THE DIRECTED PACKING NUMBERS

\[DD(t, v, v), \quad t \geq 4 \]

J. E. DAWSON, JENNIFER SEBERRY and D. B. SKILLCORN

Received 15 August 1982

Revised 1 November 1983

A directed packing is a maximal collection of \(k \)-subsets, called blocks, of a set of cardinality \(v \) having the property that no ordered \(t \)-subset occurs in more than one block. A block contains an ordered \(t \)-set if its symbols appear, left to right, in the block. The cardinality of such a maximal collection is denoted by \(DD(t, k, v) \). We consider the special case when \(k = v \) and derive some results on the sizes of maximal collections.

I. Introduction

Directed packings are combinatorial structures which are used in the design of statistical experiments and large computer networks [3]. A directed packing is a maximal collection of blocks of size \(k \) whose elements are selected from a set of cardinality \(v \) with the restriction that no ordered \(t \)-subset occurs in more than one block. The block \(abed \), for example, is said to contain the four triples \(abc, abd, acd \) and \(bed \). The cardinality of the maximal collection is denoted by \(DD(t, k, v) \) and the structure is called a \((t, k, v) \) directed packing.

We examine a special case where \(k \) is equal to \(v \). For (undirected) designs, coverings and packings this case is profoundly uninteresting as the structure will consist, in each case, of a single block containing all of the \(v \) symbols. However, when the blocks are ordered, non-trivial structures become possible. The \((3, v, v) \) directed packings have been examined in [2]. We obtain results which apply for larger \(t \) and give some \((4, v, v) \) and \((5, v, v) \) packings.

Some simple facts about directed packings of this kind \((k = v)\) can be observed. An upper bound, namely,

\[DD(t, v, v) \leq t! \cdot \binom{v}{t} \]

can be derived by counting the frequencies of \(t \)-sets. There are \(v(v-1)\ldots(v-t+1) \) possible ordered \(t \)-sets and \(\binom{v}{t} \) of them can be packed into each block. Since no \(t \)-set may occur more than once the result follows.

AMS subject classification (1980): 05 B 40
It is also clear that a directed packing containing two blocks, the first with symbols in arbitrary order and the second with the symbols in exactly reverse order can never contain a repeated \(t \)-set. Thus
\[
DD(t, v, v) \equiv 2
\]
for all \(v \). In fact, for any fixed \(t \) and \(v \) sufficiently large, this is the maximal directed packing as we show in section 2.

As \(v \) increases, the number of blocks in a directed packing cannot increase. Formally
\[
DD(t, v+i, v+i) \equiv DD(t, v, v)
\]
for all non-negative \(i \). This is because deleting \(i \) symbols from a \((t, v+i, v+i) \) packing gives a structure with \(v \) symbols, \(DD(t, v+i, v+i) \) blocks and certainly no repeated \(t \)-set.

2. The Erdős–Szekeres Theorem

A very old result (1935, [1]) due to Erdős and Szekeres concerns sequences containing increasing or decreasing subsequences. Let \(\gamma(i, j) \) be the minimum number of symbols such that writing them down in any order will result in a sequence containing either an increasing sequence of \(i \) symbols or a decreasing sequence of \(j \) symbols.

Theorem 1 [Erdős–Szekeres].

\[
\gamma(i, j) = (i-1)(j-1)+1.
\]

This bound is exact so that it is always possible to write down \(\gamma(i, j) - 1 \) symbols without either an increasing or decreasing sub-sequence of the appropriate length. We use this to establish

Theorem 2. If \(v \geq (t-1)^2 + 1 \) then \(DD(t, v, v) = 2 \).

Proof. Suppose \(v \geq \gamma(t, \gamma(t, t)) = (t-1)^2 + 1 \) and we attempt to construct a directed packing with more than two blocks. Without loss of generality, the first block may be 123...\(v \). Any second block may not contain an increasing \(t \)-set and thus must contain a decreasing subsequence of length \(\gamma(t, t) \). The symbols in this subsequence must contain either an increasing or decreasing subsequence of length \(t \) in any third block since there are \(\gamma(t, t) \) of them and such a \(t \)-sequence is a repeat of one in block 1 or block 2. Thus there can be at most two blocks and, from (2), at least two blocks proving the result.

3. A better lower bound

Theorem 3. If \(v \geq (t-1)^3 \) then \(DD(t, v, v) \equiv 4 \).

Proof. Consider the sets
\[
\{(a, b, c), ([Ra, Rb, c]), ([Ra, b, Rc]), ([a, Rb, Rc])\}
\]
where \(a, b, c \in \{1, 2, ..., t-1\} \) and \(R \) is the transformation taking \(i \) to \(t-i \).
If these four sets of \((t-1)^2\) triples are written with the triples \((a, b, c)\) appearing in lexicographic order, and the other sets of triples in corresponding order, then they form blocks containing symbols from a set of cardinality \((t-1)^2\) and not containing any repeated \(t\)-tuple.

An example will illustrate the procedure. Suppose that \(t=4\). Then the resulting four blocks are shown below; a numbering of the triple from 1 to 27 is also shown.

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 1</td>
<td>331 25</td>
<td>313 21</td>
<td>133 9</td>
</tr>
<tr>
<td>112 2</td>
<td>332 26</td>
<td>312 20</td>
<td>132 8</td>
</tr>
<tr>
<td>113 3</td>
<td>333 27</td>
<td>311 19</td>
<td>131 7</td>
</tr>
<tr>
<td>121 4</td>
<td>321 22</td>
<td>322 24</td>
<td>122 6</td>
</tr>
<tr>
<td>122 5</td>
<td>322 23</td>
<td>323 23</td>
<td>123 5</td>
</tr>
<tr>
<td>123 6</td>
<td>323 24</td>
<td>321 22</td>
<td>121 4</td>
</tr>
<tr>
<td>131 7</td>
<td>311 19</td>
<td>333 27</td>
<td>113 3</td>
</tr>
<tr>
<td>132 8</td>
<td>312 20</td>
<td>332 26</td>
<td>112 2</td>
</tr>
<tr>
<td>133 9</td>
<td>313 21</td>
<td>321 25</td>
<td>111 1</td>
</tr>
<tr>
<td>211 10</td>
<td>231 16</td>
<td>213 12</td>
<td>233 18</td>
</tr>
<tr>
<td>212 11</td>
<td>232 17</td>
<td>212 11</td>
<td>232 17</td>
</tr>
<tr>
<td>213 12</td>
<td>233 18</td>
<td>211 10</td>
<td>231 16</td>
</tr>
<tr>
<td>221 13</td>
<td>221 13</td>
<td>223 15</td>
<td>223 5</td>
</tr>
<tr>
<td>222 14</td>
<td>222 14</td>
<td>222 14</td>
<td>222 14</td>
</tr>
<tr>
<td>223 15</td>
<td>223 15</td>
<td>221 13</td>
<td>221 13</td>
</tr>
<tr>
<td>231 16</td>
<td>211 10</td>
<td>233 18</td>
<td>213 12</td>
</tr>
<tr>
<td>232 17</td>
<td>232 17</td>
<td>232 17</td>
<td>232 17</td>
</tr>
<tr>
<td>233 18</td>
<td>213 12</td>
<td>231 16</td>
<td>211 10</td>
</tr>
<tr>
<td>311 19</td>
<td>131 7</td>
<td>113 3</td>
<td>333 27</td>
</tr>
<tr>
<td>312 20</td>
<td>132 8</td>
<td>112 2</td>
<td>332 26</td>
</tr>
<tr>
<td>313 21</td>
<td>133 9</td>
<td>111 1</td>
<td>331 5</td>
</tr>
<tr>
<td>321 22</td>
<td>121 4</td>
<td>123 5</td>
<td>322 26</td>
</tr>
<tr>
<td>322 23</td>
<td>122 5</td>
<td>122 5</td>
<td>322 26</td>
</tr>
<tr>
<td>323 24</td>
<td>123 6</td>
<td>121 4</td>
<td>321 22</td>
</tr>
<tr>
<td>331 25</td>
<td>131 1</td>
<td>133 9</td>
<td>313 21</td>
</tr>
<tr>
<td>332 26</td>
<td>112 2</td>
<td>112 2</td>
<td>312 20</td>
</tr>
<tr>
<td>333 27</td>
<td>113 3</td>
<td>113 7</td>
<td>311 19</td>
</tr>
</tbody>
</table>

This shows that the Erdős–Szekeres bound is exact and gives the smallest value of \(v\) such that only two sets can be formed. It can be generalized to give:

Theorem 4. If \(v=p^a\) then there are \(n\) blocks of size \(v\) which contain no repeated \((p^{a-d+1})\)-set, where \(n\) is the maximum cardinality of a set \(C\) of elements of \([1, R]^a\) with minimum Hamming distance \(d\).

Proof. Let \(B\) be the block of \(v\) elements formed by taking all \(q\)-tuples of the form \((a_1, a_2, \ldots, a_q)\), where \(a_i \in \{1, 2, \ldots, p\}\), in lexicographic order. The elements of \(C\) are \(q\)-tuples of transformations which are at a Hamming distance at least \(d\) from each other; thus, for each \(R^* \in C\), a new block \(R^*(B)\) can be formed by applying \(R^* \in \{1, R\}^q\) to each \(q\)-tuple \((a_1, a_2, \ldots, a_q)\) in \(B\).

To show that two blocks contain no common \(t\)-tuple \((t=p^{a-d+1})\) let \(B\) be the block consisting of all \(q\)-tuples taken in lexicographic order, and let \(R^* \in C\); we show that \(S^*(B)\) and \(R^*(B)\) have no \(t\)-tuple in common. Consider any \(t\)-subset of
Then as $t = p^{d-2}$, there must be two members of the t-subset which agree in those positions where S^* and R^* agree. Importantly, the first position where these two t-tuples disagree is one where R^* and S^* disagree. Hence they appear in the other order in S^* than in R^*. As this is true of any t-set of g-tuples, the two blocks have no common t-tuple.

We illustrate this with an example. Suppose that $v = 16$, $p = 2$, $q = 4$. Then the elements of $(1, R)^g$ with minimum Hamming distance 2 are $(1, 1, 1, 1), (1, 1, R, R), (1, R, 1, R), (1, R, R, 1), (R, 1, 1, 1), (R, 1, R, 1), (R, R, 1, 1), (R, R, R, R)$. Thus if we form the block \{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111\} and apply the eight transformations above to it, we obtain eight blocks which are, written horizontally in decimal,

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
3 & 2 & 1 & 0 & 7 & 6 & 5 & 4 & 11 & 10 & 9 & 8 & 15 & 14 & 13 & 12 \\
5 & 4 & 7 & 6 & 1 & 0 & 3 & 2 & 13 & 12 & 15 & 14 & 9 & 8 & 11 & 10 \\
6 & 7 & 4 & 5 & 2 & 3 & 0 & 1 & 14 & 15 & 12 & 13 & 10 & 11 & 8 & 9 \\
9 & 8 & 11 & 10 & 13 & 12 & 15 & 14 & 1 & 0 & 3 & 2 & 5 & 4 & 7 & 6 \\
10 & 11 & 8 & 9 & 14 & 15 & 12 & 13 & 2 & 3 & 0 & 1 & 6 & 7 & 4 & 5 \\
12 & 13 & 14 & 15 & 8 & 9 & 10 & 11 & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\end{array}
\]

It is easy to see that this collection does not contain a repeated 5-set.

This theorem gives a number of lower bounds on the number of blocks possible. The table which follows gives some lower bounds based on Theorems 3 and 4, and on the specific examples of packings given in the next section.

| Table 1 |
| Lower Bounds on $DD(t, v, v)$ |

t	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3	6	24	15	12	4	2-	8	6	4	2-	8	6	16	4	2-	8	16	32	16	64	
4	24	15	12	4	2-	8	6	4	2-	8	16	4	2-	8	16	32	16	64			

Notice that the table entries decrease across each row, from (3), and increase down each column since a collection of blocks containing no repeated t-triple certainly contains no repeated $(t+1)$-triple. Thus lower bounds on the number of blocks in other packings are implied.
4. The Packing Numbers $DD(4, v, v)$ and $DD(5, v, v)$

From the results of the previous sections the following facts follow:

1. $DD(4, v, v) \equiv 24$.

2. $DD(4, v, v) \equiv 4$ for $v \equiv 27$.

3. $DD(4, v, v) = 2$ for $v \equiv 27$.

We show first that $DD(4, 5, 5) = 24$. If this is the case then every ordered 4-set must occur exactly once. Let i be the number of times a symbol appears in the first position, j the number of times it appears in the second position and k, l, m the number of times it occurs in the third, fourth and fifth positions respectively. Then i, j, k, l, m must satisfy the following set of equations.

$$4i + j = 24$$
$$3j + 2k = 24$$
$$2k + 3l = 24$$
$$l + 4m = 24$$

This set of equations has three solutions:

Type I: $i = 4, \hspace{.5cm} j = 8, \hspace{.5cm} k = 0, \hspace{.5cm} l = 8, \hspace{.5cm} m = 4$.

Type II: $i = 5, \hspace{.5cm} j = 4, \hspace{.5cm} k = 6, \hspace{.5cm} l = 4, \hspace{.5cm} m = 5$.

Type III: $i = 6, \hspace{.5cm} j = 0, \hspace{.5cm} k = 12, \hspace{.5cm} l = 0, \hspace{.5cm} m = 6$.

Since every position in every block must be filled, if there are A points of type I, B points of type II and C points of type III then A, B and C must satisfy the following equations:

$$4A + 5B + 6C = 24$$
$$8A + 4B = 24$$
$$6B + 12C = 24$$

giving the three solutions

(a) $A = 1, \hspace{.5cm} B = 4, \hspace{.5cm} C = 0$

(b) $A = 2, \hspace{.5cm} B = 2, \hspace{.5cm} C = 1$

(c) $A = 3, \hspace{.5cm} B = 0, \hspace{.5cm} C = 2$.
Suppose that in a solution of type (c), a and b are the symbols of type III. All blocks have either a or b in the centre position, and thus there are six blocks of the form $axbx$. This gives twelve quadruples of the form $axbx$, but there are only six different such quadruples. Hence there is no solution of type (c).

In considering solutions of type (a) and (b) we take the 24 permutations of \{a, b, c, d\} (calling these 4-blocks) and insert e in each one (forming a block), avoiding any repeated quadruple. We find four essentially distinct designs.

Firstly we look at solutions of type (b). Let a and b be the symbols of type I, c and d of type II and e of type III. Now, for any four 4-blocks of the pattern

\[abcd \quad acdb \quad cabd \quad caeb \]

we can insert e (in positions 1, 3 or 5) in only one way. Since a and b do not appear in the third position of a block, $caebd$ is a block and $acdeb$ is not. Also, $acdeb$ is not a block (for otherwise we have a repeated quadruple, $aebd$) and so $caebd$ is a block. Similarly $caebd$ is a block. Again, avoiding repeated quadruples requires $acdeb$ to be a block, and we have

\[acdeb \quad acdeb \quad caeb \quad cadbe \]

However, for the four 4-blocks

\[abcd \quad abdc \quad badc \quad badc \]

we can insert e in two ways, to get either

\[abcd \quad abdc \quad badc \quad baed, \text{ or} \]

\[abcd \quad abdc \quad baed \quad baed. \]

We have a similar choice for the four 4-blocks

\[cebd \quad cdeb \quad dcba \quad dcba. \]

The four designs resulting are the two shown below and the two got from these by interchanging e and d.

\[
\begin{array}{ccccccc}
1 & e & a & c & b & d & e \\
2 & e & a & c & b & d & e \\
3 & a & c & e & b & d & a \\
4 & a & c & e & b & d & a \\
5 & c & a & b & d & e & c \\
6 & c & a & b & d & e & c \\
7 & b & c & a & d & e & b \\
8 & b & c & a & d & e & b \\
9 & b & a & c & e & b & d \\
10 & b & c & a & e & b & d \\
11 & b & a & c & d & e & b \\
12 & b & a & c & d & e & b \\
13 & b & a & c & d & e & b \\
14 & b & a & c & d & e & b \\
\end{array}
\]

In checking these have no repeated quadruple, the reader may note that a block with e in position i cannot have a quadruple in common with a block with e in position j if $|j-i| = 1$.

We now consider solutions of type (a), letting e be the element of type I. Of the six 4-blocks of the form $axxx$, let $n(a)$ have e inserted in position 2. As there may be no repeated quadruple, $n(a) \leq 2$ (e.g., $abcd$ and $adcb$, becoming $aebcd$ and $aecd$) and these two 4-blocks must have the same element in position 3. But as $n(a) + n(b) + n(c) + n(d) = 6$, $n(a) = 2$, etc. Thus the eight 4-blocks to which e is inserted in position 2 consist of two with each of the pairs $(a, \theta(a))$, $(b, \theta(b))$, $(c, \theta(c))$ and $(d, \theta(d))$, say, in positions (1, 3). We show that θ is a bijection. Suppose, on the contrary, that $\theta(a) = \theta(b) = d$. Since d appears in the fourth position of exactly four blocks, $\theta(e) \neq d$, and also there are no blocks of the form $exxd$. Thus the one block $exxd$ and k blocks of the form $exxd$ give $3k + 1$ quadruples of the form $exxd$ and so we cannot get the six quadruples once each. Hence this case is impossible.

Similarly we look at the pairs of elements $(\varphi(x), x)$ in positions (2, 4) of those 4-blocks into which e is inserted in position 4. Given θ, the choice of φ is limited by the fact that no $(x, \varphi(y), \theta(x), y)$ may be a 4-block. We have three possible patterns.

\[
\begin{align*}
(a) & \quad x \quad \varnothing x \quad \varnothing y \quad y & (b) & \quad x \quad \varnothing x \quad \varnothing y \quad y & (c) & \quad x \quad \varnothing x \quad \varnothing y \quad y \\
& a \quad \varnothing b \quad \varnothing a \quad c & a \quad \varnothing b \quad \varnothing a \quad c & a \quad \varnothing b \quad \varnothing a \quad c & a \quad \varnothing b \quad \varnothing a \quad c \\
& b \quad \varnothing a \quad \varnothing b \quad c & b \quad \varnothing a \quad \varnothing b \quad c & b \quad \varnothing a \quad \varnothing b \quad c & b \quad \varnothing a \quad \varnothing b \quad c \\
& c \quad \varnothing b \quad \varnothing c \quad d & c \quad \varnothing b \quad \varnothing c \quad d & c \quad \varnothing b \quad \varnothing c \quad d & c \quad \varnothing b \quad \varnothing c \quad d \\
& d \quad \varnothing c \quad \varnothing d \quad e & d \quad \varnothing c \quad \varnothing d \quad e & d \quad \varnothing c \quad \varnothing d \quad e & d \quad \varnothing c \quad \varnothing d \quad e \\
\end{align*}
\]

In each case, for each of the eight 4-blocks remaining, there is only one choice as to whether e is inserted in position 1 or 5, and a design with no repeated quadruples results. As each of these three patterns can be produced in 6 ways, there are eighteen such designs. The designs from patterns (b) and (c) are obtained from each other by reversing blocks. The designs from patterns (a) and (b) are given below.

\[
\begin{align*}
(3) & \quad a \quad e \quad c \quad b \quad d & b \quad a \quad d \quad e \quad c & a \quad e \quad b \quad d \quad c & b \quad a \quad d \quad e \quad c \\
& a \quad e \quad c \quad b \quad d & a \quad e \quad c \quad b \quad d & a \quad e \quad c \quad b \quad d & a \quad e \quad c \quad b \quad d \\
& b \quad e \quad c \quad a \quad d & d \quad a \quad c \quad e \quad b & b \quad e \quad c \quad a \quad d & b \quad e \quad c \quad a \quad d \\
& b \quad e \quad c \quad a \quad d & b \quad e \quad c \quad a \quad d & b \quad e \quad c \quad a \quad d & b \quad e \quad c \quad a \quad d \\
& c \quad e \quad a \quad d \quad b & d \quad e \quad c \quad a \quad b & c \quad e \quad a \quad d \quad b & c \quad e \quad a \quad d \quad b \\
& c \quad e \quad a \quad d \quad b & c \quad e \quad a \quad d \quad b & c \quad e \quad a \quad d \quad b & c \quad e \quad a \quad d \quad b \\
& d \quad e \quad a \quad c \quad b & d \quad e \quad a \quad c \quad b & d \quad e \quad a \quad c \quad b & d \quad e \quad a \quad c \quad b \\
& d \quad e \quad a \quad c \quad b & d \quad e \quad a \quad c \quad b & d \quad e \quad a \quad c \quad b & d \quad e \quad a \quad c \quad b \\
\end{align*}
\]

Therefore, up to interchanging symbols and reversing all blocks, there are four distinct designs, and $DD(5, 6, 6) = 24$.

The possibility of establishing many more results computationally seems remote. Essentially, determining $DD(t, v)$ involves searching a tree of depth t with order of possibilities (all permutations on v symbols) at each node and for any but very small t and v this is impractical.
It is known that $DD(4, 6, 6) \geq 15$, $DD(4, 7, 7) \geq 12$, $DD(4, 9, 9) \geq 8$ and $DD(4, 11, 11) \geq 6$ as the following packings show.

$$
\begin{array}{cccccccccccc}
1 & 6 & 2 & 5 & 4 & 3 & 1 & 6 & 3 & 4 & 5 & 2 & 1 & 5 & 3 & 2 & 6 & 4 \\
2 & 6 & 3 & 1 & 5 & 4 & 2 & 6 & 4 & 5 & 1 & 3 & 2 & 1 & 4 & 3 & 6 & 5 \\
3 & 6 & 4 & 2 & 1 & 5 & 3 & 6 & 5 & 1 & 2 & 4 & 3 & 2 & 5 & 4 & 6 & 1 \\
4 & 6 & 5 & 3 & 2 & 1 & 4 & 6 & 1 & 2 & 3 & 5 & 4 & 3 & 1 & 5 & 6 & 2 \\
5 & 6 & 1 & 4 & 3 & 2 & 5 & 6 & 2 & 3 & 4 & 1 & 5 & 4 & 2 & 1 & 6 & 3 \\
\end{array}
$$

$$
\begin{array}{cccccccccccc}
1 & 7 & 2 & 3 & 5 & 6 & 4 & 1 & 4 & 3 & 2 & 6 & 7 & 5 \\
2 & 7 & 3 & 4 & 6 & 1 & 5 & 2 & 5 & 4 & 3 & 1 & 7 & 6 \\
3 & 7 & 4 & 5 & 1 & 2 & 6 & 3 & 6 & 5 & 4 & 2 & 7 & 1 \\
4 & 7 & 5 & 6 & 2 & 3 & 1 & 4 & 1 & 6 & 5 & 3 & 7 & 2 \\
5 & 7 & 6 & 1 & 3 & 4 & 2 & 5 & 2 & 1 & 6 & 4 & 7 & 3 \\
6 & 7 & 1 & 2 & 4 & 5 & 3 & 6 & 3 & 2 & 1 & 5 & 7 & 4 \\
\end{array}
$$

$$
\begin{array}{cccccccccccc}
1 & 2 & 4 & 8 & 9 & 6 & 5 & 3 & 7 \\
2 & 3 & 5 & 1 & 9 & 7 & 6 & 4 & 8 \\
3 & 4 & 6 & 2 & 9 & 8 & 7 & 5 & 1 \\
4 & 5 & 7 & 3 & 9 & 1 & 8 & 6 & 2 \\
5 & 6 & 8 & 4 & 9 & 2 & 1 & 7 & 3 \\
6 & 7 & 1 & 5 & 9 & 3 & 2 & 8 & 4 \\
7 & 8 & 2 & 6 & 9 & 4 & 3 & 1 & 5 \\
8 & 1 & 3 & 7 & 9 & 5 & 4 & 2 & 6 \\
\end{array}
$$

$$
\begin{array}{cccccccccccc}
2 & 1 & 3 & 9 & 4 & 5 & 10 & 6 & 7 & 11 & 8 \\
1 & 11 & 2 & 7 & 10 & 8 & 5 & 6 & 9 & 4 & 3 \\
6 & 5 & 7 & 9 & 8 & 1 & 10 & 2 & 3 & 11 & 4 \\
5 & 11 & 6 & 3 & 10 & 4 & 1 & 2 & 9 & 8 & 7 \\
4 & 10 & 3 & 8 & 11 & 9 & 7 & 1 & 2 & 6 & 5 \\
8 & 10 & 7 & 4 & 9 & 11 & 3 & 5 & 6 & 2 & 1 \\
\end{array}
$$

These packings were discovered by computer. A programme was written to search for packings in which there are one or more "initial" blocks, and the remaining blocks are obtained by adding 1 (modulo v) $v-1$ times. This having been done for $v=5, 6$ and 8, it was then easy to extend the packings obtained to get the first three above. The last one was found by starting with a packing of six blocks with $v=8$, and repeatedly using a program which finds all ways to extend a given packing by inserting the new element into each block.

From the previous section we have:

1. $DD(5, v, v) \geq 120$
2. $DD(5, v, v) \geq 4$ for $v \leq 64$
3. $DD(5, v, v) = 2$ for $v > 64$.
Computer searches have shown that \(DD(5, 6, 6) = 120 \), \(DD(5, 7, 7) \geq 63 \), \(DD(5, 8, 8) \geq 48 \) and \(DD(5, 9, 9) \geq 27 \). Note also that \(DD(5, 16, 16) \geq 8 \), from Theorem 4.

The configuration with \(v = 6 \) was found using a computer program which took the 120 permutations of \{1, 2, 3, 4, 5\} and found ways to insert 6 somewhere in each of them to obtain a \((5, 6, 6) \) directed packing. The method of this program will be reported elsewhere [4].

The packing with \(v = 7 \) is found by taking the "initial" blocks 1234675, 1254736, and 1435726, multiplying each by 1, 2 and 4 (mod 7), and adding 1 (mod 7) 6 times.

For the packing with \(v = 8 \), the symbols represent elements of \(GF(8) \), where the symbol \(x^i (i = 1, \ldots, 7) \), 8 represents the zero element, and \(x + x^2 = x^4 \).

We take the "initial" blocks 15342768 and 14687253, take the square and fourth power of each element (these are automorphisms of \(GF(8) \)), and add each element, 1, \ldots, 8, in turn. (Thus the 'initial' blocks appear in the 8th and 32nd positions.)

For the case \(v = 9 \), we look at \(GF(9) \), although we only use its properties as a 3-dimensional vector space over \(GF(3) \). We let \(i \) represent \(x^4 \), 9 represent the zero element, and let \(x + x^2 = x^4 \). To the "initial" block 132578469, we apply each power of the linear transformation \((124)(356)(79) \) (as it appears written as a permutation in cycle form), and add each element 1 to 9 in turn. (Thus the "initial" block appears last.)

References

J. E. Dawson
CSIRO,
Division of Mathematics and Statistics
Lindfield, N.S.W.,
Australia

Jennifer Sebery
Department of Applied Mathematics
University of Sydney
Sydney, N.S.W.,
Australia

D. B. Skillcorn
Computing and Information Science
Queen's University
Kingston, Ontario
Canada