Integer matrices obeying generalized incidence equations

Jennifer Wallis

We consider integer matrices obeying certain generalizations of the incidence equations for \((v, k, \lambda)\)-configurations and show that given certain other constraints, a constant multiple of the incidence matrix of a \((v, k, \lambda)\)-configuration may be identified as the solution of the equation.

We define \((v, k, \lambda)\)-configurations as usual (see [3]). If \(B\) is the \((0, 1)\) incidence matrix of a \((v, k, \lambda)\)-configuration and if \(A = bB\) where \(b\) is a positive integer, then

\[
\begin{align*}
AA^T &= b^2(k-\lambda)I + b^2\lambda J \\
A\overline{\lambda} &= b\lambda \\
\lambda \nu - 1 &= k(k-1),
\end{align*}
\]

with \(J\) as usual the matrix with every element \(+1\), and \(I\) the identity matrix. Ryser [2] proved a partial converse:

LEMMA 1. If \(A\) is a \(v \times v\) integer matrix satisfying equations (1) with \(b = 1\), then \(A\) is the incidence matrix of a \((v, k, \lambda)\)-configuration (and consequently has every entry \(0\) or \(1\)).

One might conjecture, in view of the powerful theorems of Ryser [2] and Bridges and Ryser [1], that an integer matrix satisfying (1) would necessarily be \(b\) times the incidence matrix of a \((v, k, \lambda)\)-configuration. But the matrix

Received 24 August 1970.
satisfies (1) with $b = 2$, $v = 7$, $k = 3$ and $\lambda = 1$. So we need other conditions on the matrix A before we can ensure that every element is 0 or b. We shall prove:

THEOREM 2. If A is a $v \times v$ matrix of non-negative integers which satisfies (1), and if every entry of A is less than or equal to b, then A is b times the incidence matrix of a (v, k, λ)-configuration.

The corresponding result for non-positive A and negative b also holds.

By similar methods we shall obtain a result about more general equations:

THEOREM 3. Let B be an integer matrix of order v which satisfies

$$BB^T = (p-q)I + q\mathbf{w}$$

$$Bd = d\mathbf{w}$$

where p, q and d are constants and $d > 0$. Write w and z for the greatest and least elements of B respectively, and $w = |v|$.

If

$$z \leq \frac{d}{v} = \delta \quad \text{and} \quad z \leq \frac{2\delta + p}{d + \delta w},$$

then δ is an integer, $p = d\delta = v\delta^2$, and $B = \delta B$.

1. Proof of Theorem 2

LEMMA 4. Let $B = \{b_{ij}\}$ of order v be a matrix of non-negative integers such that

$$\sum_{j=1}^{v} b_{ij}^2 = p,$$

p a constant, for every i, and let
\[B^i = d^j, \quad d \text{ a non-zero constant. If } b^i_j = \frac{E}{d} \text{ for every } b^i_j, \text{ or if } b^i_j > \frac{E}{d} \text{ for every non-zero } b^i_j, \text{ then every entry of } B \text{ is } 0 \text{ or } \frac{E}{d}. \]

Proof. \[\sum_{j=1}^{\nu} b^i_j \frac{E}{\nu} = p \quad \text{and} \quad \sum_{j=1}^{\nu} b^i_j = d, \quad \text{so} \]
\[d \sum_{j} b^i_j \frac{E}{\nu} - p \sum_{j} b^i_j = dp - dp = 0; \]
that is
\[\sum_{j} b^i_j (db^i_j - p) = 0. \]

From the data every term in this summation has the same sign, so every term is zero. So \[b^i_j = 0 \text{ or } \frac{E}{d}. \]

COROLLARY 5. If there is a matrix \(B \) satisfying the conditions of Lemma 4, then \(d|p \).

Corresponding results may be obtained for matrices of non-positive integers.

Proof of Theorem 2. The matrix \(A \) satisfies the conditions of Lemma 4 with \(p = \frac{b^2k}{d} \) and \(d = bk \). So every entry is \(0 \) or \(b \left(\frac{E}{d} \right) \).

Consider \(B = b^{-1}A \). \(B \) is an integer matrix satisfying Lemma 1, so it is the incidence matrix of a \((v, k, \lambda)\)-configuration, and we have the result.

2. Proof of Theorem 3

Proof of Theorem 3. Clearly \(p = \sum_{j} b^i_j \frac{E}{\nu} \) implies \(p \geq 0 \); and \(d > 0 \) implies \(p > 0 \). Consider the class of matrices
\[C_\alpha = B + \alpha d \]
where \(\alpha \) is an integer and \(\alpha \geq \omega \). Every element of every member of this class is non-negative and
\[C'_{a} = (p-q)I + (a^2 \nu + 2ad \nu + q)J \]
\[C'_{a}J = (d+aw)J. \]

Then using Lemma 4, if every non-zero element of \(C_a \) is less than or equal to \(\beta \),
\[\beta = a + \frac{ad+p}{d+aw}, \]
then every element is 0 or \(\beta \).

We show that the conditions on \(z \) imply that every element is \(\leq \beta \).

For
\[z \leq \frac{w+\nu}{d+aw} \]
implies
\[z(d+aw) \leq wd + p; \]
since \(z \leq \frac{d}{p} \) we have
\[wd + \nu d + \nu \gamma u \leq wd + p \]
for any integer \(\gamma \geq 0 \), so
\[z \leq \frac{(w+\nu)d+p}{d+(w+\nu)\nu}. \]
This means (putting \(\alpha = w + \gamma \)) that for any admissible \(\alpha \),
\[z + \alpha \leq \alpha + \frac{ad+p}{d+aw}; \]
but \(z + \alpha \) is the greatest element of \(C_a \). Therefore, any element of \(C_a \) is 0 or \(\alpha + \frac{ad+p}{d+aw} \), so any element of \(B \) is \(-\alpha \) or \(\frac{ad+p}{d+aw} \).

Corollary 5 tells us that
\[A(\gamma) = \frac{(w+\nu)d+p}{d+(w+\nu)\nu} - \frac{d+p(w+\nu)^{-1}}{d(w+\nu)^{-1}+p} \]
is integral for all integers \(\gamma \geq 0 \). Therefore \(\lim_{\gamma \to \infty} A(\gamma) \) must be an integer, so \(v|d \). Write \(d = v\delta \):
Matrices obeying incidence equations

\[A(\gamma) = \frac{(\omega+\gamma)v\delta+p}{v\delta+(\omega+\gamma)v} \]

so \(v \mid p \). Write \(p = ev \):

\[A(\gamma) = \frac{(\omega+\gamma)\delta+e}{\delta+(\omega+\gamma)} \]

Choose \(n \) any integer greater than \(\delta + \omega \). Then

\[A(n-\delta-\omega) = \frac{(n-\delta)\delta+e}{n} \]

so \(n \mid (e-\delta^2) \). But this is true for every large enough \(n \); hence \(e = \delta^2 \). That is

\[d = v\delta \]
\[p = v\delta^2 \]

so

\[p = d\delta = v\delta^2 \]

Then we have

\[\frac{\omega\delta+p}{d+au} = \frac{v\delta(n+\delta)}{v(\delta+a)} = \delta \]

for any \(\gamma \), so every element of \(B \) is \(-\alpha \) or \(\delta \). Now the row sum of \(B \)

is \(d = v\delta \) and the sum of the squares of the elements is

\[p = v\delta^2 \];

together these imply

\[B = \delta J \]

where \(\delta = \frac{d}{u} \).

References

University of Newcastle,
New South Wales.