Combinatorial matrices

Jennifer Wallis

We investigate the existence of integer matrices B satisfying the equation

$$BB^T = rI + sJ,$$

where T denotes transpose, r and s are integers, I is the identity matrix and J is the matrix with every element $+1$.

Hadamard matrices are $(1, -1)$ matrices of order $n = 2^t$ which have $r = n$ and $s = 0$ in (1). We discuss equivalence of Hadamard matrices over the integers and show that all Hadamard matrices of order $4t$, where t is odd and square-free are equivalent over the integers. Further, if t is even and square-free and there is a Hadamard matrix of order $2t$, then there is a Hadamard matrix of order $4t$ which is equivalent over the integers to the diagonal matrix

$$\text{diag}(1, 2, \ldots, 2, 2m, \ldots, 2m, 4m).$$

$2m-1$ times $2m-1$ times

We now develop many methods for constructing Hadamard matrices. Many of these constructions use skew-Hadamard matrices, that is Hadamard matrices $H = I + R$ where $R^T = -R$, or σ-type matrices, that is $(1, -1)$ matrices $H = I + P$ of order n where $P^T = P$ and $PP^T = (n-1)I$. We first develop some theory on the Willseon method for constructing skew-Hadamard matrices and show if H is the order of a skew-Hadamard matrix (or type matrix) then there exists a skew-Hadamard (or type) matrix of order $(n-1)^d + 1$ where $\kappa = 2^{a+b+c+d}, b, c, d$ non-negative integers while a is a positive (non-negative) integer.

The concept of supplementary difference sets, that is, a set of subsets such that when we take all the differences in each subset and collect them, each difference occurs a fixed number of times in the totality, is introduced and an example given. Hadamard designs on \(n \) distinct letters are shown to exist for \(n = 2, 4 \) and \(8 \).

\((v, k, \lambda)\)-configurations are considered, that is, \((0, 1)\)-matrices \(B \) of order \(v \) such that \(v = k - \lambda \) and \(\lambda = \lambda \) in (1). We show two similar but distinct methods for proving there exists a \(\{q^2(q+2), q(q+1), q\} \) configuration whenever \(q \) is prime or \(q = 2^2, 2^3, 2^4, 3^2, 3^3 \) or \(7^2 \). We prove that whenever a \((q, k, \lambda)\)-configuration exists, \(q \) a prime power, then a \(\{q(k^2+\lambda), qk, k^2+\lambda, k, \lambda\} \)-configuration exists.

We consider integer matrices satisfying

\[BB^T = vI - J, \quad B^T J = 0 = JB \quad \text{and} \quad B^T = -B \]

and find that either the greatest common divisor of the elements of \(B \) is \(1 \) or \(B \) has zero diagonal and \(+1 \) or \(-1 \) elsewhere. Also we show that if \(B \) is an integer matrix of order \(b \) satisfying

\[BB^T = (p-q)I + qJ \]

\[BJ = qJ \]

where \(p, q \) and \(d > 0 \) are constants then if \(z \), the least element of \(B \), satisfies

\[z \leq \frac{d}{b} \quad \text{and} \quad z \leq \frac{d+p}{d+q} \]

where \(\omega \) is the greatest element of \(B \), then

\[B = \frac{d}{b} J. \]

We give tables of the orders \(\leq 1000 \) of known Hadamard, skew-Hadamard and \(n \)-type matrices at the date of submission as well as lists of known classes of these matrices.