Jacket matrices constructed from Hadamard matrices and generalized Hadamard matrices

KEN FINLAYSON
Centre for Computer Security Research
University of Wollongong
N.S.W. 2522
Australia

MOON HO LEE
Institute of Information and Communications
Chonbuk National University, Jeonju
Korea

JENNIFER SEBERRY
Centre for Computer Security Research
University of Wollongong
N.S.W. 2522
Australia

MIEKO YAMADA
Department of Computational Science
Kanazawa University
Kakuma-machi, Kanazawa
Japan

Abstract
Jacket matrices are matrices \(L = (\ell_{ij}) \) with inverse \(L^{-1} = \frac{1}{n} (\ell_{ij}^{-1}) \), where the inverse is over a group \(G \). They have previously been constructed only from \((1, -1)\) Hadamard matrices. In this note, we give constructions for jacket matrices based on generalized Hadamard matrices.

* This work was partially supported by the Institute of Information Technology Assessment, Korea, the Korea Science and Engineering Foundation (KOSEF), Korea and the Australian Academy of Science.
1 Introduction

Let H be a matrix. We define H^\dagger to be the Hermitian conjugate, or the transpose of
the matrix with elements the complex conjugate of the corresponding elements of H.
When the entries of H are from a group G, we define H^M to be the transpose of the
matrix whose elements are the group inverse of the corresponding elements of H.

An Hadamard matrix H of order n is square, with entries ± 1 and satisfies $HH^\dagger = H^T H = nI$. Seberry and Yamada [10] have surveyed Hadamard matrices and the
reader is referred there for more details.

In this paper, if $HH^\dagger = H^\dagger H = nI$ then H is a generalized Hadamard matrix.
More generally, generalized Hadamard matrices of two types are of interest. The
first (see [1, 4]) have entries which are roots of unity; the second (see [2, 3, 8, 9]) have
elements from a finite group.

Let p be an odd prime. Let $1, \alpha, \alpha^2, \ldots, \alpha^{p-1}$ be the pth roots of unity. A Butson
generalized Hadamard matrix [1] $B = (b_{ij})$ of order p is defined as

$$b_{ij} = \begin{cases}
1 & i = 1 \text{ and } 1 \leq j \leq p \\
1 & j = 1 \text{ and } 1 \leq i \leq p \\
\alpha^{(i-1)(j-1)} & 2 \leq i, j \leq p
\end{cases}$$

Then the core C of B is the $(p - 1) \times (p - 1)$ matrix (b_{st}), $2 \leq s, t \leq p$. We observe
that C, C^\dagger and C^M are symmetric, and that $C^\dagger = C^M$ is a permutation of C.

A jacket matrix (sometimes called a reverse jacket matrix) $L = (\ell_{ij})$ is a matrix
of order n with entries from a group G, with inverse $L^{-1} = \frac{1}{n} (\ell_{ij}^{-1})$.

We can use a jacket matrix L in a jacket transform (also called a reverse jacket
transform) as follows. For a vector a of length n, its transform A is given by $A = aL$. The inverse transform is $a = AL^{-1} = \frac{1}{n}AL^M$.

2 Our constructions

Jacket matrices in their original formulation were constructed from $(1, -1)$ Hadamard
matrices (see [5–7]). However, it is possible to construct jacket matrices from
generalized Hadamard matrices. We present three such constructions. We also give a
method of combining such jacket matrices to form larger jacket matrices.

Let A, B, D be symmetric matrices of order $\frac{n-2}{2}$, whose elements are in an Abelian
group (including 1). Let e be a column vector whose elements are all 1. Put

$$X = \begin{pmatrix}
1 & e^t & e^t & 1 \\
e & A & B & e \\
e & B & -D & -e \\
1 & e^t & -e^t & -1
\end{pmatrix}.$$
If X satisfies

$$XX^M = X^M X = nI$$

then X is a jacket matrix.

2.1 Case 1: $A = B = D$

Let

$$A = B = D = \begin{pmatrix} \omega & \omega^2 \\ \omega^2 & \omega \end{pmatrix},$$

where ω is the cube root of unity. Then

$$X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega & \omega^2 & 1 \\ 1 & \omega^2 & \omega & \omega^2 & \omega & 1 \\ 1 & \omega & \omega^2 & -\omega & -\omega^2 & -1 \\ 1 & \omega^2 & \omega & -\omega^2 & -\omega & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \end{pmatrix}$$

is a 6×6 jacket matrix.

2.2 Case 2: Butson Generalized Hadamard matrices

Let B be a Butson generalized Hadamard matrix of order p, p an odd prime. Let C be the core of B, as defined earlier. Let $A = C$, $B = C^M$, $D = -C$. Then

$$X = \begin{pmatrix} 1 & e^t & e^t \\ e & C & C^M \\ e & C^M & -C & -e \\ 1 & e^t & -e^t & -1 \end{pmatrix}$$

is a $2p \times 2p$ jacket matrix. We observe that the $p = 3$ case is a permutation of the jacket matrix in part 2.1.

Theorem 1 Let p be an odd prime. Then for every order $2p$, there is a jacket matrix whose entries are the pth roots of unity.

Taking the Kronecker product of X with t copies of $H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $t \geq 1$, gives the following:

Theorem 2 Let p be an odd prime. Then there are jacket matrices of order $2^{t+1}p$, $t \geq 0$.

Where the matrix X has a border of ± 1, the jacket matrices constructed by the Kronecker product will have a t-deep border of $\pm H_2$. We call such a matrix a jacket matrix with t-size border.
2.3 Case 3: Other generalized Hadamard matrices

Theorem 3 Given a symmetric generalised Hadamard matrix

\[G = (g_{ij}) = \mathcal{G}(n,G) \]

of order \(n \) over the group \(G \), there exists a jacket matrix of order \(2^{t+1}n, t \geq 1 \).

For example, consider the matrix \(\mathcal{G}(6;\mathbb{Z}_3) \)

\[
G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \omega & \omega^2 & \omega^2 & \omega \\
1 & \omega & \omega^2 & \omega^2 & \omega & 1 \\
1 & \omega^2 & \omega^2 & \omega & 1 & \omega \\
1 & \omega^2 & \omega & 1 & \omega & \omega^2 \\
1 & \omega & 1 & \omega & \omega^2 & \omega^2
\end{pmatrix}
\]

Then the core \(C \) of \(G \) can be used to construct a jacket matrix of order 12, using the construction in part 2.2.

2.4 A general result

Theorem 4 Let \(D_1, D_2, \ldots, D_k \) be jacket matrices, where \(D_i \) has order \(2^{t_i+1}n_i \), \(t_i \geq 0 \). Then the Kronecker product

\[D_1 \otimes \cdots \otimes D_k \otimes H_2 \cdots \otimes H_3 \]

\(\ell \) times

is a jacket matrix with \(\ell \)-size border, of order \(2^m \prod_{i=1}^{k} n_i \), where \(m = k + \ell + \sum_{i=1}^{k} t_i \).

References

(Received 4 Nov 2004)