Some Orthogonal Designs and complex Hadamard matrices by using two Hadamard matrices

Jennifer Seberry
and
Xian-Mo Zhang

Department of Computer Science
University College
University of New South Wales
Australian Defence Force Academy
Canberra, ACT 2600, AUSTRALIA

May 20, 1991

Abstract

We prove that if there exist Hadamard matrices of order \(h \) and \(n \) divisible by 4 then there exist two disjoint \(W(\frac{1}{2}hn, \frac{1}{2}hn) \), whose sum is a \((1, -1)\) matrix and a complex Hadamard matrix of order \(\frac{1}{2}hn \), furthermore, if there exists an \(OD(m; s_1, s_2, \ldots, s_t) \) for even \(m \) then there exists an \(OD(\frac{1}{2}hm; \frac{1}{2}hns_1, \frac{1}{2}hns_2, \ldots, \frac{1}{2}hns_t) \).

1 Introduction and Basic Definitions

A complex Hadamard matrix (see [4]), say \(C \), of order \(e \) is a matrix with elements \(1, -1, i, -i \) satisfying \(C^* = ci \), where \(C^* \) is the Hermitian conjugate of \(C \). From [4], any complex Hadamard matrix has order 1 or order divisible by 2. Let \(C = X + iY \), where \(X, Y \) consist of \(1, -1, 0 \) and \(X \Lambda Y = 0 \) where \(\Lambda \) is the Hadamard product. Clearly, if \(C \) is an complex Hadamard matrix then \(XX^T + YY^T = ci, XY^T = YX^T \).

A weighing matrix [2] of order \(n \) with weight \(k \), denoted by \(W = W(n, k) \), is a \((1, -1, 0)\) matrix satisfying \(WW^T = kf_n \). \(W(n, n) \) is an Hadamard matrix.

Let \(A_j \) be a \((1, -1, 0)\) matrix of order \(m \) and \(A_j A_j^T = s_j I_m \). An orthogonal design \(D = x_1 A_1 + x_2 A_2 + \cdots + x_t A_t \) of order \(m \) and type \((s_1, s_2, \ldots, s_t)\), written \(OD(m; s_1, s_2, \ldots, s_t) \), on the commuting variables \(x_1, x_2, \ldots, x_t \) is a square matrix with entries \(0, \pm x_1, \pm x_2, \ldots, \pm x_t \), where \(x_i \) or \(-x_i \) occurs \(s_t \) times in each row and column and distinct rows are formally orthogonal. That is

\[
DD^T = \sum_{j=1}^{t} s_j x_j^2 I_m
\]

Let M be a matrix of order tm. Then M can be expressed as

$$M = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1t} \\
M_{21} & M_{22} & \cdots & M_{2t} \\
\vdots & & & \vdots \\
M_{t1} & M_{t2} & & M_{tt}
\end{bmatrix}$$

where M_{ij} is of order m ($i, j = 1, 2, \ldots, t$). Analogously with Seberry and Yamada [3], we call this a t^2 block M-structure when M is an orthogonal matrix.

To emphasize the block structure, we use the notation $M(t)$, where $M(t) = M$ but in the form of t^2 blocks, each of which has order m.

Let N be a matrix of order tn. Then, write

$$N(t) = \begin{bmatrix}
N_{11} & N_{12} & \cdots & N_{1t} \\
N_{21} & N_{22} & \cdots & N_{2t} \\
\vdots & & & \vdots \\
N_{t1} & N_{t2} & & N_{tt}
\end{bmatrix}$$

where N_{ij} is of order n ($i, j = 1, 2, \ldots, t$).

We now define the operation \circ as the following:

$$M(t) \circ N(t) = \begin{bmatrix}
L_{11} & L_{12} & \cdots & L_{1t} \\
L_{21} & L_{22} & \cdots & L_{2t} \\
\vdots & & & \vdots \\
L_{t1} & L_{t2} & & L_{tt}
\end{bmatrix}$$

where M_{ij}, N_{ij} and L_{ij} are of order of m, n and mn, respectively and

$$L_{ij} = M_{i1} \times N_{1j} + M_{i2} \times N_{2j} + \cdots + M_{it} \times N_{tj},$$

$i, j = 1, 2, \ldots, t$. We call this the strong Kronecker multiplication of two matrices.

2 Preliminaries

Theorem 1 Let A be an $OD(tm; p_1, \ldots, p_t)$ with entries z_1, \ldots, z_t and B be an $OD(tm; q_1, \ldots, q_t)$ with entries y_1, \ldots, y_t, then

$$(A(t) \circ B(t))(A(t) \circ B(t))^T = \left(\sum_{j=1}^{t} p_j x_j^2\right) \left(\sum_{j=1}^{t} q_j y_j^2\right) I_{mn}.$$

$(A(t) \circ B(t)$ is not an orthogonal design but an orthogonal matrix.)
Proof.

\[A(t) = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nt} \end{bmatrix} \]

and

\[B(t) = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1t} \\ B_{21} & B_{22} & \cdots & B_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nt} \end{bmatrix} \]

where \(A_{ij} \) and \(B_{ij} \) are of orders \(m \) and \(n \) respectively \((i, j = 1, 2, \cdots, t)\).

Write

\[C = (A(0) \circ B(0))(A(1) \circ B(1))^T = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1t} \\ C_{21} & C_{22} & \cdots & C_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nt} \end{bmatrix} \]

where \(C_{ij} \) is of order \(mn \).

We first prove \(C_{13} = 0 \). It is easy to calculate \(C_{13} = \)

\[
= \sum_{j=1}^{t} (A_{11} \times B_{1j}) + A_{12} \times B_{2j} + \cdots + A_{1t} \times B_{tj} (A_{31}^T \times B_{1j}^T + A_{32}^T \times B_{2j}^T + \cdots + A_{3t}^T \times B_{tj}^T)
\]

\[
= \sum_{j=1}^{t} ((A_{11} A_{31}^T) \times B_{1j}^T) + (A_{12} A_{32}^T) \times B_{2j}^T + \cdots + (A_{1t} A_{3t}^T) \times B_{tj}^T]
\]

\[
= (A_{11} A_{31}^T + A_{12} A_{32}^T + \cdots + A_{1t} A_{3t}^T) \times \left(\sum_{j=1}^{t} q_j y_j^2 \right) I_n.
\]

But

\[A_{11} A_{31}^T + A_{12} A_{32}^T + \cdots + A_{1t} A_{3t}^T = 0,
\]

so

\[C_{13} = 0.
\]

Similarly,

\[C_{ij} = 0 \; (i \neq j).
\]

We now calculate \(C_{ii} \).

\[
C_{ii} = \sum_{j=1}^{t} (A_{1i} \times B_{1j}) + A_{2i} \times B_{2j} + \cdots + A_{ti} \times B_{tj} (A_{ii}^T \times B_{1j}^T + A_{ii}^T \times B_{2j}^T + \cdots + A_{ii}^T \times B_{tj}^T)
\]

\[
= \sum_{j=1}^{t} ((A_{1i} A_{ii}^T) \times B_{1j}^T) + (A_{2i} A_{ii}^T) \times B_{2j}^T + \cdots + (A_{ti} A_{ii}^T) \times B_{tj}^T]
\]

\[
= (A_{1i} A_{ii}^T + A_{2i} A_{ii}^T + \cdots + A_{ti} A_{ii}^T) \times \left(\sum_{j=1}^{t} q_j y_j^2 \right) I_n.
\]

95
\[
= \left(\sum_{j=1}^{l} p_j x_j^2 \right) I_m \times \left(\sum_{j=1}^{l} q_j y_j^2 \right) I_n
\]

\[
= \left(\sum_{j=1}^{l} p_j x_j^2 \right) \left(\sum_{j=1}^{l} q_j y_j^2 \right) I_{mn}.
\]

Thus

\[
(A_t \circ B_t)(A_t \circ B_t)^T = \left(\sum_{j=1}^{l} p_j x_j^2 \right) \left(\sum_{j=1}^{l} q_j y_j^2 \right) I_{mn}.
\]

Corollary 2 Let A and B be the matrices of orders tm and tn respectively, consist of
1, -1, 0 satisfying AA^T = pI_{mt} and BB^T = qI_{tn}. Then

\[
(A_t \circ B_t)(A_t \circ B_t)^T = pqI_{mn}.
\]

Proof. In this case, A = OD(tm; p), B = OD(tn; q) and x_1 = y_1 = 1.

In the remainder of this paper let $H = (H_{ij})$ and $N = (N_{ij})$ of order h and n respectively be 16 block M-structures [3]. So

\[
H = \begin{bmatrix}
H_{11} & H_{12} & H_{13} & H_{14} \\
H_{21} & H_{22} & H_{23} & H_{24} \\
H_{31} & H_{32} & H_{33} & H_{34} \\
H_{41} & H_{42} & H_{43} & H_{44}
\end{bmatrix}
\]

where

\[
\sum_{j=1}^{4} H_{ij}H_{ij}^T = hI_h = \sum_{j=1}^{4} H_{ji}H_{ji}^T,
\]

for $i = 1, 2, 3, 4$ and

\[
\sum_{j=1}^{4} H_{ij}H_{kj} = 0 = \sum_{j=1}^{4} H_{ji}H_{kj},
\]

for $i \neq k, i, k = 1, 2, 3, 4$.

Similarly, let

\[
N = \begin{bmatrix}
N_{11} & N_{12} & N_{13} & N_{14} \\
N_{21} & N_{22} & N_{23} & N_{24} \\
N_{31} & N_{32} & N_{33} & N_{34} \\
N_{41} & N_{42} & N_{43} & N_{44}
\end{bmatrix}
\]

where

\[
\sum_{j=1}^{4} N_{ij}N_{ij}^T = nI_n = \sum_{j=1}^{4} N_{ji}N_{ji}^T,
\]

for $i = 1, 2, 3, 4$ and

\[
\sum_{j=1}^{4} N_{ij}N_{kj} = 0 = \sum_{j=1}^{4} N_{ji}N_{kj},
\]

for $i \neq k, i, k = 1, 2, 3, 4$.
for \(i \neq k, i, k = 1, 2, 3, 4 \).

For ease of writing we define \(X_i = \frac{1}{2}(H_{i1} + H_{i2}), \ Y_i = \frac{1}{2}(H_{i1} - H_{i2}), \ Z_i = \frac{1}{2}(H_{i3} + H_{i4}), \ W_i = \frac{1}{2}(H_{i3} - H_{i4}) \), where \(i = 1, 2, 3, 4 \). Then both \(X_i \pm Y_i \) and \(Z_i \pm W_i \) are \((1, -1)\)-matrices with \(X_i \land Y_i = 0 \) and \(Z_i \land W_i = 0 \), \(\land \) the Hadamard product.

Let
\[
S = \frac{1}{2} \begin{bmatrix} H_{11} + H_{12} & -H_{11} + H_{12} & H_{13} + H_{14} & -H_{13} + H_{14} \\ H_{21} + H_{22} & -H_{21} + H_{22} & H_{23} + H_{24} & -H_{23} + H_{24} \\ H_{31} + H_{32} & -H_{31} + H_{32} & H_{33} + H_{34} & -H_{33} + H_{34} \\ H_{41} + H_{42} & -H_{41} + H_{42} & H_{43} + H_{44} & -H_{43} + H_{44} \end{bmatrix}
\]

Then \(S \) can be rewritten as
\[
S = \frac{1}{2} \begin{bmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\ H_{21} & H_{22} & H_{23} & H_{24} \\ H_{31} & H_{32} & H_{33} & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & +1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & +1 \end{bmatrix}
\]
or
\[
S = \begin{bmatrix} X_1 & -Y_1 & Z_1 & -W_1 \\ X_2 & -Y_2 & Z_2 & -W_2 \\ X_3 & -Y_3 & Z_3 & -W_3 \\ X_4 & -Y_4 & Z_4 & -W_4 \end{bmatrix}
\]

Obviously, \(S \) is a \((0, 1, -1)\) matrix.

Write
\[
R = \begin{bmatrix} Y_1 & X_1 & W_1 & Z_1 \\ Y_2 & X_2 & W_2 & Z_2 \\ Y_3 & X_3 & W_3 & Z_3 \\ Y_4 & X_4 & W_4 & Z_4 \end{bmatrix}
\]
also a \((0, 1, -1)\) matrix.

We note \(S \pm R \) is a \((1, -1)\) matrix, \(R \land S = 0 \) and by Corollary 1
\[
SS^T = RR^T = \frac{1}{2} h I_h,
\]

Lemma 3 If there exists an Hadamard matrix of order \(h \) divisible by 4, there exists an \(OD(h; \frac{1}{2} h, \frac{1}{2} h) \).

Proof. From \(S \) and \(R \) as above, \(H = S + R \). Note \(HH^T = SS^T + RR^T + SR^T + RS^T = h I_h \) and \(SS^T = RR^T = \frac{1}{2} h I_h \), hence \(SR^T + RS^T = 0 \). Let \(x \) and \(y \) be commuting variables then \(E = xS + yR \) is the required orthogonal design.
3 Weighing Matrices

Lemma 4 If there exist Hadamard matrices of order h and n divisible by 4, there exists a $W(\frac{1}{4}hn, \frac{1}{4}hn)$.

Proof. Let H and N as above be the Hadamard matrices of order h and n respectively. Let

\[
P = \frac{1}{2} \begin{bmatrix} X_1 & Y_1 & Z_1 & W_1 & \vdots & \vdots \\
X_2 & Y_2 & Z_2 & W_2 \\
X_3 & Y_3 & Z_3 & W_3 \\
X_4 & Y_4 & Z_4 & W_4 \\
\end{bmatrix} \odot \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \\
N_{21} & N_{22} & N_{23} & N_{24} \\
N_{31} & N_{32} & N_{33} & N_{34} \\
N_{41} & N_{42} & N_{43} & N_{44} \\
\end{bmatrix}
\]

Rewrite

\[
P = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34} \\
P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix}
\]

Consider

\[
P_{11} = \frac{1}{2}(X_1 \times N_{11} + Y_1 \times N_{21} + Z_1 \times N_{31} + W_1 \times N_{41}),
\]

where both $X_1 \times N_{11} + Y_1 \times N_{21}$ and $Z_1 \times N_{31} + W_1 \times N_{41}$ are $(1,-1)$ matrices. So P_{11} has entries 1, -1, 0 and similarly for other P_{ij}. By Lemma 1,

\[
P P^T = \frac{1}{8}hnI_{\frac{1}{4}hn}.
\]

Then P is a $W(\frac{1}{4}hn, \frac{1}{4}hn)$.

Corollary 5 There exists a $W(h, \frac{1}{2}h)$ ($h > 1$) if there exists an Hadamard matrix of order h.

Proof. If $h > 2$ let $n = 4$ in Theorem 1. For the case $h = 2$, note $W(2,1)$ is the identity matrix.

We also note that if

\[
Q = \frac{1}{2} \begin{bmatrix} X_1 & Y_1 & Z_1 & W_1 \\
X_2 & Y_2 & Z_2 & W_2 \\
X_3 & Y_3 & Z_3 & W_3 \\
X_4 & Y_4 & Z_4 & W_4 \\
\end{bmatrix} \odot \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \\
N_{21} & N_{22} & N_{23} & N_{24} \\
N_{31} & N_{32} & N_{33} & N_{34} \\
N_{41} & N_{42} & N_{43} & N_{44} \\
\end{bmatrix}
\]

Then Q is also a $W(\frac{1}{4}hn, \frac{1}{4}hn)$.

Theorem 6 Suppose h and n divisible by 4, the orders of Hadamard matrices then there exist two disjoint $W(\frac{1}{4}hn, \frac{1}{4}hn)$, whose sum and difference are $(1,-1)$ matrices.
Rewrite

\[Q = \begin{bmatrix}
Q_{11} & Q_{12} & Q_{13} & Q_{14} \\
Q_{21} & Q_{22} & Q_{23} & Q_{24} \\
Q_{31} & Q_{32} & Q_{33} & Q_{34} \\
Q_{41} & Q_{42} & Q_{43} & Q_{44}
\end{bmatrix} . \]

We note

\[P_{ij} = \frac{1}{2}(X_i \times N_{ij} + Y_i \times N_{2j} + Z_i \times N_{3j} + W_i \times N_{4j}) , \]

and

\[Q_{ij} = \frac{1}{2}(X_i \times N_{ij} + Y_i \times N_{2j} - Z_i \times N_{3j} - W_i \times N_{4j}) . \]

Since \(P_{ij} + Q_{ij} = X_i \times N_{ij} + Y_i \times N_{2j} \) and \(P_{ij} - Q_{ij} = Z_i \times N_{3j} + W_i \times N_{4j} \) we conclude that \(P_{ij} \pm Q_{ij} \) are \((1,-1)\) matrices and \(P_{ij} \wedge Q_{ij} = 0 \). Thus \(P \pm Q \) is a \((1,-1)\) matrix and \(P \wedge Q = 0 \). \(P \) and \(Q \) are both \((\frac{1}{2}hn, \frac{1}{2}hn)\) by Corollary 1.

4 Complex Hadamard Matrices

Lemma 7 \(PQ^T = QP^T \).

Proof. Write

\[PQ^T = \begin{bmatrix}
E_{11} & E_{12} & E_{13} & E_{14} \\
E_{21} & E_{22} & E_{23} & E_{24} \\
E_{31} & E_{32} & E_{33} & E_{34} \\
E_{41} & E_{42} & E_{43} & E_{44}
\end{bmatrix} . \]

and

\[QP^T = \begin{bmatrix}
F_{11} & F_{12} & F_{13} & F_{14} \\
F_{21} & F_{22} & F_{23} & F_{24} \\
F_{31} & F_{32} & F_{33} & F_{34} \\
F_{41} & F_{42} & F_{43} & F_{44}
\end{bmatrix} . \]

We first prove \(E_{13} = F_{13} \).

We note

\[E_{13} = \]

\[= \frac{1}{4} \sum_{j=1}^{4} (X_i \times N_{1j} + Y_i \times N_{2j} + Z_i \times N_{3j} + W_i \times N_{4j})(X_j^T \times N_{1j}^T + Y_j^T \times N_{2j}^T - Z_j^T \times N_{3j}^T - W_j^T \times N_{4j}^T) \]

and

\[F_{13} = \]

\[= \frac{1}{4} \sum_{j=1}^{4} (X_i \times N_{1j} + Y_i \times N_{2j} - Z_i \times N_{3j} - W_i \times N_{4j})(X_j^T \times N_{1j}^T + Y_j^T \times N_{2j}^T + Z_j^T \times N_{3j}^T + W_j^T \times N_{4j}^T) . \]
Obviously, \(E_{13} = F_{13} \) if and only if
\[
\sum_{j=1}^{4} (X_j \times N_{1j} + Y_j \times N_{2j})(Z_j^T \times N_{3j}^T + W_j^T \times N_{4j}^T) = 0, \tag{1}
\]

or
\[
\sum_{j=1}^{4} (Z_j \times N_{3j} + W_j \times N_{4j})(X_j^T \times N_{1j}^T + Y_j^T \times N_{2j}^T) = 0. \tag{2}
\]

To show this, note
\[
\sum_{j=1}^{4} (X_j \times N_{1j})(Z_j^T \times N_{3j}^T) = \sum_{j=1}^{4} (X_j Z_j^T) \times (N_{1j} N_{3j}^T) = X_1 Z_1^T \times \sum_{j=1}^{4} N_{1j} N_{3j}^T = 0,
\]

and similarly for other parts in (1) and (2). Thus \(E_{13} = F_{13} \). Similarly, \(E_{ij} = F_{ij} \), for other \(i \neq j \).

We now prove \(E_{ui} = F_{ui} \). We see
\[
E_{ui} = \frac{1}{4} \sum_{j=1}^{4} (X_j \times N_{1j} + Y_j \times N_{2j} + Z_j \times N_{3j} + W_j \times N_{4j})(X_j^T \times N_{1j}^T + Y_j^T \times N_{2j}^T + Z_j^T \times N_{3j}^T + W_j^T \times N_{4j}^T)
\]

and
\[
F_{ui} = \frac{1}{4} \sum_{j=1}^{4} (X_j \times N_{1j} + Y_j \times N_{2j} + Z_j \times N_{3j} + W_j \times N_{4j})(X_j^T \times N_{1j}^T + Y_j^T \times N_{2j}^T + Z_j^T \times N_{3j}^T + W_j^T \times N_{4j}^T).
\]

Obviously, \(E_{ui} = F_{ui} \) if and only if
\[
\sum_{j=1}^{4} (X_j \times N_{1j} + Y_j \times N_{2j})(Z_j^T \times N_{3j}^T + W_j^T \times N_{4j}^T) = 0, \tag{3}
\]

or
\[
\sum_{j=1}^{4} (Z_j \times N_{3j} + W_j \times N_{4j})(X_j^T \times N_{1j}^T + Y_j^T \times N_{2j}^T) = 0. \tag{4}
\]

The proof is the same as in (1) and (2). Hence \(E_{ui} = F_{ui} \). Finally, we conclude \(PQ^T = QP^T \).

Theorem 8 If there exist Hadamard matrices of order \(h \) and \(n \) divisible by 4 then there exists a complex Hadamard matrix of order \(\frac{1}{2}hn \).

Proof. By the proof of Theorem 2, \(P \) and \(Q \) are the two disjoint \(W(\frac{1}{2}hn, \frac{1}{2}hn) \) i.e. \(P \land Q = 0 \)

and \(P \pm Q \) is a \((1, -1)\) matrix. Furthermore by Lemma 3, \(PQ^T = QP^T \). Thus \(P + iQ \) is a complex Hadamard matrix of order \(\frac{1}{2}hn \).

100
5 Orthogonal Designs

Theorem 9 If there exist Hadamard matrices of order h, n divisible by 4 and an $OD(m; s_1, s_2, \ldots, s_l)$, where m is even, then there exists an

$$OD(\frac{1}{4}hnm; \frac{1}{4}hns_1, \frac{1}{4}hns_2, \ldots, \frac{1}{4}hns_l).$$

Proof. Let

$$D = \begin{bmatrix} D_1 & D_2 \\ D_3 & D_4 \end{bmatrix},$$

be the $OD(m; s_1, s_2, \ldots, s_l)$ on the commuting variables x_1, \ldots, x_l, where D_j is of order $\frac{1}{2}m$. Let

$$D' = \begin{bmatrix} P & Q \\ -Q & P \end{bmatrix} \circ \begin{bmatrix} D_1 & D_2 \\ D_3 & D_4 \end{bmatrix}$$

where P and Q, constructed above, are from the Hadamard matrices of order h and n.

Then by Theorem 3 and Corollary 1,

$$D'D'^T = \frac{1}{4}hn(\sum_{j} s_j x_j^2) H_{\frac{1}{4}hn}.$$

Since $P \land Q = 0$, if D consists of $0, \pm x_1, \ldots, \pm x_l$ then D' also consists of $0, \pm x_1, \ldots, \pm x_l$ so D' is an $OD(\frac{1}{4}hnm; \frac{1}{4}hns_1, \frac{1}{4}hns_2, \ldots, \frac{1}{4}hns_l)$.

Corollary 10 If there exist Hadamard matrices of order h and n divisible by 4 then there exists an $OD(\frac{1}{2}hn; \frac{1}{4}hn, \frac{1}{4}hn)$.

Proof. Let

$$D = \begin{bmatrix} z & y \\ -y & z \end{bmatrix}$$

in the proof of Theorem 4, where x and y are commuting variables, put $m = l = 2$ and $s_1 = s_2 = 1$.

6 Remark

Theorem 1 cannot be replaced by Corollary 1 because the existence of Hadamard matrices of order h and n does not imply the existence of an Hadamard matrix of order $\frac{1}{4}hn$. For example, there exist Hadamard matrices of order 4·3 and 4·71 but no Hadamard matrix of order 4·213 has been found [1], however, by Theorem 1, we have a $W(4·213, 2·213)$.
By the same result, there exists a $W(4k, 2k)$ and a complex Hadamard matrix of order $4k$, where k is

$$
\begin{array}{cccccccccccc}
781 & 789 & 917 & 1315 & 1349 & 1441 & 1633 & 1703 & 2059 & 2227 & 2489 & 2515 \\
2627 & 2733 & 3013 & 3273 & 3453 & 3479 & 3715 & 4061 & 4331 & 4435 & 4757 & 4781 \\
4899 & 4979 & 4997 & 5001 & 5109 & 5371 & 5433 & 5467 & 5515 & 5533 & 5609 & 5755 \\
5767 & 5793 & 5893 & 6009 & 6059 & 6177 & 6209 & 6233 & 6333 & 6377 & 6497 & 6539 \\
6801 & 6881 & 6887 & 6943 & 7233 & 7277 & 7387 & 7513 & 7555 & 7663 & 7739 & 7811 \\
7999 & 8023 & 8057 & 8189 & 8549 & 8591 & 8611 & 8633 & 8809 & 8879 & 8927 & 9055 \\
9097 & 9167 & 9557 & 9563 & 9573 & 9659 & 9727 & 9753 & 9757 & 9869 & 9913 & 9991 \\
\end{array}
$$

References

