Two Level Cretan Matrices Constructed via Singer Difference Sets

N. A. Balonina, Dr. Sc., Tech., Professor, korbendfs@mail.ru

Jennifer Seberryb, Ph.D., Professor of Computer Science, jennifer_seberry@uow.edu.au

aSaint Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, St. Petersburg, Russian Federation

bSchool of Computer Science and Software Engineering, Faculty of Engineering and Information Science, University of Wollongong, NSW, 2522, Australia

Purpose: This note discusses two level quasi-orthogonal matrices which were first highlighted by J. J. Sylvester; Hadamard matrices, symmetric conference matrices, and weighing matrices are the best known of these matrices with entries from the unit disk. The goal of this note is to develop a theory of such matrices based on preliminary research results. Methods: Extreme solutions (using the determinant) have been established by minimization of the maximum of the absolute values of the elements of the matrices followed by their subsequent classification. Results: We show that if \(B \) is the incidence matrix of a \((\upsilon, k, \lambda)\) difference set, then there exists a two-level quasi-orthogonal matrix, \(S \), a Cretan(\(\upsilon \)) matrix. We apply this result to the Singer family of difference sets obtaining a new infinite family of Cretan matrices. Practical relevance: Web addresses are given for other illustrations and other matrices with similar properties. Algorithms to construct Cretan matrices have been implemented in developing software of the research program-complex.

Keywords – Hadamard matrices; quasi-orthogonal matrices; Cretan matrices; difference sets; Singer difference sets; Hadamard difference sets.

AMS Subject Classification: 05B20; 20B20.