Date: Sun, 31 Oct 1999 10:38:09 +0200 (EET) From: KOUKOUVINOS CHRISTOS

# D-optimal Designs Order 50

m=25, n=50; 2-{25;9,9;6}

A_1={6,8,10,13,14,15,16,20,24}, B_1={6,9,10,11,15,18,21,23,24}
A_2={6,9,11,12,13,14,18,22,24}, B_2={6,9,10,15,16,18,20,23,24}
A_3={7,8,15,16,18,20,21,22,24}, B_3={4,8,9,11,14,17,18,22,24}
A_4={7,8,9,10,12,13,17,20,24}, B_4={4,6,10,12,15,16,21,22,24}
A_5={7,8,11,12,13,14,16,23,24}, B_5={4,6,10,13,16,18,20,23,24}
A_6={7,11,14,15,19,20,21,22,24}, B_6={5,6,10,12,16,19,21,22,24}
A_7={7,9,13,16,17,18,19,21,24}, B_7={5,7,8,12,14,19,20,23,24}
A_8={7,8,12,14,15,16,18,21,24}, B_8={6,8,10,13,18,19,20,23,24}
A_9={7,9,10,11,13,16,17,23,24}, B_9={6,8,10,11,15,16,19,21,24}
A_10={7,9,12,13,15,17,18,22,24}, B_10={6,10,11,13,14,17,22,23,24}
A_11={7,8,9,12,13,15,17,22,24}, B_11={6,7,10,13,16,18,19,20,24}
A_12={7,8,9,11,12,16,18,23,24}, B_12={7,10,12,14,17,18,20,23,24}
A_13={7,9,13,14,16,18,21,22,24}, B_13={7,10,12,13,14,19,20,23,24}
A_14={7,8,11,12,14,16,18,21,24}, B_14={8,9,11,13,16,17,22,23,24}
A_15={8,10,11,12,14,16,17,23,24}, B_15={4,6,7,10,14,15,19,21,24}
A_16={8,12,13,14,16,17,21,23,24}, B_16={5,7,9,12,17,18,20,23,24}
A_17={8,10,14,17,19,20,22,23,24}, B_17={5,6,10,13,14,16,18,23,24}
A_18={8,11,14,16,17,18,22,23,24}, B_18={5,8,9,10,13,17,20,22,24}
A_19={8,10,14,17,19,20,22,23,24}, B_19={5,7,12,13,15,19,20,23,24}
A_20={8,12,13,16,19,21,22,23,24}, B_20={5,6,11,14,16,18,20,23,24}
A_21={8,9,12,14,16,18,21,23,24}, B_21={5,6,11,16,19,20,22,23,24}
A_22={8,9,12,13,14,17,19,21,24}, B_22={5,6,7,13,16,19,20,22,24}
A_23={8,9,11,16,17,19,20,23,24}, B_23={6,8,11,12,13,16,18,22,24}
A_24={8,9,11,12,13,16,18,22,24}, B_24={6,7,9,11,14,17,18,23,24}
A_25={8,9,14,15,17,18,20,22,24}, B_25={6,7,8,11,14,18,19,22,24}
A_26={8,9,11,12,14,17,19,23,24}, B_26={6,7,10,11,13,15,17,23,24}
A_27={8,10,14,15,17,20,22,23,24}, B_27={7,9,12,13,15,19,20,23,24}
A_28={8,9,12,13,16,19,21,22,24}, B_28={7,9,11,13,16,17,18,23,24}
A_29={9,10,12,17,18,19,20,23,24}, B_29={3,7,9,11,12,16,18,21,24}
A_30={9,10,13,16,18,20,21,22,24}, B_30={4,6,11,12,15,16,21,22,24}
A_31={9,11,12,13,16,17,21,23,24}, B_31={5,7,9,12,14,15,18,23,24}
A_32={9,12,13,16,18,21,22,23,24}, B_32={5,6,10,14,16,18,21,23,24}
A_33={9,10,11,13,15,18,20,21,24}, B_33={5,6,7,11,12,15,19,22,24}
A_34={9,11,12,14,16,18,22,23,24}, B_34={5,6,10,13,14,15,18,21,24}
A_35={9,12,13,14,17,19,21,23,24}, B_35={5,6,10,12,13,18,21,22,24}
A_36={9,10,13,14,16,18,22,23,24}, B_36={6,7,8,11,13,15,18,21,24}
A_37={9,10,12,13,17,18,20,22,24}, B_37={6,8,11,14,17,18,22,23,24}
A_38={9,10,12,13,15,17,19,23,24}, B_38={6,7,8,11,14,17,19,23,24}
A_39={9,10,13,15,17,20,22,23,24}, B_39={7,8,11,13,16,17,19,23,24}

Created 1st November 1999 by matrices supplied by Dr Christos Koukouvinos.

Complete searches for D-optimal designs for orders n \leq 54, n=66, were published in:

S.Kounias, C.Koukouvinos, N.Nikolaou, and A.Kakos, The non-equivalent circulant D-optimal designs for n=2mod4, n \leq 54, n=66, J. Combin. Theory Ser. A, 65 (1994), 26-38.