VANSTONE'S CONSTRUCTION APPLIED
TO BHASKAR RAO DESIGNS

Jennifer Seberry
Department of Computer Science
University of Sydney
N.S.W., 2006, Australia

ABSTRACT

We show how Vanstone's construction, given in his paper "A note on a construction for BIBD's", Utilitas Mathematica, 7(1975), 321-322, can be applied to symmetric GBRD(v, k, \lambda; | G |), | G | odd, can be used to obtain GBRD(v, \binom{v}{2}, \binom{k}{2}, \lambda, \binom{k}{2}; G) and hence many families of BIBD.

1. INTRODUCTION

Definitions of SBIBD and BIBD are standard.

Let A = \{a_{ij}\} be a matrix of order with a_{ij} \in \{0, 1, -1\}. A is called a weighing matrix of weight p and order n, if AA^T = A^T A = pl_n, where I_n denotes the identity matrix of order n. Such a matrix is denoted by W(n, p). If squaring all its entries gives an incidence matrix of a SBIBD then W is called a balanced weighing matrix.

An Hadamard matrix, A = \{a_{ij}\}, is a W(n,n), that is, it is a square matrix of order n with entries a_{ij} \in \{1, -1\} which satisfies

AA^T = A^T A = \kappa I_n.

A generalized Hadamard matrix GH(gh,G) = (g_{ij}) = H over the group G of order g is a gh\times gh matrix such that

(i) g_{ij} \in G for all 1 \leq i, j \leq gh, and

(ii) \sum_{k=1}^{gh} g_{ik} g_{jk}^{-1} = \sum_{a \in G} a a^* whenever i \neq j where the summation is in the group ring R(G). We also write this as

HH^* = hG.

Suppose we have a matrix W with elements from an elementary abelian group G = \{h_1, h_2, \ldots, h_g\}, where W = h_1 A_1 + h_2 A_2 + \cdots + h_g A_g; here A_1, \ldots, A_g are

CONGRESSUS NUMERANTUM 59(1987), pp.265-274
v × b (0,1) matrices, and the Hadamard product $A_i^* A_j$ ($i \neq j$) is zero. Suppose
(a_1, \ldots, a_{ib}) and (b_{j1}, \ldots, b_{jb}) are the ith and jth rows of W; then we define WW^* by

$$(WW^*)_{ij} = (a_{i1}, \ldots, a_{ib})^T (b_{j1}^T, \ldots, b_{jb}^T)$$

with \cdot designating the scalar product. Then W is a generalized Bhaskar Rao design or GBRD if

(i) $WW^* = rl + \sum_{i=1}^{m} (c_i G) B_i$

(ii) $N = A_1 + \cdots + A_m$ satisfies $NN^T = rl + \sum_{i=1}^{m} \lambda_i B_i$,

that is, N is the incidence matrix of a PBIBD (m), and $(c_i G)$ gives the number of times a complete copy of the group G occurs.

Such a matrix will be denoted by $GBRD_G(v, b, r, k, \lambda_1, \ldots, \lambda_m; c_1, \ldots, c_m)$. In this paper we shall only be concerned with $m = 1, c = \lambda_1 g$, and $B_1 = J - I$. In this case N is the incidence matrix of a PBIBD (1), that is a BIBD. Hence, the equations become:

(i) $WW^* = rl + \lambda G (J - I)$

(ii) $NN^T = (r - \lambda) J + \lambda J$.

Thus W is a $GBRD_G(v, b, r, k, \lambda)$. Since $\lambda(v-1) = r(k-1)$ and $bk = vr$, we sometimes use the notation $GBRD(v, k, \lambda; G)$.

2. THE CONSTRUCTION

In his 1975 paper, Vanstone gave a powerful method for constructing BIBD from SBIBDs. We show his method applies to symmetric GBRD over groups which have no elements of order 2.

THEOREM 1. Suppose there is a symmetric GBRD$(v, k, \lambda; G)$, $|G|$ odd, then there is a GBRD$(v, k, \lambda; G)$.

Proof: We modify the construction Vanstone used to show that an SBIBD(v, k, λ) yields a BIBD$(v, k, \lambda, \lambda; G)$.

Let $A = (a_{ij})$ be the incidence matrix of the GBRD$(v, k, \lambda; G)$. Label the columns of a $v \times \left[\begin{array}{c} \lambda \\ 2 \end{array}\right]$ matrix $B = (b_{ij})$, with the $n = \left[\begin{array}{c} v \\ 2 \end{array}\right]$ pairs from the set $\{1, \ldots, v\}$.
Consider the column labelled \(xy, (b_{1k}, \cdots, b_{nk})^T\), choose
\[b_{ik} = a_{ix}a_{iy}, \ i = 1, \ldots, v.\]

Clearly, every element of \(B\) is zero or a group element, as that was true of \(A\).

To establish the inner product property, we consider the inner product of two distinct rows
\[
\sum_{k=1}^{n} b_{ik}b_{jk}^{-1} = \sum_{1 \leq i < y \leq n} a_{ix}a_{iy}^{-1}a_{iy}^{-1}, \ i \neq j.
\]

We first note that, for any group \(G\) of order \(g\) with elements \(g_1, g_2, \cdots, g_v\)
\[G^2 = (g_1 + g_2 + \cdots + g_v)^2 = gG.\]

With \((G + \cdots + G)\) denoting \(t\) copies of \(G\)
\[(G + G + \cdots + G)^2 = tG^2 + 2\left[\sum G^{2} \right] G^{2} = t^{2} gG.\]

Since \(g\) is odd and \(n = v = t_8\), if \(g_1, \cdots, g_v\) are the elements of a row of the GBRD, \(g_1^2, \ldots, g_v^2 = tG.

Hence, noting
\[(\sum x_j)^2 = \sum x_j^2 + 2 \sum x_i x_j,
\]
\[
\sum_{1 \leq i < j \leq n} a_{ix}a_{iy}^{-1}a_{iy}^{-1} = \frac{1}{2} \left[\sum_{k=1}^{n} a_{ik}a_{jk}^{-1} \right]^2 - \frac{1}{2} \sum_{k=1}^{n} (a_{ik}a_{jk}^{-1})^2
\]
\[= \frac{1}{2}(G + G + \cdots + G)^2 - \frac{1}{2} g^2 G \quad (t \text{ copies})
\]
\[= \frac{1}{2}(t^2 g^{-1} G).
\]

Now, we know from Vanstone's result that a BIBD\((n,k,\lambda)\) gives a BIBD\((v, \lambda, \lambda, \lambda)\). Thus, we wish to show a GBRD\((v, k, \lambda; G)\) gives a BIBD\((n, \lambda, \lambda, \lambda)\).

Certainly, the underlying BIBD has these parameters. The GBRD\((v, k, \lambda; G)\) has \(t = \lambda / g\) copies of the group as the inner product of each pair of rows and the constructed GBRD needs to have \(\frac{t}{g}\) copies of the group as the inner product of each pair of rows. But
\[\frac{t}{g} = \frac{\lambda(\lambda-1)}{g} = \frac{\lambda(tg-1)}{g} = \frac{\lambda(tg-1)}{g},\]
as required.

Example 1. Let the group of order 3, \(Z_3\), have generator \(\omega\). Represent \(\omega\) by 1, \(\omega^2\) by 2 and \(\omega^3\) by 0. Then, the GH(6,\(Z_3\)) or GBRD(6, 6, 6;\(Z_3\)) is
yielding

\[
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 2 & 1 & 2 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 0 \\
2 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 2 & 0 & 2 & 1 & 1 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 2 & 1 & 1 \\
\end{array}
\]

a GBRD(6, 15, 15, 6, 15; \mathbb{Z}_3).

Example 2. Proceed as in Example 1, but represent the zero element by *. Then the GBRD(5, 4, 3; \mathbb{Z}_3)

\[
\begin{align*}
&\cdot & 0 & 0 & 0 & 0 \\
&0 & \cdot & 0 & 1 & 2 \\
&0 & 0 & \cdot & 2 & 1 \\
&0 & 1 & 2 & \cdot & 0 \\
&0 & 2 & 1 & 0 & \cdot
\end{align*}
\]

yields the GBRD(5, 10, 6, 3, 3; \mathbb{Z}_3):

\[
\begin{array}{cccccccc}
\cdot & \cdot & \cdot & 0 & 0 & 0 & 0 & 0 \\
\cdot & 0 & 1 & 2 & \cdot & \cdot & \cdot & 1 & 2 & 0 \\
0 & \cdot & 2 & 1 & \cdot & 2 & 1 & \cdot & \cdot & 0 \\
1 & 2 & \cdot & 0 & 0 & \cdot & 1 & \cdot & 2 & \cdot \\
2 & 1 & 0 & \cdot & 0 & 2 & \cdot & 1 & \cdot & \cdot \\
\end{array}
\]

This method is so powerful when applied to generalized Hadamard matrices that we give it as a theorem in its own right.

3. USING GENERALIZED HADAMARD MATRICES IN THE CONSTRUCTION TO FORM BIBDS

THEOREM 2. Suppose there is a GH(tg; G), |G| = g odd. Then there is a GBRD(tg, \left[\frac{g}{2}\right], \left[\frac{g}{2}\right], G). This can be used to form a

\[
GDD(\ g\ (g + 1), \left[\frac{g}{2}\right], \left[\frac{g}{2}\right], \ g + 1, \lambda_1 = 0, \lambda_2 = \frac{g}{2}(t g - 1), m = g, n = t g + 1).
\]

268
COMMENT. The following construction is valid for any \(\text{GH}(2 \mid G; G) \) but these are presently only known for prime power orders \(|G| \). The BIBD's constructed would be multiples of biplanes \(\text{SBIBD}(2p^2 + p + 1, 2p + 1, 2) \) but these are not generally known as yet.

Theorem 3. Let \(p \) be any prime power. Then there exists a \(\text{BIBD}(2p^2 + p + 1, p(2p^2 + p + 1), p(2p + 1), 2p + 1, 2p) \).

Proof. We note a \(\text{GH}(2p, EA(p)) \) exists for every prime power (Jungnickle 1979), D.J. Street (1979)). Use Theorem 2 to form a \(\text{GBRD}(2p, p(2p-1), p(2p-1), 2p, p(2p-1); EA(p)) \). We replace each element of the GBRD by its \(p \times p \) permutation matrix representation to obtain a \((0,1) \) matrix \(B \). Let \(e \) be the \(1 \times p(2p-1) \) matrix of ones. Then

\[
A = \begin{bmatrix} I_p \times e \\ B \end{bmatrix}
\]

is a \(\text{GDD}(2p^2 + p, p^2(2p - 1), p(2p - 1), 2p + 1, 2p + 1, \lambda_1 = 0, \lambda_2 = (2p - 1)) \).

Now a \(\text{BIBD}(2p+1, p(2p+1), 2p, 2, 1) \) exists. Let \(C \) be the matrix obtained from this BIBD by replacing each 1 and 0 in its incidence matrix by the \(p \times 1 \) matrices of ones and zeros respectively. Then the matrix

\[
[C: A]
\]

has \(2p^2 + p \) rows, \(2p^2 + p^3 + p \) columns, \(2p^2 + p \) ones per row, \(2p \) or \(2p + 1 \) ones per column and inner product \(2p \). So if we let \(f \) be a \(1 \times p(2p + 1) \) matrix of ones

\[
\begin{bmatrix} f & 0 \\ C & A \end{bmatrix}
\]

is a \(\text{BIBD}(2p^2 + p + 1, p(2p^2 + p + 1), p(2p + 1), 2p + 1, 2p) \).

\[\square \]

Corollary 4. Let \(p \) be any prime power and \(q \) any integer. Then there exists a \(\text{PBIBD}(2p^2, p(p+q)(2p-1), (p+q)(2p-1), 2p, \lambda_1 = q(2p - 1), \lambda_2 = 2p - 1 + q) \).

Proof: As in the proof of Theorem 3, we use the \(\text{GH}(2p, EA(p)) \) to first form a \(\text{GBRD}(2p, p(2p-1), p(2p-1), 2p, \lambda_1 = q(2p - 1), \lambda_2 = 2p - 1 + q) \).

This then yields a \(\text{GDD}(2p^2, p^2(2p - 1), p(2p - 1), 2p, \lambda_1 = 0, \lambda_2 = 2p - 1) \),

A. Form \(C \) as before from a \(\text{BIBD}(2p, qp(2p-1), q(2p-1), 2, q) \).

Then \([C: A] \) is a \(\text{PBIBD}(2p^2, p(p+q)(2p-1), (p+q)(2p-1), 2p, \lambda_1 = q(2p - 1), \lambda_2 = 2p - 1 + q) \).

\[\square \]
Example 3. A $\text{GH}(6,E(3))$ exists so there is a $\text{GBRD}(6,10,6,10;E(3))$. This can be used with a $\text{BIBD}(7,21,6,2,1)$ to form a $\text{BIBD}(22,66,21,7,6)$.

Example 4. A $\text{GH}(18,E(9))$ exists, so there is a $\text{GBRD}(18,153,153,18,153;E(9))$. This is used with a $\text{BIBD}(19,171,18,2,1)$ to form a $\text{BIBD}(172,9 \cdot 172,171,19,18)$.

All the following constructions can be obtained by a similar, slightly modified technique.

Theorem 5. Suppose there exists a $\text{GH}(tg,G)$, $g = 1$ G | odd. Further suppose that there exists a $\text{BIBD}(tg + 1, s(tg + 1), t, t, \lambda)$. Then there exists a $\text{BIBD}(tg^2 + g + 1, s(tg^2 + g + 1), s(tg + 1), t + 1, \lambda\alpha t)$ where $s = \alpha g / (t-1)$ is an integer and $2\alpha g / (t-1) = \beta g / (t-1)$ for some α and β. In particular, if $\alpha = \lceil \frac{g}{2} \rceil$ and $\beta = tg - t + 1$, there is a

$$\text{BIBD}(tg^2 + g + 1, s(tg^2 + g + 1) \lceil \frac{g}{2} \rceil, s(tg + 1) \lceil \frac{g}{2} \rceil, tg + 1, s(tg + 1) \lceil \frac{g}{2} \rceil).$$

Proof: From theorem 1, there exists a $\text{GBRD}(tg, \lceil \frac{g}{2} \rceil, \lceil \frac{g}{2} \rceil, \lceil \frac{g}{2} \rceil; G)$. We replace each element of G by its $p \times p$ permutation matrix to form a $(0,1)$ matrix E. Further, let e be the $(1, \lceil \frac{g}{2} \rceil$ matrix of ones. Then,

$$B = \begin{bmatrix} I_{g \times e} \\ E \end{bmatrix}$$

is a $\text{GDD}(g(tg + 1), g \lceil \frac{g}{2} \rceil, tg + 1, \lambda_1 = 0, \lambda_2 = \frac{1}{4} g(tg - 1), m = g, n = tg + 1)$. We now replace each 0 and 1 of the $\text{BIBD}(tg + 1, \lambda g(tg + 1) / (t - 1), \lambda g / (t - 1), t, \lambda)$ by the $g \times 1$ matrix of zeros and ones respectively to form a $\text{GDD}(tg+1,\lambda g(tg+1)/(t-1),\lambda g/(t-1),tg,\lambda_1 = \lambda g/(t-1),\lambda_2 = \lambda, m = g, n = tg+1)$, A.

We now form the following $(0,1)$ matrix:

$$C = \begin{bmatrix} 11 \cdots 11 & 00 \cdots 00 \\ \alpha \text{copies}A & \beta \text{copies}B \end{bmatrix}$$

The first row of C has $\alpha \lambda g(tg + 1) / (t - 1)$ ones and has intersection $\alpha \lambda g / (t - 1)$ with the other rows of C.

Every other row of C has $\alpha \lambda g / (t - 1) + \beta / 2 g(tg - 1)$ ones. So we require

$$\alpha \lambda g(tg + 1) / (t - 1) = \alpha \lambda g / (t - 1) + \beta / 2 g(tg - 1)$$

or

$$\alpha \lambda = \beta / 2 g(tg - 1)(t - 1) / (tg - t + 1) \tag{1}$$

270
The intersection numbers for the rows are required to be equal, so we need
\[\alpha \lambda g / (t - 1) = \alpha \lambda g / (t - 1) + \beta \cdot 0 = \alpha \lambda + \beta \lambda g / (t-1). \]

or, as in (1)
\[\alpha \lambda = \beta \lambda g / (t-1) / (tg - t + 1). \]

Thus C is a BIBD\((tg^2 + g + 1, \alpha \lambda g (tg^2 + g + 1)/(t-1), \alpha \lambda g (tg + 1)/ (t-1), \alpha \lambda g / (t-1)).\)

Where \(\lambda g / (t - 1) = s \) an integer, and a possible solution for \(\alpha \) and \(\beta \) is
\[\alpha = s \left(g^2 + g + 1 \right) \left(\frac{tg}{2} \right), \beta = s (tg - t + 1). \]

That is, C is a BIBD\((tg^2 + g + 1, \alpha \lambda g (tg^2 + g + 1)/(t-1), \alpha \lambda g (tg + 1)/ (t-1), \alpha \lambda g / (t-1)).\)

COROLLARY 6. Let \(g \) and \(g-1 \) be prime powers, \(g \) odd. If there exists a \(BIBD(g^2 - g + 1, g (g^2 - g + 1), g (g - 1), g - 1, g, g - 2) \) then there exists a \(BIBD(g^2 - g + 1, \alpha \lambda g (g^2 - g + 1), g (g^2 - g + 1), \alpha \lambda g (g^2 - g + 1), g^2 - g + 1, \alpha \lambda g (g - 1)), \)

where \(2 \alpha (g^2 - g + 2) = \beta (g - 1)(g^2 - g - 1) \) has an integer solution.

Proof: By a Theorem of Rajkundila (1978) and Seberry (1981), a \(GH(g(g-1); EA(g)) \) always exists in these cases.

Remark. The \(BIBD \) obtained would be a multiple of an \(SBIBD(g^3 - g^2 + g + 1, g^2 - g + 1, g - 1) \) which theoretically, can never exist, as \(g^3 - g^2 + g + 1 \) is even and \(k - \lambda = g^2 - 2g + 2 \) is not a square.

Example 5. Let \(g = 5 \). There exists a \(BIBD(21, 105, 20, 4, 3) \). Hence, there exists a \(BIBD(106, 38, 5, 106, 38, 5, 21, 38, 5, 4), \alpha = 38 \). This is a multiple of the \(SBIBD(106, 21, 4) \) which is non-existent.

COROLLARY 7. Let \(g \) be an odd prime power. Let \(\alpha = 2(4g - 1) \). Then there is a \(BIBD(4g^2 + g + 1, 2g^2 + (4g^2 + g + 1)(4g - 1), 2g^2 (4g + 1)(4g - 1), 4g + 1, 8g^2 (4g - 1)). \)

Proof: Dawson (1985) has shown a \(GH(4g, 4g; EA(g)) \) always exists. Also, the required \(BIBD(g + 1, g (4g + 1), 4g, 4, 3) \) always exists and so, with \(\alpha = 2(4g - 1), \beta = 4g - 3 \) in Theorem 5, we get the result.

Remark. This would be a multiple of the \(SBIBD(4g^2 + g + 1, 4g + 1, 4) \) but this can only exist (since \(4g^2 + g + 1 \) is even) if \(k - \lambda = 4g - 3 \) is a square.

Example 6. Let \(g = 9 \). Then \(\alpha = 70 \) and a \(BIBD(334, 70, 9, 334, 70, 9, 37, 37, 36, 70) \) exists.

COROLLARY 8. Let \(g = 3^h \). Then there exists
\(BIBD(4g^2 + g + 1, \alpha \lambda g (4g^2 + g + 1)/3, \alpha \lambda g (4g + 1)/3, 4g + 1, 4\alpha \lambda g/3) \)

where \(2 \alpha \lambda (4g - 3) = 12 \beta (4g - 1) \) for some \(\alpha \) and \(\beta \). In particular, if \(\alpha \lambda = 2(4g - 1) \)
and $\beta = (4g - 3)/3$, there is a
\[
\text{BIBD}(4g^2 + g + 1, 2g(4g - 1)/(4g^2 + g + 1), 6, 2g, 4g + 1, 6, 4g + 1, 8g(4g - 1)/3).
\]

Proof: We again use the GH(4g, EA(g)) found by Dawson (1985). We note that a
BIBD(4g + 1, $\lambda g(4g + 1)/3, 4A_g/3, \lambda$) exists for all λ. We use these in Theorem 5
to get the result.

Remark. The constructed designs are also multiples of an SBBBD(4g^2 + g + 1, 4g + 1, 4) which never exists as $4g^2 + g + 1$ is even and $k - \lambda = 4g - 3$ is never a square for $g = 3^h, h > 1$.

COROLLARY 9. Let p be an odd prime power. Suppose there exists a
BIBD($p^i + 1, q p^j (p^i + 1), q p^j, p^{i - j}, q (p^{i-j} - 1)$) where $i \geq j$, and q are integers.
Then there exists a
\[
\text{BIBD}(p^{i+j} + p^{i-j} + 1, q p^{i-j}(p^{i+j} + 1), q p^{i-j}, p^{i-j} + 1, q p^{i-j})
\]
where $2q(p^{i-j} - p^{i-j} + 1) = \beta p^{i-j}(p^{i-j} - 1)$, there is a
\[
\text{BIBD}(p^{i+j} + p^{i-j} + 1, p^{i-j}(p^{i-j} - 1)(p^{i-j} + 1), p^{i-j}(p^{i-j} + 1), p^{i-j} + 1, p^{2i-j}(p^{i-j} - 1)).
\]

Proof: Use the GH(p^i, EA(p^i), $i > j$ given by Drake (1979) or Butson (1963).

Remark. This would be a multiple of the SBBBD($p^{i+j} + p^{i-j}, p^{i-j}, p^{i-j}$). Since
$p^{i+j} + p^{i-j}$ is odd, in order for this to exist, the diophantine equation
\[
z^2 = (p^i - p^{i-j} + 1)x^2 + (-1)^{2(i-j)}y^2
\]
must have a solution in the integers for x, y, z not all zero.

Example 7. Let $i = 2, j = 1, q = 1$ and $p = 5$. A BIBD(26, 130, 25, 5, 4) exists.
Hence a BIBD(131, 600-131, 600, 26, 26, 600-5) exists.

4. USING GENERALIZED WEIGHING MATRICES IN THE CONSTRUCTION

As noted in Seberry (1979), and Geramita and Seberry (1979), infinite families of
GW matrices are known.

THEOREM 10. Let p^r be a prime power and $q | p^r - 1$, q odd. Then there exists a
\[
\text{GBBD}(p^r + 1, q p^r(p^r + 1), q p^r(p^r - 1), p^r - 1, q p^r(p^r - 2), Z_{q})
\]
and B, a GDD with parameters
\[
(q(p^r + 1), q p^r(p^r + 1), q p^r(p^r - 1), p^r - 1, q p^r(p^r - 2), Z_{q}, m = q, n = p^r + 1).
\]
Hence if, $q | p^r - 1$, there exists a
\[
\text{BIBD}(p^{2r} - 1, q p^{2r} - 2(p^r + 1), q p^{2r} - 2, p^r - 1, q(p^r - 2)).
\]
If $q | p^r - 1$, $q \neq p^r - 1$ and there exists a BIBD($p^r + 1, b$, p, $(p^r - 1)/q$, λ), A,
\[\lambda q^{p'} = p(p^r - q - 1). \] Using \(A \) to form \(a \)

\[\text{GDD}(q(p^r + 1), q, p, p^r - 1, \lambda_1 = r, \lambda_2 = \lambda) \]

then

\[[\alpha \text{ copies of } A : \beta \text{ copies of } B] \]

where \(2q\alpha(p - \lambda) = \beta(p^r - 1)(p^r - 2) \) gives a BIBD \((q(p^r + 1), B, R, p^r - 1, \alpha p)\).

Proof: We note first that a GW\((p^r+1, p^r, p^r-1; Z_q)\) exists for all \(p^r \). The proof, then, is identical to the first part of the proof of Theorem 3.

Example 8. A GW\((17, 16, 15; Z_4), q = 15, 5 \) and \(3 \) exists. This gives a BIBD\((15\cdot17, 127\cdot17, 127, 15, 7)\). Also, we have GDD\((5\cdot17, 40\cdot17, 120, 15, \lambda_1 = 0, \lambda_2 = 21, m = 5, n = 17)\) and a GDD\((3\cdot17, 24\cdot17, 120, 15, \lambda_1 = 0, \lambda_2 = 35, m = 3, n = 17)\). Since BIBD\((17, 8:17, 24, 3, 3)\) and BIBD\((17, 4:17, 20, 5, 5)\) exist, we have a BIBD\((85, 34:24, 6:24, 15, 24)\) with \(q = 5, r = 24, \lambda = 3, \alpha = \beta = 1 \) and a BIBD\((51, 1700, 500, 15, 140)\) with \(q = 3, r = 20, \lambda = 5, \alpha = 7, \) and \(\beta = 3 \).

Example 9.

We note that there exists a GW\((p^{n+1} - 1)(p - 1); Z_q)\) for all \(q \mid p^n(p - 1) \). So we can choose \(q \) odd and proceed as in the previous theorem. We do not give full results but note some examples: the GW\((21, 16; Z_3)\) gives a GBRD\((21, 12, 66; Z_3)\) and a BIBD\((63, 12, 22:60)\), the GW\((31, 25; Z_2)\) gives a GBRD\((31, 20, 190; Z_2)\) and a BIBD\((155, 20, 19:20)\), and the GW\((85, 64; Z_3)\) gives a GBRD\((85, 48, 24;47; Z_3)\) and a BIBD\((255, 24, 94:336)\).

5. REFERENCES

273

