A Three Level Cretan Matrices of Order 37

N. A. Balonin*, Jennifer Seberry†, M.B. Sergeev*

October 4, 2014

We give a three level Cretan(37). This is new and the first time such a matrix has been found whose order is other than a power of two plus one.

Keywords: Regular Hadamard matrices; quasi-orthogonal matrices; Cretan matrices; 05B20.

1. Introduction

In this and further papers we use some names, definitions, notation differently than we have in the past [1]. This, we hope, will cause less confusion, bring our nomenclature closer to common usage and conform for mathematical purists. We have chosen the use of the word level, instead of value for the entries of a matrix, to conform to earlier writings. We note that the strict definition of an orthogonal matrix, X, of order n, is that $X^TX = XX^T = I_n$ where I_n is the identity matrix of order n. In this paper we consider $S^TS = SS^T = \omega I_n$ where ω is a constant. We call these quasi-orthogonal matrices [2, 4]. We refer to [2, 3, 5] for definitions not given below.

2. Definitions

Definition 1. A Cretan(n) (CM) matrix, S, is a quasi-orthogonal matrix of order n with entries ≤ 1, where there must be at least one 1 per row and column. The inner product of a row of CM(n) with itself is the **weight** ω. $S^TS = SS^T = I_n$. The inner product of distinct rows of CM(n) is zero. A μ-level Cretan(n; μ; ω) matrix, CM(n; μ; ω), has μ levels or values for its entries. Level $a = 1$ is pre-determined for all Cretan matrices.

Cretan(n), or CM(n) quasi-orthogonal matrices are studied in [2, 3]. In more general notation these are can be CM(order), CM(order; number of levels = μ), CM(order; number of levels = μ; occurrences of levels = L_1, L_2, ... , L_μ), CM(order; number of levels = μ; weight = ω), and CM(order; number of levels = μ; weight; occurrences of levels in whole matrix), etc. etc. etc.

The definition of Cretan is not that each variable occurs some number of times per row and column but L_1, L_2, ... , L_μ times in the whole matrix. So we have CM(n; μ; ω; L_1, L_2, .. L_μ) so

* Saint Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, St. Petersburg, Russian Federation. Email: korbendfs@mail.ru
† School of Computer Science and Software Engineering
Faculty of Engineering and Information Science, University of Wollongong, NSW 2522, Australia. Email: jennifer.seberry@uow.edu.au
A CM(3), a CM(3;2), a CM(3;2;2,1), a CM(3;2;2.25), a CM(3;2;2.25;6,3) depending on which numbers (in brackets) are currently of interest. We call them Cretan matrices because they were first discussed in this generality at a conference in Crete in July, 2014.

The over-riding aim is to seek CM(n) with absolute or relative (local) maximal determinants as they have many applications in image processing and masking [1, 2].

The matrix orthogonality equation $S^T S = SS^T = \omega I_n$, is a set of n^2 scalar equations, giving two kinds of formulae: $g(a, b) = \omega$, there are n such equations, and $f(a, b)=0$, there are n^2-n such equations. We concentrate on two of them: $g(a, b)=\omega, f(a, b)=0$.

The entries in ωI_n which are on the diagonal, are given by the radius equation $\omega=g(a, b)$, they depend on the choice of a, b. If $a=1$, then $\omega \leq n$.

The maximal weight $\omega = n$ arises from Hadamard matrices, symmetric conference matrices have $\omega = n - 1$. Quasi-orthogonal matrices can have also irrational values for the weight.

The second equation $f(a, b)=0$ we call the characteristic equation, as it allows us to find a formulae for level $b \leq a$.

3. A new Cretan(37, 3)

Definition 2. A regular Hadamard matrix, H, of order $4t$, has elements plus one and minus one only. It satisfies the orthogonality equation $H^T H = HH^T = 4t I$. The sum of the entries in any row or column is $2\sqrt{t}$.

We first note that a computer search undertaken recently in Iran found over 31 million inequivalent regular Hadamard matrices of order 36. We use [5] to give our example, H, for this note.

Construction 1. Let $G(a, b)$ be the 36×36 regular Hadamard matrix with more ones than minus ones in each row and column, and then the ones replaced by “a” and minus ones replaced by “$-b$”. Let F be the 37×37 matrix

$$
F = \begin{pmatrix}
 a & s & \ldots & s \\
 s & G(a, b) \\
 \vdots \\
 s
\end{pmatrix}
$$

Then if the radius equations are $a^2 + 36s^2 = 15a^2 + 21b^2 + s^2 = \omega$; and the characteristic equations are $16a - 21b = 6a^2 - 18ab + 12b^2 + s^2 = 0$; F is a Cretan(37; 3; 27.9388, 541, 756, 72) using the
definition, see Fig. 1a,b.

On the Fig. 1 white square is for element “a”, black and red (core) square is for element “−b”, and blue square is for border “s”.

(a) The regular Hadamard matrix H
(b) The Cretan matrix F

Figure 1: Quasi-orthogonal matrices: $H(36)$ and $Cretan(37; 3)$

4. Acknowledgements

The authors also wish to sincerely thank Tamara Balonina for converting this paper into printing format. We acknowledge the use of the http://www.mathscinet.ru and http://www.wolframalpha.com sites for the number and symbol calculations in this paper.

5. Conclusion

The methods given in this note can be used to construct many more Cretan matrices based on regular Hadamard matrices. The matrices G and F both give completely new Cretan matrices $CM(4t,2)$ and $CM(4t+1,3)$. They add new members to the set of Cretan matrices constructed with one core and one border, observed in [2, 4, 6]. This strongly suggests we have discovered a new branch of Cretan matrices.

References

1. Balonin N. A., and Mironovski L.A., Hadamard matrices of odd order, Informationsno-

