Note

Amicable Hadamard Matrices

Jennifer Wallis

Department of Mathematics, University of Newcastle,
New South Wales, 2308, Australia

Communicated by Marshall Hall, Jr.

Received August 24, 1970

If X is a symmetric Hadamard matrix, Y is a skew-Hadamard matrix, and XY^T is symmetric, then X and Y are said to be amicable Hadamard matrices. A construction for amicable Hadamard matrices is given, and then amicable Hadamard matrices are used to generalize a construction for skew-Hadamard matrices.

We refer the reader to Marshall Hall, Jr. [1] and Jennifer Wallis [3] for the definitions of Hadamard matrix, skew-Hadamard matrix, skew-type, circulant and back-circulant. In [3] we define m-type matrices, which we will henceforth call amicable Hadamard matrices, to be a pair of Hadamard matrices M and N of the same order such that M in skew-type, N is symmetric and

$$MN^T = NM^T;$$

where the superscript T denotes matrix transpose. Here we give another construction for amicable Hadamard matrices and generalize a theorem in [3].

We shall construct two Hadamard matrices of order $2y + 2$ of the form below with X symmetric and Y skew-type:

$$X = \begin{bmatrix}
1 & 1 & e & e \\
1 & -1 & -e & e \\
e^T & -e^T & A & -B \\
e^T & e^T & -B & -A
\end{bmatrix}, \quad Y = \begin{bmatrix}
1 & 1 & e & e \\
-1 & 1 & e & -e \\
-e^T & -e^T & C & D \\
e^T & e^T & -D & C
\end{bmatrix},$$

where A, B, C, D are of order y, A, B, D are symmetric, and C is skew-type, and $e = [1, ..., 1]$ is $1 \times y$. The Hadamardness of X and Y imposes the following properties on the submatrices of X and Y:

$$eA^T = e = eB^T, \quad AB^T = BA^T, \quad eC^T = e = eD^T, \quad CD^T = DC^T.$$
Then XY^T is symmetric if and only if

$$ACT - BD^T, BC^T + AD^T$$

are symmetric.

We recall lemma 6 of [3]:

Lemma 1. If P is circulant and Q is back-circulant then PQ^T is symmetric.

Let $R = (r_{ij})$ of order y be defined by $r_{i,y-i+1} = 1$ and for $j \neq y - i + 1$, $r_{ij} = 0$. Then if A, B, D are back-circulant matrices, with AR, BR and DR circulant and symmetric, and if C is circulant such that X is a symmetric Hadamard matrix, and Y is a skew-Hadamard matrix, then X and Y are amicable Hadamard matrices.

Let y be prime. Define $W = (w_{ij})$ by $w_{ij} = 0$, $w_{ij} = \chi(j - i)$ for $j \neq i$ where $\chi(b)$ is the Legendre symbol. For y (prime) $\equiv 1 \pmod{4}$ $W^T = W$.

Now choose $A = (I + W)R$ and $B = (I - W)R$.

In his paper [2] G. Szekeres shows how to construct twin difference sets which will yield the required C and D for q, where $(2q + 1)$ (prime power) $\equiv 3 \pmod{4}$. Also with H_0, $i = 0, 1, 2, 3$, as in the proof of theorem 5 of [2] $K = H_0 \cup H_3$ and $K = H_0 \cup H_5$ can be used to form the required C and D for $y = 5, 13, 29, 53$. So we have

Theorem 2. If q is a prime such that

(i) $5, 13, 29, 53, or$

(ii) $2q + 1$ is a prime, and q is odd,

then there are amicable Hadamard matrices of order $2(q + 1)$.

Summarizing, using the proof of Lemma 8 of [3], we have amicable Hadamard matrices of the following orders:

I	5;
II	$p^r + 1$ where p^r (prime power) $\equiv 3 \pmod{4}$;
III	$2(q + 1)$ where q (prime) $\equiv 1 \pmod{4}$ and $2q - 1$ is prime;
IV	S, where S is a product of any of the above orders.

We note the following theorem, which is a generalization of corollary 9 of [3]. The proof is similar to that in [3].

Theorem 3. Let m and m' be the orders of amicable Hadamard matrices. If there is a skew-Hadamard matrix of order

$$\frac{(m - 1)m'}{m}, \quad \frac{(m - 1)(m' - 4)}{m}$$

then...
then there is a skew-Hadamard matrix of order

(i) \(m'(m' - 1)(m - 1) \), \(m'(m' - 1)(m' - 4)(m - 1) \),

respectively.

REFERENCES