Maximal q-ary Codes and Plotkin’s Bound

Conrad Mackenzie and Jennifer Seberry

Department of Architectural Sciences
University of Sydney
NSW, 2006
Australia

Department of Computer Science
University College
University of New South Wales
Australian Defense Force Academy
Canberra, ACT, 2600
Australia

Abstract

The analogue of Plotkin’s bound for q-ary codes with high distance relative to length was given by Blake and Mullin as

\[A(n,d) \leq \frac{qd}{qd - n(q-1)}, \quad qd > (q - 1)n. \]

Further we show

\[A(n,(q - 1)n/q) = qd, qd = (q - 1)n. \]

Generalized Hadamard matrices are used to obtain q-ary codes which meet these bounds. The q-ary analogue of Levenshtein’s construction is discussed and maximal codes constructed.

The codes given are often maximum distance separable, and constructions are given which include the Reed-Solomon codes, but exist for cases when the Reed-Solomon codes cannot exist.

We also study block codes over non-binary alphabets which may prove fruitful for multiple channel encoding.

1 The Plotkin Bound

By counting the sum

\[\sum_{u \in G} \sum_{v \in G} \text{dist}(u,v) \]

in two ways Blake and Mullin (p.86) show that

THEOREM 1 For an alphabet of q symbols, the maximum number of codewords of length n and distance d, A(n,d), is

\[A(n,d) \leq \frac{qd}{qd - (q - 1)n} \quad \text{for } qd > (q - 1)n \geq (q - 1)d. \]

The maximum occurs when each symbol occurs A(n,d/q) times in each column which requires q\|A(n,d).

*Research support by a grant from the Australian Computer Research Board.

Lemma 2 (i) $A(n, d) \leq qA(n-1, d)$; (ii) $A(qn, (q-1)n) \leq q^n n$.

Proof. Given a q-ary code, the codewords fall into q classes, those beginning with 0, 1, ..., $(q-1)$. One class must contain at least $1/q$ of the codewords, and so

$$A(n-1, d) \geq A(n, d)/q.$$

Thus, using theorem 1 we have

$$A(qn, (q-1)n) \leq qA(qn-1, (q-1)n)$$

$$\leq q \left(\frac{q(q-1)n}{q(q-1)n - (q-1)(qn-1)} \right)$$

$$= q^n n.$$

We now use generalized Hadamard matrices over groups of size $q, GH(n, G)$, to obtain codes which meet these bounds. Although we have discussed the case $q = 3$ elsewhere Table 1 revises the knowledge there. This paper considers $q \neq 2, 3$.

Remark. We should like to acknowledge that Christiane Engelmann and Michael Kammengarn of West Germany have pointed out that our use in a previous paper of

$$A(n, d) \leq 3 \left[\frac{d}{3d - 2n} \right] \text{ for } 3d > 2n \geq 2d$$

is incorrect and the correct result is

$$A(n, d) \leq \frac{3d}{3d - 2n} \text{ for } 3d > 2n \geq 2d.$$

A square matrix of size n with entries from a group G is called a **generalized Hadamard matrix**, $GH(n, G)$, if the inner product of any two distinct rows, $a = (a_1, ..., a_n)$, $b = (b_1, ..., b_n)$, $a_i, b_i \in G$, defined by $a \cdot b = \sum_{i=1}^{n} a_i b_i^{-1}$ is $n/|G|$ copies of G. For example, we have

$$GH(5, Z_5) = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & a & a^2 & a^3 & a^4 \\
a^4 & a^3 & a & a^2 \\
a^2 & a & a^4 & a^3 \\
a & a^2 & a^3 & a^4 \\
\end{bmatrix}$$

$$GH(6, Z_5) = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & w & w^2 & w^3 & w^4 \\
w & 1 & w & w^2 & w^3 \\
w^2 & w & 1 & w & w^3 \\
w^3 & w^2 & w & 1 & w \\
w^4 & w^3 & w^2 & w & 1 \\
\end{bmatrix}$$

38
Our constructions will extend the first of these into a code equivalent to a Reed-Solomon code. However our constructions applied to the second example give a maximal code, similar to those of Reed-Solomon, but where Reed-Solomon codes cannot exist because the finite field does not exist, for example for \(q = 6 \).

The results of de Launey, Drake, Jungnickel, Rajkundlia, Seberry, Seiden, Street and Dawson allow us to say:

Lemma 3 Let \(EA(p^i) \) be the elementary abelian group of order \(p^i \), where \(p \) is a prime. Then the following generalized Hadamard matrices exist:

(i) \(GH(p^{i+j}, EA(p^i)) \) for all \(i \geq 1, j \geq 0 \);

(ii) \(GH(2^{i+j}p^{m}, EA(p^i)) \) for all \(0 \leq k + j \leq m, 0 \leq k, j \leq m, m \geq 1, i \geq 1 \);

(iii) \(GH(2p^i, EA(p^j)), GH(4p^i, EA(p^j)) \) for all \(1 \geq 1 \);

If \(p^i - 1 = r^s \) for some prime \(r \), then there exists:

(iv) \(GH(p^{i+h}, EA(p^i)) \) for all \(1 \leq i \leq t, 1 \leq j \leq k, \ell \geq i \) or \(\ell = 0 \);

(v) \(GH(2^{i+j}p^{m-r+n}, EA(p^i)) \) for all \(0 \leq i + j + k \leq m, 0 \leq i, j, k \leq m, m, r, t \geq 1 \);

If \(q \) is a prime power and there exists a \(GH(q+1; G) \) for some group \(G \), then there exists:

(vi) \(GH(q^i(q + 1); G) \) for all \(i \geq 1 \).

For example there exists a \(GH(0; Z_3) \) so there exists \(GH(3^i, 0; Z_3) \).

As well de Launey [1984] surveys the current knowledge on non existence of generalized Hadamard matrices.

Any \(GH(n, G) \) is equivalent to a \(GH(n, G) \) with its first row and column consisting entirely of the unit element of the group.

Lemma 4 A \(GH(n, G), |G| = q \), gives block codes over a \(q \)-symbol alphabet with parameters, \((n, M, d) \):

(i) \((n, qn, (q - 1)n/q) \),

(ii) \((n - 1, qn, (q - 1)n/q - 1) \),

(iii) \((n - 1, n, (q - 1)n/q) \),

(iv) \((n - 2, n, (q - 1)n/q - 1) \),

(v) \((q + 1, q^2, q) \).
(i), (iii), (v) are maximal.

Proof. Write A for the normalized $GH(n, G)$ and $G = \{ e = a_1, \ldots, a_q \}$.
Then the required codes are:

(i)

$$B = \begin{pmatrix} A \\ a_2A \\ \vdots \\ a_qA \end{pmatrix}$$

where a_iA has the usual meaning of multiplying every element of A by a_i;

(ii) B with any column removed;

(iii) A with the first column removed;

(iv) A with the first and any other column removed;

(v) where $n = q$, let c be any column of A except the first, then C is the code

$$C = \begin{pmatrix} Ac \\ a_2Ac \\ \vdots \\ a_qAc \end{pmatrix}$$

The result follows as the distance of any two rows of A is $(q - 1)$.

Remark. An interesting paper of Zlotnik deals similarly with extended Reed-Solomon codes but his/her results are for different alphabets.

A number of authors, including de Launey, Lam, Seberry, and Street and Rodger, have studied an extension of generalized Hadamard matrices in which the elements are over a group ring, called Bhaskar Rao designs (BRD). We consider the group ring $\{0\} + G$. A *generalized Bhaskar Rao design* (GBRD) $W = g_1A_1 + g_2A_2 + \ldots + g_rA_r$, g_1G, with parameters v, b, r, k, λ satisfies

$$WW^T = rI_v$$

$$\left(\sum_{i=1}^r A_i \right) \left(\sum_{i=1}^r A_i^T \right) = (r - \lambda)I + \lambda J$$

$$J\sum_{i=1}^r A_i = kJ$$
\[
\left(\sum_{i=1}^{r} A_i \right) J = rJ,
\]

where \(A_i \) are \((0,1)-matrices\), \(\sum_{i=1}^{r} A_i \) is a BIBD \((v, b, r, k, \lambda)\). The GBRD is written GBRD\((v, b, r, k, \lambda; G)\) or GVRD\((v, k, \lambda)\) for brevity. Such designs can be extended to partially balanced and pairwise balanced designs.

In the remainder of this section we use

\[
r = \lambda(v - 1)/(k - 1), \quad b = vr/k.
\]

Lemma 5 If there exists a GBRD\((v, k, \lambda; G)\), with \(|G| = q - 1\) then writing \(t = 2(r - \lambda) + (q - 2)\lambda/(q - 1) \) there exists \(q\)-ary codes with parameters

(i) \((b, v, t)\),

(ii) \((b, v + q, \min(t, r, b - r))\),

(iii) \((b, qv, \min(r, t))\).

Proof. Let \(M\) be the BRD and \(g_1, g_2, \ldots, g_{q-1}\) the group elements. The result follows by considering the rows of

\[
M = \begin{bmatrix}
0 & \cdots & 0 \\
g_1 & \cdots & g_1 \\
\vdots & \ddots & \vdots \\
g_{q-1} & \cdots & g_{q-1} \\
\vdots & \cdots & M \\
M & \cdots & M
\end{bmatrix}, \quad \begin{bmatrix}
M \\
g_1M \\
\vdots \\
g_{q-1}M
\end{bmatrix},
\]

respectively as codewords.

Remark. Codes from BRD over alphabets other than binary should be explored as the zero-nonzero coordinates provide a code in themselves for error correction at one rate while the nonzero coordinates provide a non-binary code with maximum distance separable or near maximum distance separable codewords which could be exploited using phase or frequency variations.

2 A property of \(q\)-ary codes used to give more codewords

Lemma 6 Let \(a\) and \(b\) be two \(q\)-ary vectors. Then with \(p = q - 1\)
\[
\sum_{i=0}^{p} d(a, b + 1) = 2n
\]
\[
d(a + i, b + j) = d(a + i + k, b + j + k), \quad i, j, k \in \{0, 1, \ldots, p\}.
\]
where \(d\) is the Hamming distance.

Proof. The second part of the lemma is obviously true for linear codes but we show it is also true for block codes. We write the two codewords as

\[
a = 0 \quad \ldots \quad 0 \quad \ldots \quad p \quad \ldots \quad 0
\]
\[
b = 0 \quad \ldots \quad 0 \quad \ldots \quad p \quad \ldots \quad 0 \quad \ldots \quad 0 \quad \ldots \quad p
\]
\[
\begin{array}{c}
x_{i0} \quad x_{ip} \\
x_{p0} \\
x_{pp}
\end{array}
\]

\(x_{ij}\) is the number of coordinates which are \(i\) in \(a\) and \(j\) in \(b\).

Now

\[
d(a, b) = d(a + i, b + i) = n - \sum_{j=0}^{p} x_{ij}
\]
\[
d(a + i, b) = d(a + i, b + i - i) = n - \sum_{j=0}^{p} x_{ij+j}
\]

\vdots

\[
d(a + k, b) = d(a + i, b + i - k) = n - \sum_{j=0}^{p} x_{ij+j+k}
\]

Further,

\[
\sum_{k=0}^{p} d(a, b + k) = q \sum_{i=0}^{p} x_{ij} = (q - 1)n.
\]

This allows us to readily test the distance of a constructed code, as in the following:

Lemma 7 Suppose \(A\) is a \(q\)-ary \((p = q - 1)\) \((n, M, d)\) code. Then, writing \(A + i\),
to denote adding \(i\) to each element of \(A\) (assumed written on an additively defined alphabet).

\[
\begin{bmatrix}
A \\
A + 1 \\
\vdots \\
A + p
\end{bmatrix}
\]

42
is a q-ary \((n, q, M, d') \)-code where
\[
d' = \min \left[d(a, b), d(a, b + 1), \ldots, d(a, b + p - 1), (q - 1)n - \sum_{j=0}^{p-1} d(a, b + j) \right]
\]
a, b codewords of A.

EXAMPLE 8 Suppose
\[
A = \begin{pmatrix}
4 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 1 & 3 \\
0 & 2 & 4 & 0 & 1 \\
0 & 3 & 2 & 4 & 0 \\
0 & 0 & 1 & 3 & 2 \\
\end{pmatrix}, \quad \text{a 5-ary} \ (6, 6, 5) \ - \text{code},
\]
then to find \(d' \) we merely need to test \(a = (4, 0, 0, 0, 0, 0) \) with \(b = (0, 4, 0, 1, 3, 2) + i \) which gives \(d = \min(4, 5) = 4 \) and \(a = (0, 4, 0, 1, 3, 2) \) with \(b = (0, 2, 4, 0, 1, 3) + i \) which gives \(d = \min(4, 5) = 4 \). This gives \(d' = \min[4, 5, 4, 5] = 4 \) giving a \((6, 30, 4) \) 5-ary code.

THEOREM 9 Let \(A \) be a q-ary \((n - 1, M, d) \)-code. Further define
\[
d_i = \min_{a, b \in A} d(a, a + i), \quad i = 0, 1, \ldots, q - 1.
\]
Then there exists q-ary \((n, qM, \min(d, d_i + 1)) \) and \((n - 1, qM, \min(d_i)) \) codes.

Proof. We consider, using the notation of Lemma 7,
\[
\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
A + 1 \\
1 \\
\vdots \\
q - 1 \\
\vdots \\
A + q - 1 \\
q - 1 \\
\end{array} \right) = \left(\begin{array}{c}
N_0 \\
N_1 \\
\vdots \\
N_{q-1} \\
\end{array} \right)
\]
This gives the first code. The second follows from Lemma 7.
3 Levenshtein’s method

Let us suppose that an arbitrary $GF(m, C)$, $M = k|C| = kq$ exists, written on
the additive group, whose first column is composed entirely of zero’s; denote this
matrix M_0, and the matrix, when formed by stripping the column of zero’s, by
M^*_n.

The theory giving the construction of maximal codes requires matrices of par-
ticular orders and distances.

Lemma 10. If there exists an M_{kq} (respectively $M_{k(q+1)}$) then the rows of M'_{kq}
(respectively $M'_{k(q+1)}$) form a code with parameters $n = kq - 1, M = kq, d + k(q - 1)$
(respectively $n = kq + q - 1, M = q(k + 1), d = (k + 1)(q - 1)$).

Write

$$i = \left\lfloor \frac{d}{qd - n(q - 1)} \right\rfloor.$$

Lemma 11. If $qd > (q - 1)n \geq (q - 1)d$, then there exist integers a and b such that

$$\begin{cases}
 n = a(qi - 1) + b(qi + q - 1) \\
 d = (q - 1)ai + (q - 1)b(i + 1).
\end{cases}$$

(1)

Proof. We can define i in terms of the following inequalities:

$$\left(\frac{d}{qd - n(q - 1)}\right) - 1 < i \leq \left(\frac{d}{qd - n(q - 1)}\right),$$

that is,

$$\frac{(q - 1)(n - d)}{qd - n(q - 1)} < i \leq \frac{d}{qd - n(q - 1)}.$$

Considering the left inequality gives

$$\frac{(q - 1)(i + 1)}{qi + (q - 1)} < \frac{d}{n},$$

(2)

and the right inequality gives

$$\frac{d}{n} \leq \frac{(q - 1)i}{qi - 1}.$$

(3)

Combining (2) and (3) we obtain

$$\frac{(q - 1)(i + 1)}{qi + (q - 1)} < \frac{d}{n} \leq \frac{(q - 1)i}{qi - 1}.$$

(4)
The two inequalities of (4) may be written in determinant form:

\[
\begin{vmatrix}
 d & (q-1)(i+1) \\
 n & qi + (q-1)
\end{vmatrix} > 0 = A, \quad \text{say}
\]

\[
\begin{vmatrix}
 d & (qi - 1) \\
 n & (q - 1)i
\end{vmatrix} \geq 0 = B, \quad \text{say.}
\]

Now suppose that both \(A\) and \(B\) are both divisible by \(q - 1\). Then let

\[
A = (q-1)a
\]

\[
B = (q-1)b
\]

so (5) and (6) become

\[
A = (q-1)a = d(qi + q - 1) - n(q - 1)(i + 1)
\]

\[
B = (q-1)b = (q-1)ni - d(qi - 1),
\]

and solving (7) and (8) for \(n\) and \(d\) yields the required results (1).

Note: Requiring that \(A\) and \(B\) are divisible by \(q - 1\) imposes only one condition, namely that \(d\) is also divisible by \(q - 1\), but in the case of \(q\)-ary codes the distance is, in fact, divisible by \((q - 1)\) for maximal codes as then \(qd = (q - 1)n\).

Following Levenshtein, we define the operation of adjunction of the matrices

\[
X = (X_{ij}), \quad i = 1, 2, \cdots, L_1, \quad j = 1, 2, \cdots, n_1
\]

\[
Y = (Y_{ij}), \quad i = 1, 2, \cdots, L_2, \quad j = 1, 2, \cdots, n_2
\]

as follows:

\[
X + Y = \begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1n_2} & Y_{11} & Y_{12} & \cdots & Y_{1n_2} \\
X_{21} & X_{22} & \cdots & X_{2n_2} & Y_{21} & Y_{22} & \cdots & Y_{2n_2} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \cdots & \vdots \\
X_{L_1} & X_{L_2} & \cdots & X_{L_2n_2} & Y_{L_1} & Y_{L_2} & \cdots & Y_{L_2n_2}
\end{pmatrix}
\]

where \(L = \min(L_1, L_2)\).

The operation of extension of a matrix \(X\), \(r\) times, is defined as the result of the consecutive adjunction of \(r\) matrices \(X\).

Note: If the rows of the matrix \(X\) form a code with the parameters \(n_1, d_1\) and \(M_1\), and the rows of a matrix \(Y\) form a code with the parameters \(n_2, d_2\) and \(M_2\), then
the rows of the matrix \(aX + bY \), where \(a \) and \(b \) are integer non-negative numbers, form a code with the parameters

\[
\begin{align*}
 n &= an_1 + bn_2 \\
 d &= ad_1 + bd_2
\end{align*}
\]

and

\[
M = \min(M_1, M_2).
\]

Theorem 12 If \(d \) is divisible by \((q - 1)\) and \(qd > (q - 1)n \geq (q - 1)d \), then the following matrix \(M \) is maximal in that it meets the bound

\[
A(n, d) = q \left\lfloor \frac{d}{qd - (q - 1)n} \right\rfloor = qi
\]

\[
M = aM'_i + bM'_{i+1}
\]

\[
a = \frac{d(qi + q - 1)/(q - 1) - n(i + 1)}{i - d(qi - i)/(q - 1)}
\]

\[
b = \frac{m - d(qi - i)/(q - 1)}{i - d(qi - i)/(q - 1)}.
\]

Proof. For the proof of the theorem, it is sufficient to see, using Lemmas 10 and 11, that the above construction does indeed generate a maximal code.

Example 13 Let

\[
A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & i & i^3 \\
1 & i^2 & 0 & 1 & i \\
1 & i & i^3 & 0 & i \\
1 & i & i^3 & i^2 & 0
\end{bmatrix}
\]

be the \(\text{GBRD}(6,5,4;Z_4) \). Then \(A \) is a \((6,6,5)\)-code over a 5-ary alphabet and

\[
B = \begin{bmatrix}
A \\
iA \\
i^2A \\
i^3A
\end{bmatrix}
\]

is a \((6,24,5)\)-code over a 5-ary alphabet and

\[
\begin{bmatrix}
0 & \cdots & 0 \\
B
\end{bmatrix}
\]

is a \((6,25,5)\) maximal 5-ary code.
EXAMPLE 14 From Seberry (1980) we have that a
\[A = \text{GBRD}(p^t + 1, p^t, p^t - 1; Z_t) \text{ exists whenever } p^t \text{ is a prime power, } t \text{ divides } p^t - 1 \text{ and } Z_t \text{ is a cyclic group. If the elements of the group are } 1, g_1, \ldots, g_{t-1}, \text{ then} \]
\[
\begin{bmatrix}
0 & \cdots & 0 \\
A & g_1A \\
& \cdot \\
g_{t-1}A
\end{bmatrix}
\]
is a \((p^t + 1, t(p^t + 1) + 1, p^t)\)-code over a \((t+1)\)-ary alphabet. When \(t = p^t - 1\) this gives a maximal code.

COROLLARY 15 Let \(p^t\) be a prime power. Then there exists a \((p^t + 1, p^t + 1, p^t)\)
maximal code over a \(p^t\)-ary alphabet.

EXAMPLE 16 From de Launey (1987) a \(W = \text{GBRD}\left(\sum_{j=1}^{t-1} p^t, p^t, p^{t-2}(p-1); Z_{t-1}\right)\)
t \(\geq 3\), exists whenever \(p^t\) is a prime power and \(Z_{t-1}\) is a cyclic group. Then proceeding as in Example 14 we have a \(((p^t - 1)/(p - 1), p^{t-2}(p - 1) + 1, p^{t-2}(p - 1))\)
-code over a \(p\)-ary alphabet.

EXAMPLE 17 The following are \(4\)-ary codes.

A structured \((7,8,6)\)-code (maximal)

- aaaaaa, baceebc
- cebcbac, cbaaceeb
- ceeebcsa, bcbacec
- aceebcb, ebcbace

A structured \((5,10,4)\)-code (maximal)

A \((6,8,5)\)-code

- aaaaa, ceecc, aabdc, abedo
- aceec, aaaaa, daabc, dabac
- cacec, ecabdc, cdaab, cdbbc
- eceac, bceaebc, bcdaa, acdab
- eceed, cbceebc, abcde, bcdea
- cecce, bcebeab, abcde
- abceeb, abceeb
- babcc, eabce
- cbabc, ccbab
- bceba, aebbe
- eceeb, bceeb
- beaeb, bheae
- ebbea

A \((10,5,9)\)-code

- aaaaa, ceecc, aabdc, abedo
- aceec, aaaaa, daabc, dabac
- cacec, ecabdc, cdaab, cdbbc
- eceac, bceaebc, bcdaa, acdab
- eceed, cbceebc, abcde, bcdea
- cecce, bcebeab, abcde
- abceeb, abceeb
- babcc, eabce
- cbabc, ccbab
- bceba, aebbe
- eceeb, bceeb
- beaeb, bheae
- ebbea

47
EXAMPLE 18 The following are 5-ary codes.

5-ary (7,15,8)-code (maximal) 5-ary (8,10,7)-code

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>n</th>
<th>M(usual)</th>
<th>M(maximal)</th>
<th>d</th>
<th>Construction or Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>GRS(3,9)</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>18</td>
<td>4</td>
<td>MacKay and Seberry</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>37</td>
<td>3</td>
<td>From (8,16,4)-code</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>27</td>
<td>3</td>
<td>From (9,27,6)-code</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>27</td>
<td>3</td>
<td>From (9,27,6)-code</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>27</td>
<td>3</td>
<td>From (9,27,6)-code</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>27</td>
<td>3</td>
<td>From (9,27,6)-code</td>
</tr>
<tr>
<td>10</td>
<td>54</td>
<td>54</td>
<td>4</td>
<td>MacKay and Seberry</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>36</td>
<td>7</td>
<td>From (12,36,8)-code</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>36</td>
<td>7</td>
<td>From (12,36,8)-code</td>
</tr>
<tr>
<td>13</td>
<td>54</td>
<td>54</td>
<td>7</td>
<td>From (18,54,11)-code</td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>54</td>
<td>7</td>
<td>From (18,54,11)-code</td>
</tr>
<tr>
<td>15</td>
<td>54</td>
<td>54</td>
<td>7</td>
<td>From (18,54,11)-code</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>45</td>
<td>10</td>
<td>(6,18,4,9,27,6)</td>
</tr>
<tr>
<td>17</td>
<td>54</td>
<td>54</td>
<td>11</td>
<td>From (18,54,11)-code</td>
</tr>
<tr>
<td>18</td>
<td>54</td>
<td>54</td>
<td>12</td>
<td>GRS(18,54)</td>
</tr>
<tr>
<td>19</td>
<td>57</td>
<td>57</td>
<td>13</td>
<td>Codasity 6</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>21</td>
<td>13</td>
<td>From (21,21,14)-code</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>63</td>
<td>14</td>
<td>Codasity 6</td>
</tr>
<tr>
<td>22</td>
<td>72</td>
<td>72</td>
<td>15</td>
<td>From (23,72,15)-code</td>
</tr>
<tr>
<td>23</td>
<td>72</td>
<td>72</td>
<td>15</td>
<td>From (23,72,15)-code</td>
</tr>
<tr>
<td>24</td>
<td>72</td>
<td>72</td>
<td>15</td>
<td>From (23,72,15)-code</td>
</tr>
<tr>
<td>25</td>
<td>51</td>
<td>51</td>
<td>16</td>
<td>From (25,51,17)-code</td>
</tr>
<tr>
<td>26</td>
<td>51</td>
<td>51</td>
<td>17</td>
<td>From (25,51,17)-code</td>
</tr>
<tr>
<td>27</td>
<td>51</td>
<td>51</td>
<td>18</td>
<td>From (25,51,17)-code</td>
</tr>
<tr>
<td>28</td>
<td>50</td>
<td>50</td>
<td>19</td>
<td>From (25,50,12)-code</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>50</td>
<td>19</td>
<td>From (25,50,12)-code</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td>GRS(30,50)</td>
</tr>
</tbody>
</table>

48
Table 2
Codes with $45 \geq 3n \geq 36$, $q = 4$

<table>
<thead>
<tr>
<th>n</th>
<th>$M(\text{round})$</th>
<th>$M(\text{max})$</th>
<th>d</th>
<th>Construction or Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
<td>GRI(4, EA(4))</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>10</td>
<td>4</td>
<td>Lemma 4(v), Example 14</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>Example 14</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>Lemma 4(ii) and GRI(4, EA(4)), Example 14</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>32</td>
<td>6</td>
<td>GRI(4, EA(4))</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>28</td>
<td>7</td>
<td>$(5,16,5) + (3,16,4)$ codes</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>$(5,16,3) + (3,16,4)$ codes</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>Example 17</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>9</td>
<td>Lemma 4(ii) and GRI(12, EA(4))</td>
</tr>
<tr>
<td>13</td>
<td>48</td>
<td>48</td>
<td>9</td>
<td>GRI(12, EA(4))</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>40</td>
<td>10</td>
<td>$(5,16,6) + (8,32,6)$ codes</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>22</td>
<td>11</td>
<td>$(5,16,6) + (5,28,6)$ codes</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>12</td>
<td>Lemma 4(ii) and GRI(12, EA(4))</td>
</tr>
<tr>
<td>17</td>
<td>64</td>
<td>64</td>
<td>12</td>
<td>GRI(12, EA(4))</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>32</td>
<td>13</td>
<td>$(8,32,6) + (8,16,6)$ codes</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>28</td>
<td>14</td>
<td>$(9,28,7) + (9,26,7)$ codes</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>20</td>
<td>15</td>
<td>$(9,28,7) + (10,16,8)$ codes</td>
</tr>
<tr>
<td>21</td>
<td>32</td>
<td>80</td>
<td>15</td>
<td>$(8,32,6) + (12,48,9)$ codes</td>
</tr>
<tr>
<td>22</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>$(3,32,5) + (3,40,10)$ codes</td>
</tr>
<tr>
<td>23</td>
<td>20</td>
<td>34</td>
<td>17</td>
<td>$(9,29,7) + (13,40,10)$ codes</td>
</tr>
<tr>
<td>24</td>
<td>36</td>
<td>36</td>
<td>18</td>
<td>$(10,16,8) + (13,40,10)$ codes</td>
</tr>
<tr>
<td>25</td>
<td>48</td>
<td>48</td>
<td>18</td>
<td>$(12,48,9)$ code twice</td>
</tr>
<tr>
<td>26</td>
<td>76</td>
<td>76</td>
<td>19</td>
<td>$(5,16,7) + (16,8,12)$ codes</td>
</tr>
<tr>
<td>27</td>
<td>80</td>
<td>80</td>
<td>20</td>
<td>$(5,32,16) + (12,48,9)$ codes</td>
</tr>
<tr>
<td>28</td>
<td>122</td>
<td>122</td>
<td>21</td>
<td>Lemma 4(6)</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>88</td>
<td>22</td>
<td>$(12,48,9) + (17,16,13)$ codes</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>46</td>
<td>23</td>
<td>$(12,48,9) + (18,28,14)$ codes</td>
</tr>
</tbody>
</table>

Table 3
Codes with $51 \geq 4n \geq 48$, $q = 5$

<table>
<thead>
<tr>
<th>n</th>
<th>$M(\text{round})$</th>
<th>$M(\text{max})$</th>
<th>d</th>
<th>Construction or Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Lemma 4(8)</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>22</td>
<td>4</td>
<td>GRI(5, EA(5))</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>25</td>
<td>5</td>
<td>Lemma 4(v)</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>13</td>
<td>6</td>
<td>Example 15</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>13</td>
<td>7</td>
<td>Example 15</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>Lemma 4(8)</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>50</td>
<td>8</td>
<td>GRI(5, EA(5))</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>45</td>
<td>9</td>
<td>$(5,25,4) + (6,35,5)$</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>25</td>
<td>10</td>
<td>$(6,25,5)$ code twice</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>$(6,25,5) + (7,35,6)$</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>$(7,25,6)$ code twice</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>75</td>
<td>12</td>
<td>GRI(15, EA(5)) does not exist</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>65</td>
<td>13</td>
<td>$(5,25,6) + (11,25,9)$</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>35</td>
<td>14</td>
<td>$(6,25,5) + (11,25,9)$</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>$(6,25,5)$ code twice</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
<td>20</td>
<td>16</td>
<td>Lemma 4(3)</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>100</td>
<td>16</td>
<td>GRI(100, EA(5))</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>85</td>
<td>17</td>
<td>$(16,50,15) + (16,25,9)$</td>
</tr>
<tr>
<td>22</td>
<td>25</td>
<td>45</td>
<td>18</td>
<td>$(11,25,9)$ code twice</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>31</td>
<td>19</td>
<td>$(11,25,9) + (12,25,10)$</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>30</td>
<td>20</td>
<td>Lemma 4(30)</td>
</tr>
<tr>
<td>25</td>
<td>125</td>
<td>125</td>
<td>20</td>
<td>GRI(25, EA(5))</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>105</td>
<td>21</td>
<td>$(10,50,15) + (16,25,15)$ codes</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>55</td>
<td>22</td>
<td>$(13,25,10) + (16,25,15)$ codes</td>
</tr>
<tr>
<td>28</td>
<td>25</td>
<td>38</td>
<td>23</td>
<td>$(12,25,10) + (16,25,17)$ codes</td>
</tr>
<tr>
<td>29</td>
<td>55</td>
<td>55</td>
<td>24</td>
<td>$(17,25,10) + (17,25,14)$ codes</td>
</tr>
<tr>
<td>30</td>
<td>125</td>
<td>125</td>
<td>25</td>
<td>Corollary 4.7 add query</td>
</tr>
</tbody>
</table>
References

