) NOT NULL, /* First name */
lname VARCHAR(30) NOT NULL, /* Last name */
dob DATE NOT NULL, /* Date of birth */
city VARCHAR(30) NOT NULL, /* City */
state VARCHAR(20) NOT NULL, /* State */
phone NUMBER(10) NOT NULL, /* Phone number */
fax NUMBER(10) , /* Fax number */
email VARCHAR(50) , /* E-mail address */
 CONSTRAINT APPLICANT_pkey PRIMARY KEY (anumber));
/* ~~ */
CREATE TABLE EMPLOYER(
ename VARCHAR(100) NOT NULL, /* Employer name */
city VARCHAR(30) NOT NULL, /* City */
state VARCHAR(20) NOT NULL, /* State */
phone NUMBER(10) NOT NULL, /* Phone number */
fax NUMBER(10) , /* Fax number */
email VARCHAR(50) , /* E-mail address */
web VARCHAR(50) , /* Web site address */
 CONSTRAINT EMPLOYER_pkey PRIMARY KEY (ename));
/* ~~ */
CREATE TABLE EMPLBY(
anumber NUMBER(6) NOT NULL, /* Applicant number */
ename VARCHAR(100) NOT NULL, /* Employer name */
fromdate DATE NOT NULL, /* Employed from */
todate DATE , /* Employed to */
 CONSTRAINT EMPLBY_pkey PRIMARY KEY (anumber, ename, fromdate),
 CONSTRAINT EMPLBY_fkey1 FOREIGN KEY (anumber)
 REFERENCES APPLICANT(anumber),
 CONSTRAINT EMPLBY_fkey2 FOREIGN KEY (ename)
 REFERENCES EMPLOYER(ename));
/* ~~ */
CREATE TABLE POSITION(
pnumber NUMBER(8) NOT NULL, /* Position number */
title VARCHAR(30) NOT NULL, /* Position title */
salary NUMBER(9,2) NOT NULL, /* Salary */
extras VARCHAR(50) , /* Extras */
bonus NUMBER(9,2) , /* End of year bonus */
specification VARCHAR(2000) NOT NULL, /* Specification */
ename VARCHAR(100) NOT NULL, /* Employer name */
 CONSTRAINT POSITION_pkey PRIMARY KEY (pnumber),
 CONSTRAINT POSITION_fkey FOREIGN KEY (ename)
 REFERENCES EMPLOYER(ename));
/* ~~ */
CREATE TABLE SPOSSESSED(
anumber NUMBER(6) NOT NULL, /* Applicant number */
sname VARCHAR(30) NOT NULL, /* Skill name */
slevel NUMBER(2) NOT NULL, /* Skill level */
 CONSTRAINT SPOSSESSED_pkey PRIMARY KEY (anumber, sname),
 CONSTRAINT SPOSSESSED_fkey1 FOREIGN KEY (anumber)

 REFERENCES APPLICANT (anumber)
 ON DELETE CASCADE,
 CONSTRAINT SPOSSESSED_fkey2 FOREIGN KEY (sname)
 REFERENCES SKILL (sname),
 CONSTRAINT SPOSSESSED_check1 CHECK (slevel IN
 (1,2,3,4,5,6,7,8,9,10)));
/* ~~~ */
CREATE TABLE SNEEDED(
pnumber NUMBER(8) NOT NULL, /* Position number */
sname VARCHAR(30) NOT NULL, /* Skill name */
slevel NUMBER(2) NOT NULL, /* Skill level */
 CONSTRAINT SNEEDED_pkey PRIMARY KEY (pnumber, sname),
 CONSTRAINT SNEEDED_fkey1 FOREIGN KEY (pnumber)
 REFERENCES POSITION (pnumber)
 ON DELETE CASCADE,
 CONSTRAINT SNEEDED_fkey2 FOREIGN KEY (sname)
 REFERENCES SKILL (sname),
 CONSTRAINT SNEEDED_check1 CHECK (slevel IN
 (1,2,3,4,5,6,7,8,9,10)));
/* ~~~ */
CREATE TABLE APPLIES(
anumber NUMBER(6) NOT NULL, /* Applicant number */
pnumber NUMBER(8) NOT NULL, /* Position number */
appdate DATE NOT NULL, /* Application date */
 CONSTRAINT APPLIES_pkey PRIMARY KEY (anumber, pnumber),
 CONSTRAINT APPLIES_fkey1 FOREIGN KEY (anumber)
 REFERENCES APPLICANT (anumber)
 ON DELETE CASCADE,
 CONSTRAINT APPLIES_fkey2 FOREIGN KEY (pnumber)
 REFERENCES POSITION (pnumber)
 ON DELETE CASCADE);
/* ~~~ */

The database contains information about applicants for the positions advertised by
employers, skills, skills possessed by applicants, skills needed for positions and skills
required by other skills.

After loading data into the database the relational tables have the following sizes:
SKILL 50 data blocks
SREQUIRED 200 data blocks
APPLICANT 500data blocks
EMPLOYER 300 data blocks
EMPLBY 5000 data blocks
POSITION 500 data blocks
SPOSSESSED 300 data blocks
SNEEDED 600 data blocks
APPLIES 1000 data blocks

We would like to use clustering to improve performance of the following types of
queries:
(i) Find full information about the applicants who applied for a position offered by a

given employer.
(ii) Find full information about the applicants who posses a give skill.
(iii) Find full information about the skills possessed by a given applicant.
(iv) Find full information about the positions applied by a given applicant.
(v) Find full information about employers who advertise more than a given number

positions.

Express the queries above as SELECT statements.

Assume, that queries (i) and (ii) are processed 5 times per day. Assume that queries (iii)
and (iv) are processed 10 times per day. Assume that query (v) is processed 10 times per
day.

Assume that if the relational tables r and s consist of br and bs blocks then their
sequential scan requires br and bs read block operations and their join, i.e. r JOIN s
requires 3 * (br + bs) read block operations.

Use a method of finding suboptimal clustering explained to you during the lecture classes
in a presentation 18 Clustering relational tables to find suboptimal clustering of the
sample database that improves the performance of the queries listed above.

Denormalization of relational tables

Task 13
Consider the following query template:

Find an order key, (O_ORDERKEY), order status (O_ORDERSTATUS), order value
(O_TOTALPRICE) and region name (R_NAME) of all customers who submitted an
order in a given year (O_ORDERDATE).

The following is a sample query is consistent with the template above:

Find an order key, (O_ORDERKEY), order status (O_ORDERSTATUS), order value
(O_TOTALPRICE) and region name (R_NAME) of all customers who submitted an
order in 1998 (O_ORDERDATE).

Write a sample query consistent with the template above as SELECT statement operating
on the original relational table ORDERS and other tables required by the query.

Next, write SQL statements that denormalize a relational table ORDERS such that a
query listed above can be implemented as more efficient SELECT statement.

Finally, write a sample query consistent with the template above as SELECT statement
operating on a relational table ORDERS denormalized such that the new query would
provide an answer faster than a query implemented in the previous step.

Performance driven storage management

Task 14
CREATE TABLE statements listed below can be used to create a TPC W sample
database (www.tpc.org).

/* -- */
/* */
/* -------- The relational database schema for TPC-W benchmark -------- */
/* */
/* -- */

CREATE TABLE COUNTRY(
CO_ID NUMERIC(4) NOT NULL, /* Unique country ID */
CO_NAME VARCHAR(50) NOT NULL, /* Name of country */
CO_EXCHANGE NUMERIC(12,6) NOT NULL, /* Exchange rate to US$ */
CO_CURRENCY VARCHAR(18) NOT NULL, /* Name of currency */
 CONSTRAINT COUNTRY_PKEY PRIMARY KEY (CO_ID),
 CONSTRAINT COUNTRY_CHECK1 CHECK(CO_ID > 0));

CREATE TABLE ADDRESS(
ADDR_ID NUMERIC(10) NOT NULL, /* Unique address ID */
ADDR_STREET1 VARCHAR(40) NOT NULL, /* Street address, line 1 */
ADDR_STREET2 VARCHAR(40) NOT NULL, /* Street address, line 2 */
ADDR_CITY VARCHAR(30) NOT NULL, /* Name of city */
ADDR_STATE VARCHAR(20) NOT NULL, /* Name of state */
ADDR_ZIP VARCHAR(10) NOT NULL, /* Zip code or postal code */
ADDR_CO_ID NUMERIC(4) NOT NULL, /* Unique ID of country */
 CONSTRAINT ADDRESS_PKEY PRIMARY KEY (ADDR_ID),
 CONSTRAINT ADDRESS_FKEY FOREIGN KEY (ADDR_CO_ID)
 REFERENCES COUNTRY(CO_ID),
 CONSTRAINT ADDRESS_CHECK1 CHECK(ADDR_ID > 0));

CREATE TABLE AUTHOR(
A_ID NUMERIC(10) NOT NULL, /* Unique author ID */
A_FNAME VARCHAR(20) NOT NULL, /* First name of author */
A_MNAME VARCHAR(20) NOT NULL, /* Last name of author */
A_LNAME VARCHAR(20) NOT NULL, /* Middle name of author */
A_DOB DATE NOT NULL, /* Date of birth of author */
A_BIO VARCHAR(500) NOT NULL, /* About the author */
 CONSTRAINT AUTHOR_PKEY PRIMARY KEY (A_ID),
 CONSTRAINT AUTHOR_CHECK1 CHECK(A_ID > 0));

CREATE TABLE ITEM(
I_ID NUMERIC(10) NOT NULL, /* Unique ID of item */
I_TITLE VARCHAR(60) NOT NULL, /* Title of item */
I_A_ID NUMERIC(10) NOT NULL, /* Author ID of item */
I_PUB_DATE DATE NOT NULL, /* Date of release of an item */
I_PUBLISHER VARCHAR(60) NOT NULL, /* Publisher of item */
I_SUBJECT VARCHAR(60) NOT NULL, /* Subject of book */
I_DESC VARCHAR(500) NOT NULL, /* Description of item */
I_RELATED1 NUMERIC(10) NOT NULL, /* Unique item ID (I_ID) of related item */
I_RELATED2 NUMERIC(10) NOT NULL, /* Unique item ID (I_ID) of related item */
I_RELATED3 NUMERIC(10) NOT NULL, /* Unique item ID (I_ID) of related item */
I_RELATED4 NUMERIC(10) NOT NULL, /* Unique item ID (I_ID) of related item */
I_RELATED5 NUMERIC(10) NOT NULL, /* Unique item ID (I_ID) of related item */
I_THUMBNAIL VARCHAR(10), /* Pointer to thumbnail image of item */
I_IMAGE VARCHAR(10), /* Pointer to image of item */
I_SRP NUMERIC(15,2) NOT NULL, /* Suggested retail price */
I_COST NUMERIC(15,2) NOT NULL, /* Cost of item */
I_AVAIL DATE NOT NULL, /* When item is available */
I_STOCK NUMERIC(4) NOT NULL, /* Quatity in stock */
I_ISBN CHAR(13) NOT NULL, /* Product ISBN */
I_PAGE NUMERIC(4) NOT NULL, /* Number of pages of book */
I_BACKING VARCHAR(15) NOT NULL, /* Type of book:paper,hardback */
I_DIMENSIONS VARCHAR(25) NOT NULL, /* Size of book in inches */

 CONSTRAINT ITEM_PKEY PRIMARY KEY (I_ID),
 CONSTRAINT ITEM_FKEY FOREIGN KEY (I_A_ID)
 REFERENCES AUTHOR(A_ID),
 CONSTRAINT ITEM_CHECK1 CHECK(I_ID > 0),
 CONSTRAINT ITEM_CHECK2 CHECK(I_A_ID > 0));

CREATE TABLE CUSTOMER(
C_ID NUMERIC(10) NOT NULL, /* Unique ID of customer */
C_UNAME VARCHAR(20) UNIQUE NOT NULL, /* Unique user name */
C_PASSWD VARCHAR(20) NOT NULL, /* User password */
C_FNAME VARCHAR(15) NOT NULL, /* First name of customer */
C_LNAME VARCHAR(15) NOT NULL, /* Last name of customer */
C_ADDR_ID NUMERIC(10) NOT NULL, /* Address ID of customer */
C_PHONE VARCHAR(16) NOT NULL, /* Phone number of customer */
C_EMAIL VARCHAR(50) NOT NULL, /* Email for purchase confirmation */
C_SINCE DATE NOT NULL, /* Date of registration */
C_LAST_VISIT DATE NOT NULL, /* Date of last visit */
C_LOGIN TIMESTAMP NOT NULL, /* Start of current customer session */
C_EXPIRATION TIMESTAMP NOT NULL, /* Current customer session expiry */
C_DISCOUNT NUMERIC(3,2) NOT NULL, /* Percentage discount */
C_BALANCE NUMERIC(15,2) NOT NULL, /* Balance of customer */
C_YTD_PMT NUMERIC(15,2) NOT NULL, /* Year-to-date payments */
C_BIRTHDATE DATE NOT NULL, /* Birth date */
C_DATA VARCHAR(500) NOT NULL, /* Miscellaneous information */
 CONSTRAINT CUSTOMER_PKEY PRIMARY KEY (C_ID),
 CONSTRAINT CUSTOMER_FKEY FOREIGN KEY (C_ADDR_ID)
 REFERENCES ADDRESS(ADDR_ID),
 CONSTRAINT CUSTOMER_CHECK1 CHECK(C_ID > 0),
 CONSTRAINT CUSTOMER_CHECK2 CHECK(C_ADDR_ID > 0));

CREATE TABLE ORDERS(
O_ID NUMERIC(10) NOT NULL, /* Unique ID of order */
O_C_ID NUMERIC(10) NOT NULL, /* Customer ID */
O_DATE TIMESTAMP NOT NULL, /* Order date an time */
O_SUB_TOTAL NUMERIC(15,2) NOT NULL, /* Subtotal of all order-line items */
O_TAX NUMERIC(15,2) NOT NULL, /* tax over subtotal */
O_TOTAL NUMERIC(15,2) NOT NULL, /* Total for this order */
O_SHIP_DATE TIMESTAMP NOT NULL, /* Method of delivery */
O_SHIP_TYPE VARCHAR(10) NOT NULL, /* Order ship date */
O_BILL_ADDR_ID NUMERIC(10) NOT NULL, /* Address ID to bull */
O_SHIP_ADDR_ID NUMERIC(10) NOT NULL, /* Address ID to ship order */
O_STATUS VARCHAR(15) NOT NULL, /* Order status */
 CONSTRAINT ORDERS_PKEY PRIMARY KEY (O_ID),
 CONSTRAINT ORDERS_FKEY1 FOREIGN KEY (O_C_ID)
 REFERENCES CUSTOMER(C_ID),
 CONSTRAINT ORDERS_FKEY2 FOREIGN KEY (O_SHIP_ADDR_ID)
 REFERENCES ADDRESS(ADDR_ID),
 CONSTRAINT ORDERS_FKEY3 FOREIGN KEY (O_BILL_ADDR_ID)
 REFERENCES ADDRESS(ADDR_ID),
 CONSTRAINT ORDER_CHECK1 CHECK(O_ID > 0),
 CONSTRAINT ORDER_CHECK2 CHECK(O_C_ID > 0),
 CONSTRAINT ORDER_CHECK3 CHECK(O_BILL_ADDR_ID > 0),
 CONSTRAINT ORDER_CHECK4 CHECK(O_SHIP_ADDR_ID > 0));

CREATE TABLE CC_XACTS(
CX_O_ID NUMERIC(10) NOT NULL, /* Unique order ID */
CX_TYPE VARCHAR(10) NOT NULL, /* Credit cardc type */
CX_NUM NUMERIC(16) NOT NULL, /* Credit card number */
CX_NAME VARCHAR(31) NOT NULL, /* Name of credit card */
CX_EXPIRY TIMESTAMP NOT NULL, /* Expiration date */
CX_AUTH_ID CHAR(15) NOT NULL, /* Authorization for transaction amount */
CX_XACT_AMT NUMERIC(15,2) NOT NULL, /* Amount for this transaction */
CX_XACT_DATE TIMESTAMP NOT NULL, /* Date and time of authorization */
CX_CO_ID NUMERIC(4) NOT NULL, /* Country when transaction originated */
 CONSTRAINT CC_XACTS_PKEY PRIMARY KEY (CX_O_ID),
 CONSTRAINT CC_XACTS_FKEY1 FOREIGN KEY (CX_CO_ID)
 REFERENCES COUNTRY(CO_ID),

 CONSTRAINT CC_XACTS_FKEY2 FOREIGN KEY (CX_O_ID)
 REFERENCES ORDERS(O_ID),
 CONSTRAINT CC_XACTS_CHECK1 CHECK(CX_O_ID > 0),
 CONSTRAINT CC_XACTS_CHECK2 CHECK(CX_CO_ID > 0));

CREATE TABLE ORDER_LINE(
OL_ID NUMERIC(10) NOT NULL, /* Unique order-line item ID */
OL_O_ID NUMERIC(10) NOT NULL, /* Order ID */
OL_I_ID NUMERIC(10) NOT NULL, /* Unique item ID */
OL_QTY NUMERIC(3) NOT NULL, /* Quantity of item */
OL_DISCOUNT NUMERIC(3,2) NOT NULL, /* Percentage discount off of stock retail price
*/
OL_COMMENTS VARCHAR(100) NOT NULL, /* Special instructions */
 CONSTRAINT ORDER_LINE_PKEY PRIMARY KEY (OL_ID, OL_O_ID),
 CONSTRAINT ORDER_LINE_FKEY1 FOREIGN KEY (OL_I_ID)
 REFERENCES ITEM(I_ID),
 CONSTRAINT ORDER_LINE_FKEY2 FOREIGN KEY (OL_O_ID)
 REFERENCES ORDERS(O_ID),
 CONSTRAINT ORDER_LINE_CHECK1 CHECK(OL_ID > 0),
 CONSTRAINT ORDER_LINE_CHECK2 CHECK(OL_O_ID > 0),
 CONSTRAINT ORDER_LINE_CHECK3 CHECK(OL_I_ID > 0));

The TPC W database contains information about the orders submitted by the customers,
the items included in the orders, the authors of the items, the addresses and the countries
the customers belong to and credit card numbers.

Assume, that to avoid the conflicts with the accesses to the relational tables of TPC W
sample database we would like to distribute the relational tables and automatically
created indexes on primary keys on three different hard drives. Do not worry if your
computer does not have three hard drives. We shall simulate the drives through three
different tablespaces DRIVE_C, DRIVE_D, and DRIVE_E. To find out, which relational
tables and, which indexes should be located on each drive we shall consider the following
database applications.

(1) Find a complete information about the items whose total ordered quantity
(attribute OL_QTY) is higher than a give value.

(2) Find the first name and the last name (attributes C_FNAME, C_LNAME) of the
customers who ordered more than 10 items in a single order.

(3) Find the credit card numbers (attribute CC_NUM) of the customers who
submitted more than 100 orders.

(4) Find the full addresses of the customers who ordered a given item (attribute
I_TITLE).

(5) Find the dates of orders (attribute O_DATE) submitted by the customers living
in a given country (attribute CO_NAME).

Analyze the applications listed above and find which relational tables and which indexes
will be used by each application and distribute the relational tables and indexes over the
hard drives simulated by the tablespaces DRIVE_C, DRIVE_D, and DRIVE_E such, that
the relational tables and indexes used in the same application are located on different hard
drives. If it is impossible to distribute the relational tables and indexes used by the same
application on the different hard drives then try to minimize the total number of conflicts.

Performance driven re-organization of relational tables
Task 15
Write SQL script that implements the following operations on a sample database:

First, the script connects as a user SYSTEM and increases the size of tablespace
CSCI315 by the additional 200 Mbytes.

Next, the script connects as a user CSCI315 and finds the total number of rows in the
relational tables LINEITEM, ORDERS, and CUSTOMER. The total number of rows for all
tables must be listed in one (!) line.

Next, the script executes a statement ANALYZE TABLE for each one of the relational
tables LINEITEM, ORDERS, and CUSTOMER. Then, the script lists an average amount
free space counted in bytes in the data blocks used for the implementation of each one of
the relational tables LINEITEM, ORDERS, and CUSTOMER.. An average amount of free
space in data blocks can be found in a relational view USER_TABLES in a column
AVG_SPACE.

Next, the script executes a script delcust.sql, which creates a relational table
DELCUST and fills the table with the identifiers of customers (attribute D_CUSTKEY) to
be deleted from the database. At the end of this step the script lists the total number of
rows in a relational table DELCUST.

Next, the script deletes from a relational table CUSTOMER all customers such that
identifier of each customer is included in a relational table DELCUST. Information about
all other customers must be left in a relational table CUSTOMER.

Then, the script deletes information about all orders submitted by the customers delete
from a relational table CUSTOMER. Together with orders all information about ordered
items must be removed from a relational table LINEITEM. In fact, step (5) and step (6)
can be performed in any order, which is convenient for you.

Next, the script executes a statement ANALYZE TABLE for each one of the relational
tables LINEITEM, ORDERS, and CUSTOMER. Then, the script lists an average amount
free space counted in bytes in the data blocks used for the implementation of each one of
the relational tables LINEITEM, ORDERS, and CUSTOMER. An average amount of free
space in data blocks can be found in a relational view USER_TABLES in a column
AVG_SPACE.

Next, the script performs re-organization of the relational tables LINEITEM, ORDERS,
and CUSTOMER to minimize an average amount of free space in data blocks. A way how
you re-organize the relational tables is up to you. You can follow the methods presented
in Homework 8. It is not allowed to change the size of a database block. The values of the
other parameters of the relational tables are up to you.

Next, the script executes a statement ANALYZE TABLE for each one of the relational
tables LINEITEM, ORDERS, and CUSTOMER. Then, the script lists an average amount
free space counted in bytes in the data blocks used for the implementation of each one of
the relational tables LINEITEM, ORDERS, and CUSTOMER. An average amount of free
space in data blocks can be found in a relational view USER_TABLES in a column
AVG_SPACE.

 Finally, the script lists the total number of rows in the relational tables
LINEITEM, ORDERS, and CUSTOMER. The total number of rows for all tables must be
listed in one (!) line.

Rewriting SELECT statements

Task 16
For each one of SELECT statements listed below construct a new SELECT statement
equivalent to the original one and more efficient than the original one.

(1)
SELECT L_TAX
FROM LINEITEM
WHERE L_QUANTITY > 100
UNION
SELECT L_TAX
FROM LINEITEM
WHERE L_QUANTITY < 10;

(2)
SELECT S1.S_NAME
FROM SUPPLIER S1 JOIN SUPPLIER S2
 ON S1.S_NAME >= S2.S_NAME
GROUP BY S1.S_NAME
HAVING COUNT(*) = (SELECT COUNT(DISTINCT S_NAME)
 FROM SUPPLIER);

(3)
SELECT PS_PARTKEY, PS_AVAILQTY
FROM PARTSUPP
WHERE PS_PARTKEY IN (SELECT P_PARTKEY
 FROM PART
 WHERE P_PARTKEY = 100);

(4)
SELECT DISTINCT P_TYPE, P_RETAILPRICE
FROM PART
WHERE P_RETAILPRICE =
 (SELECT MAX(P.P_RETAILPRICE)
 FROM PART P
 WHERE P.P_TYPE = PART.P_TYPE)
ORDER BY P_TYPE ASC;

(5)
SELECT P_PARTKEY
FROM PART
WHERE P_RETAILPRICE > 900 AND
 P_PARTKEY IN (SELECT P_PARTKEY
 FROM PART
 WHERE P_RETAILPRICE < 920);

(6)
SELECT LINEITEM.L_PARTKEY, LINEITEM.L_SUPPKEY, LINEITEM.L_ORDERKEY
FROM LINEITEM
WHERE (LINEITEM.L_PARTKEY, LINEITEM.L_SUPPKEY, LINEITEM.L_ORDERKEY)
IN
 (SELECT LINEITEM.L_PARTKEY, LINEITEM.L_SUPPKEY,
LINEITEM.L_ORDERKEY
 FROM LINEITEM JOIN ORDERS
 ON LINEITEM.L_ORDERKEY = ORDERS.O_ORDERKEY
 WHERE LINEITEM.L_PARTKEY IN (46557,20193,45690,45123)
 UNION
 SELECT LINEITEM.L_PARTKEY, LINEITEM.L_SUPPKEY,
LINEITEM.L_ORDERKEY
 FROM LINEITEM
 WHERE LINEITEM.L_PARTKEY IN (46557,45690,45123) AND
 LINEITEM.L_SUPPKEY IN
 (SELECT PS_SUPPKEY
 FROM PARTSUPP
 WHERE PARTSUPP.PS_PARTKEY IN (46557,45690,45123)))
ORDER BY LINEITEM.L_PARTKEY ASC, LINEITEM.L_SUPPKEY ASC,
LINEITEM.L_ORDERKEY ASC

(7)
SELECT LINEITEM.L_ORDERKEY, LINEITEM.L_LINENUMBER
FROM LINEITEM JOIN PART
 ON LINEITEM.L_PARTKEY = PART.P_PARTKEY
WHERE PART.P_PARTKEY IN (46557,20193,19110,45690,45123)
 MINUS
 (SELECT LINEITEM.L_ORDERKEY, LINEITEM.L_LINENUMBER
 FROM LINEITEM JOIN PART
 ON LINEITEM.L_PARTKEY = PART.P_PARTKEY
 WHERE PART.P_PARTKEY IN (46557,20193,19110,45690,45123)
 MINUS
 SELECT LINEITEM.L_ORDERKEY, LINEITEM.L_LINENUMBER
 FROM LINEITEM JOIN SUPPLIER
 ON LINEITEM.L_SUPPKEY = SUPPLIER.S_SUPPKEY
 WHERE SUPPLIER.S_SUPPKEY IN (4567,2323,1987,2194,1111));

Other interesting problems
Task 17
Implement SQL script that creates an index IDXT7(P_NAME, P_BRAND, P_SIZE)
over a relational table PART. Then, find SELECT statements that will use the index in the
following ways:

(i) Execution of the first SELECT statement must traverse the index vertically and it
must not access a relational table PART.

(ii) Execution of the second SELECT statement must traverse the index vertically and
later on horizontally and it must not access a relational table PART.

(iii) Execution of the third SELECT statement must traverse the leaf level of the index
horizontally and it must not access a relational table PART.

(iv) Execution of the fourth SELECT statement must traverse the index vertically and
it must access a relational table PART.

(v) Execution of the fifth SELECT statement must traverse the index vertically and
later on horizontally and it must access a relational table PART.

(vi) Execution if the sixth SELECT statement must traverse the leaf level of the index
horizontally and it must access a relational table PART.

End of sample problems

Task z
Indexing
Consider TPC-R benchmark database owned by a user CSCI315 (see an Experiment 9.1
for more details related to TPC-R database).

Implement the queries listed below as SELECT statements and for each one of the
queries propose the indexing schema (one or more indexes) that speeds up query
processing. Consider all queries as independent such that each indexing schema for one
query is independent from an indexing schema for another query. A good idea is to drop
all indexes implemented for one query before testing an indexing schema for another
query.

Use SQL script testsql.sql provided in Experiment 9.2 to find the execution plans
and execution statistics for each implemented query. Use testsql.sql twice, first
time before indexing and second time after indexing. Repeat the testing for each query.

(1)
Find name (P_NAME) and retail price (P_RETAILPRICE) of all parts in a brand
(P_BRAND) Brand#51 and supplied by a supplier from CANADA (N_NAME).

(2)
Find the total number of orders issued by a customer (C_NAME)
Customer#000000374 and an order includes at least one part
with quantity (L_QUANTITY) greater than 40.

(3)
Find the total number of lines included in each order, list order status
(O_ORDERSTATUS), order date (O_ORDERDATE), and order total price
(O_TOTALPRICE).

(4)
Find the names of customers (C_NAME) from EUROPE (R_NAME) who did not include
into their orders the parts supplied by a supplier Supplier#000000400 (S_NAME).

(5)
Find the quantities of items (L_QUANTITY) that got discount equal to 0.1. Do not
display the same quantities more than one time and display the quantities ordered in an
ascending way.

Storage management
Task y
Download a file tpcw.pdf and SQL script dbcreate5.sql and dbdrop.sql.

A script dbcreate5.sql contains SQL statements that can be used to create a TPC W
sample database (www.tpc.org). A conceptual schema of TPC W database is included
in a file tpcw.pdf.

The TPC W database contains information about the orders submitted by the customers,
the items included in the orders, the authors of the items, the addresses and the countries
the customers belong to and credit card numbers. Analyze a conceptual schema of the
sample database and the referential integrity constraints to find out how information is
structured in the database.

Assume, that to avoid the conflicts with the accesses to the relational tables of TPC W
sample database we would like to distribute the relational tables and automatically
created indexes on primary keys on three different hard drives. Do not worry if your
computer does not have three hard drives. We shall simulate the drives through three
different tablespaces DRIVE_C, DRIVE_D, and DRIVE_E. To find out, which relational
tables and, which indexes should be located on each drive we shall consider the following
database applications.

(6) Find a complete information about the items whose total ordered quantity
(attribute OL_QTY) is higher than a give value.

(7) Find the first name and the last name (attributes C_FNAME, C_LNAME) of the
customers who ordered more than 10 items in a single order.

(8) Find the credit card numbers (attribute CC_NUM) of the customers who
submitted more than 100 orders.

(9) Find the full addresses of the customers who ordered a given item (attribute
I_TITLE).

(10) Find the dates of orders (attribute O_DATE) submitted by the customers living
in a given country (attribute CO_NAME).

Analyze the applications listed above and find which relational tables and which indexes
will be used by each application and distribute the relational tables and indexes over the
hard drives simulated by the tablespaces DRIVE_C, DRIVE_D, and DRIVE_E such, that
the relational tables and indexes used in the same application are located on different hard
drives. If it is impossible to distribute the relational tables and indexes used by the same
application on the different hard drives then try to minimize the total number of conflicts.

In the next step of the implementation task modify SQL script dbcreate5.sql such
that its execution creates the tablespaces DRIVE_C, DRIVE_D, and DRIVE_E with the
parameters required below, and it creates the relational tables of TPC W sample database
in the tablespaces. The requirements imposed on the tablespaces are the following.

(1) A tablespace DRIVE_C be a locally managed tablespace and it must have a
uniform allocation of extents with the size of each extent equal to 64 Kbytes. The
size of the tablespace must be 10 Mbytes. It must have automatic management of
free space. It must not be possible to automatically extend the tablespaces created
and it must consist of only one file.

(2) A tablespace DRIVE_D must be a locally managed tablespace and it must have a
uniform allocation of extents with the size of each extent equal to 128 Kbytes. It
must have automatic management of free space. The size of the tablespace must
be 20 Mbytes. It must not be possible to automatically extend the tablespaces
created and it must consist of two files each 10 Mbytes large.

(3) A tablespace DRIVE_E must be a locally managed tablespace with automatic
allocation of extents. The size of tablespace must be 5 Mbytes.

The TPC W sample database must be owned by a user with the roles RESOURCE and
CONNECT granted and revoked UNLIMITED TABLESPACE privilege. The user must
have access to all disk space available in the tablespaces created in the previous step.

Finally, an updated script dbcreate5.sql must create the relational tables of TPC W
sample database in the tablespaces DRIVE_C, DRIVE_D, and DRIVE_E in a way that
minimizes the total number of conflicts when accessing the tablespace by the applications
listed above. When ready, execute the updated script dbcreate5.sql and produce a
report from the execution.

