A NOTE ON AMICABLE HADAMARD MATRICES

Jennifer Wallis*

ABSTRACT. The existence of Szekeres difference sets, X and Y, of size 2f with γ ∈ Y → γ ∈ Y, where q = 4f + 1 is a prime power, q ≤ 5 (mod 8) and q = p^2 + 4, is demonstrated. This gives amicable Hadamard matrices of order 2(q + 1), and if 2q is also the order of a symmetric conference matrix, a regular symmetric Hadamard matrix of order 4q^2 with constant diagonal.

Amicable Hadamard matrices are also constructed for orders 4(q + 1) where q = 4f + 1 ≡ 5 (mod 8) is a prime power, q = p^2 + 36, by using 4 - (4f + 1; 2f; 4f - 2) supplementary difference sets A, B = C ⊕ D with a ∈ A → -a ∈ A, b ∈ B → -b ∈ B.

We assume the definition of such concepts as Hadamard matrix, skew-Hadamard matrix, amicable Hadamard matrices, regular Hadamard matrix, symmetric conference matrix, supplementary difference sets and Szekeres difference sets which may be found in [4] and the theory of cyclotomy a reference for which is [1].

LEMMA 1. If q = 4f + 1 (f odd) is a prime power of the form q = p^2 + 4, then there exists 2 - (q = 4f + 1; 2f; 2f - 1) supplementary difference sets A and B such that, a ∈ A → -a ∈ A and b ∈ B → -b ∈ B (alternatively there exist Szekeres difference sets A and B of size 2f with b ∈ B → -b ∈ B).

Proof. We proceed as in the proof of Szekeres-Whiteney theorem in [4; p. 323]. Let x be a generator of GF(q) and write

\[C_i = \{ x^{4j + i} : 0 ≤ j ≤ f - 1 \} \quad i = 0, 1, 2, 3. \]

* This paper was prepared while the author was a Postdoctoral Fellow in the Department of Statistics at the University of Waterloo.

Choose

\[A = C_0 \cup C_1 \quad \text{and} \quad B = C_0 \cup C_2. \]

Clearly \(-1 \in C_2\) and \(a \in A \iff -a \notin A, b \in B \iff -b \notin B.\)

We want to find the number \(N_k\) of solutions of \(y - x = d\) with \(x, y \in A, d \in C_k\): we use the notation of Storer [1]. Now

\[N_k = (-k, -k) + (1 - k, -k) + (-k, 1 - k) + (1 - k, 1 - k). \]

The corresponding number \(N_k^1\) of solutions of \(y - x = d\), with \(x, y \in B, d \in C_k\), is given by

\[N_k^1 = (-k, -k) + (2 - k, -k) + (-k, 2 - k) + (2 - k, 2 - k). \]

Clearly \(N_k = N_k^2 + 2\) and \(N_k^1 = N_k^1 + 2\) since \(-1 \in C_2\). Using the array from Storer [1, p. 28] we see

\[
\begin{align*}
N_0^0 &= A + E + B + E, \\
N_0^1 &= A + A + C + A, \\
N_1^0 &= E + D + E + A, \\
N_1^1 &= E + B + D + E.
\end{align*}
\]

Then using lemma 19 of page 48 of [1] we see

\[
\begin{align*}
16(N_0^0 + N_0^1) &= 16(A + B + C + 2E) = 8q - 32 - 8t, \\
16(N_1^0 + N_1^1) &= 16(A + B + 2D + 4E) = 8q - 16 + 8t.
\end{align*}
\]

These expressions are equal for \(t = -1\) that is (from lemma 19 of Storer) for \(q = s^2 + 4\) where \(s \equiv 1 \pmod{4}\). If \(p \equiv 1 \pmod{4}\) put \(s = p\) and if \(p \equiv 3 \pmod{p}\) put \(s = -p\) and we have \(q = p^2 + 4\) of the statement of the lemma.

Corollary 2. If \(q = 4f + 1 = p^2 + 4\) is a prime power (\(f\) odd) there exist amicable Hadamard matrices of order \(2(q + 1)\).

Proof. Use theorem 2 of [3].
LEMMA 3. If $q = 4f + 1 = p^2 + 36$ (if odd) is a prime power then there exist $4 - (4f + 1; 2f; 4f - 2)$ supplementary difference sets A, B, C, D with $B = C = D$ and such that $a \in A \implies -a \in A$, $b \in B \implies -b \in B$.

Proof. We use the notation of the proof of lemma 1 and choose

$$A = C_0 \cup C_1, \quad B = C = D = C_1 \cup C_3.$$

Then as before

$$N_k = (-k, -k) + (k, 1 - k) + (1 - k, -k) + (1 - k, 1 - k),$$

$$N_k^1 = (1 - k, 1 - k) + (3 - k, 1 - k) + (1 - k, 3 - k) + (3 - k, 3 - k).$$

Also, as before, $-1 \in C_2$, $N_k = N_k + 2$, $N_k^1 = N_k^1 + 2$.

Then using Storer [1; p. 28 and p. 48] we have

$$N_0^1 = E + D + B + E,$$

$$N_1^1 = A + A + C + A,$$

so

$$16(N_0^1 + 3N_0^1) = 16(A + 4B + 3D + 8E) = 16q - 24 - 8t,$$

$$16(N_1^1 + 3N_1^1) = 16(10A + 3C + D + 2E) = 16q - 72 + 8t.$$

Now these are equal for $t = 3$ and so from lemma 19 of Storer [1; p. 48] we have result for $q = s^2 + 4.9 = s^2 + 36$, $s \equiv 1 \pmod{4}$, q is a prime power. As before we set $s = \pm p$ according as $p \equiv \pm 1 \pmod{4}$ and we have $q = p^2 + 36$ as in the statement of the lemma.

LEMMA 4. Suppose there exist $(1, -1)$-matrices X, Y, Z, W of order q satisfying

$$X = -I + U, \quad U^T = -U, \quad Y^T = Y, \quad Z^T = Z, \quad W^T = W,$$

$$XX^T + 3YY^T = 22Z^T + 2WW^T = 4(q + 1)I - 4J,$$

and with $e = [1, \ldots, 1]$ a $1 \times q$ matrix
\(eX^T = eY^T = eZ^T = eW^T = -e, \quad XY^T = YX^T \) and \(ZW^T = WZ^T \).

Then if

\[
M = \begin{bmatrix}
-1 & 1 & 1 & 1 & e & e & e & e \\
-1 & -1 & -1 & 1 & -e & e & -e & e \\
-1 & 1 & -1 & -1 & e & e & e & -e \\
-1 & -1 & 1 & -1 & -e & -e & e & e \\
e^T & e^T & e^T & e^T & X & Y & Y & Y \\
e^T & -e^T & -e^T & e^T & -Y & X & -Y & Y \\
e^T & e^T & -e^T & -e^T & -Y & Y & X & -Y \\
e^T & -e^T & e^T & -e^T & -Y & -Y & Y & X \\
\end{bmatrix}
\]

\[
N = \begin{bmatrix}
1 & 1 & 1 & 1 & e & e & e & e \\
1 & -1 & -1 & 1 & e & -e & -e & e \\
1 & -1 & 1 & -1 & e & -e & e & -e \\
1 & 1 & -1 & -1 & e & e & -e & -e \\
e^T & e^T & e^T & e^T & Z & Z & W & W \\
e^T & -e^T & -e^T & e^T & Z & -Z & -W & W \\
e^T & -e^T & e^T & -e^T & W & -W & Z & -Z \\
e^T & e^T & -e^T & e^T & W & W & -Z & -Z \\
\end{bmatrix}
\]

\(M \) is a skew-Hadamard matrix and \(N \) is a symmetric Hadamard matrix of order \(4(q+1) \). Further, if

\[XZ^T, XW^T, YZ^T, YW^T \]

are symmetric, \(M \) and \(N \) are amicable Hadamard matrices.

Proof. By straightforward verification.

Corollary 5. If \(q = 4f + 1 = p^2 + 36 \) (if odd) is a prime power then there exist amicable Hadamard matrices of order \(4(q+1) \).
Proof. With C_1 as in the proof of lemma 1 define

$$A = C_0 \cup C_1, \quad B = C_1 \cup C_2, \quad D = C_0 \cup C_2.$$

Choose X to be the type 1 $(1, -1)$ incidence matrix of A and $Y = Z$ and W to be the type 2 $(1, -1)$ incidence matrices of B and D respectively.

We have already observed that $a \in A \leftrightarrow a \notin A$, as X will be of the form $-I + U$ where $U^T = U$. Y, Z, W are all symmetric as they are type 2 (see [4; p. 288]). Also since A, B, D all have $2f$ elements

$$eX^T = eY^T = eZ^T = eW^T = -e.$$

$XY^T = YX^T$ follows from corollary 1.15 of [4]. B and D are the $2 - (4f + 1; 2f; 2f - 1)$ supplementary difference sets of lemma 1.8 of [4] and so using lemmas 1.21, 1.17 and 1.16 of [4] we have that

$$ZZ^T + WW^T = 4(2f + 1)I - 2J, \quad ZW^T = WZ^T.$$

Further using lemmas 1.10 and 1.20 of [4] we have that the $(1, -1)$ incidence matrices of A and B (using lemma 3) satisfy

$$AA^T + 3BB^T = 4(4f + 2)I - 4J.$$

Finally that

$$XZ^T, \quad XW^T, \quad YZ^T, \quad YW^T$$

are all symmetric follows from corollary 1.15 of [4] and the fact that $Y = W$. Thus all the conditions of lemma 4 are satisfied and we have the corollary.

This gives amicable Hadamard matrices for the orders 248 and 496 for which they were not previously known.

This means there are amicable Hadamard matrices for the following orders:

I 2;

II $p^r + 1$, p^r(prime power) $\equiv 3$(mod 4);
III \[2(q+1) \quad q \text{ (prime power) } \equiv 1 \pmod{4} \]
and \(2q + 1 \) a prime power;

IV \[2(q+1) \quad q \text{ (prime power) } \equiv 5 \pmod{8} \]
\[= p^2 + 4; \]

V \[4(q+1) \quad q \text{ (prime power) } \equiv 5 \pmod{8} \]
\[= p^2 + 36; \]

VI \(\delta \) where \(\delta \) is the product of any
of the above orders.

We also recall the following applications of amicable
Hadamard matrices and Szekeres difference sets:

Lemma 6. If \(m \) and \(m' \) are the orders of amicable Hadamard matrices
and there exists a skew-Hadamard matrix of order \((m - 1) \frac{m}{m'} \) then
there is a skew-Hadamard matrix of order \(m' (m' - 1) (m - 1) \).

Lemma 7. [4; Theorem 5.15]. Suppose there exist Szekeres difference
sets, \(X \) and \(Y \), of size \(2 \ell \) in an additive abelian group of
order \(4 \ell + 1 \) with \(y \in Y \Rightarrow -y \in Y \). Further suppose there is a
symmetric conference matrix of order \(8 \ell + 2 \). Then there is a
regular symmetric Hadamard matrix of order \(4(4 \ell + 1)^2 \) with constant
diagonal.

Corollary 8. If \(q = 4 \ell + 1 \) (\(\ell \) odd) is a prime power of the form
\(q = p^2 + 4 \) and there is a symmetric conference matrix of order \(2q \)
there is a regular symmetric Hadamard matrix of order \(4q^2 \) with constant
diagonal.

Proof. Use lemmas 1 and 7.

Corollary 9. If \(q \) (prime power) = \(p^2 + 4 \), (\(p \) odd) and \(2q - 1 \)
is a prime power there is a regular symmetric Hadamard matrix of order
\(4q^2 \) with constant diagonal.

The author wishes to thank Professor A. L. Whiteman for
showing him that the restriction \(p \equiv 1 \pmod{4} \) was unnecessary
in the results of this paper.

124
REFERENCES

University of Newcastle
New South Wales, 2308
Australia

Received September 25, 1972.