Distributed Communities of Learning and Practice

Helen Hasan and Kathryn Crawford

We have flown the air like birds and swum the sea like fishes, but have yet to learn the simple act of walking the earth like brothers. --.

-- Dr. Martin Luther King Jr

In the electronic age, the concept of community is being revived as part of the interest in knowledge management. However, technology, no matter how advanced, is far from providing the complete answer and it is essential to take an integrated socio-technical approach to this issue. This chapter describes how locally-driven regeneration of communities can be enabled by a flexible, multifaceted model where new information and communication technologies are the catalyst. Two cases that are part of ongoing research into distributed communities are reported and demonstrate that such communities are viable, with a wide range of benefits. However more work needs to be done in order to determine if they are sustainable, economically and socially, in the future.

Introduction

As many writers on KM acknowledge, there is a great deal of controversy surrounding the interpretation of the expression
‘knowledge management’ and its component words, ‘knowledge’ and ‘management’. The term ‘management’ commonly implies a focus at the level of organisation, whether public or private, formal or informal, large or small. In contrast to the use of the term ‘knowledge’, the focus is commonly on individuals. It is the contention of the authors of this chapter that learning, growth and innovation are most commonly achieved not at the organisational or individual level but at the level of work units, or cross-functional teams or informal groups of people who have come together with a common interest or goal.

It is not surprising then that the expressions ‘community of interest’, ‘community of learning’ and, most significantly, ‘community of practice’ have captured the attention in the area of KM. It is our belief that communities are collections of people that engage in activities that encompass a common interest, ongoing learning through practice and we routinely use the phrase ‘communities of practice and learning’ in an endeavour to capture this holistic view. In this we are encouraged by other Australian researchers (see H. Linger, and D Cecez-Kecmanovic in this volume) who distinguish this intermediate level between individual and organisation, as important to increasing the understanding of KM in its broadest sense.

Contemporary Communities of Practice and Learning

There is an increasing awareness that knowledge creation and innovation can be achieved through communities of practice (Wenger 1998) and new information and communication technologies (ICT) can be the catalyst to form and sustain heterogeneous communities where it is imperative to share knowledge and skills. With the support of the Internet and other groupware tools, communities of practice and learning can include people who are widely dispersed in location anywhere on the globe, have differing patterns in their uses of time as well as vastly different personal characteristics and capabilities. The benefits of such communities are so significant that governments and corporations are seeking ways to encourage their establishment and continued existence (Mentzas et al
However there are no simple measures that can be put in place, by governments or other official agencies, to accomplish this. A greater understanding of how this can be done is required. In an age of globalisation, it is imperative to augment our knowledge of how current technology can assist in bringing together, for a variety of purposes across traditional regional, state and national boundaries, groups from business and education, city and country, young and old, experts, instructors and learners, to halt the decline in social capital.

It is our assertion that that a locally-driven regeneration of the concept of community in the electronic age could be enabled by a flexible, multifaceted approach which would create, nourish and support new forms of communities. Technology, no matter how advanced, is far from providing the complete answer and it is essential to take a holistic socio-technical approach to this issue. The most significant aspects of our multifaceted approach are the integration of the learning and practice of all community members in addition to a balanced emphasis on the social and technical components of communities from both theoretical and practical points of view. The principal objective of this chapter is to draw on the results of current research to better understand the necessity for such a multifaceted approach to the creation and maintenance of distributed communities.

Background

There are many who believe that electronic technology is a significant cause of the trend to “individualising” work, learning and leisure time (Putnam 1995) but it may also help enable the reversal of this trend. However, there are other issues that must be considered, both separately and as a whole, in the search for a functional model of communities that rely on electronic technology. The most significant of these issues, for our research, are identified as follows:

1. It is essential that, to work effectively, membership of effective organic communities of practice and learning should be voluntary and informal (McLure-Wasko & Faraj...
Distributed Communities of Learning and Practice

2. One motivation for the formation of the communities relates to the capacity of the Internet for promoting growth in regional rural areas both for business, thereby providing employment and halting the drain, particularly of young people seeking work in already overpopulated cities (Delong et al. 2002) and for flexible modes of education (eg. Renzi & Klobas 2002). This provides us with the opportunity to investigate the feasibility of bringing the business and educational activities together, both to give students a “real-world experience” and to put business people in touch with the latest in business techniques and technology, and perhaps future employees. The importance and practicability of creating a diverse community, where each can contribute, is a second aspect of our research.

3. The relationship between doing and learning is well recognised (Virkkunen & Kuutti 1998, Vygotsky 1978) and this sort of community can take advantage of the value of an experiential educational process in the promotion of life-long learning and professional development (Alon & Cannon 2000). Educational theorists have long recognised that people learn from interacting with others and through their active involvement in interpreting and making meaning of their environment so that collective knowledge is constructed through collaboration (Renzi & Klobas 2002). So a third concept that we have adopted is to incorporate opportunities for experiential learning through team-based projects in the community setting.
4. A basic ingredient for effective teamwork is the formation and development of trust between team-members. This is true in both traditional and virtual settings, but is made more difficult with a virtual team which consists of geographically dispersed individuals who interact, maybe for only a short period of time, guided by a common purpose with links through communications technologies (Panteli 2002). Where the need for trust in such communities is recognised, there are two, not mutually exclusive approaches: conducting team-building exercises or combining face-to-face with online interaction. The importance of balancing virtual and direct interaction to sustain communion among people (Dede 1996) is a fourth consideration for our research.

5. A fifth area of consideration is the interaction between the human participant and the technology. Research into online learning has recognised how the frustration of students with the technology inhibits the learning process (Renzi & Klobas 2002). On a more positive note, current work on the use of asynchronous learning networks has shown the value of threaded online discussion where students have time to consider their responses to the conversation, which encourages them to collect and evaluate knowledge and create their own learning strategies (Caverly & Macdonald 2002).

These five multifaceted issues appear to be crucial for the development of a model of distributed communities of learning and practice, where the term “model” is meant as a guide for behaviour rather than prescriptions. This follows the approach of the Computer-Supported Cooperative Work community where models are seen as “interpretations, as constructions, which for some purposes, under certain conditions, used by some people, in certain situations may be found useful, not true or false” and the modelling process as one of reframing rather than describing or abstracting (Bannon 1999).
Research Problem and Objective

The objective of this research is to increase the understanding of how individual and community growth can be promoted, supported and maintained in distributed communities with an integrated application of currently available technologies and social learning systems. This understanding is embedded in a multifaceted model of community that is both used and developed throughout the research process, incorporating both social and technical aspects. In order to conduct this research, a multidisciplinary, holistic approach is adopted to study two cases, using a developmental work research (DWR) approach (Engestrom 1987), where communities of learning and practice are viewed as activity systems (Virkkunen & Kuutti 2000). DWR provides a dynamic framework that can accommodate a multifaceted analysis of the community members, their motives and purpose for belonging, their relationships within the community and the tools that mediate community activity. The developmental approach implies that the modelling aspect of the research will be evolutionary, incorporating our growing understanding of the five concepts outlined above as it is applied in each of the cases. These will be done by explicitly categorising the following:

1. The purpose of community, including what it can achieve, the length of its tenure, and ways by which innovation can be enabled and stimulated through community cooperation and knowledge sharing.

2. The extent of diversity in the community and how different members are encouraged and their contribution valued.

3. The mix of work and learning in the actions of the community and how learning occurs as an experiential, team-based, project-oriented activity.

4. How trust is developed, how teambuilding occurs and the contribution of different aspects of mixed mode interaction, in particular face-to-face, video-conferencing and online (virtual).
5. How different characteristics and capabilities of the people and technology affect the viability of the community, identifying the functions of technology and skills of people that need to be enhanced.

This raises the question of how to evaluate the viability, and indeed success, of a particular community and thereby the quality of the model. Initially, the following questions are posed; however, an additional objective of the research is to determine what makes a successful community and for whom.

- What is the viability, sustainability and limitations of the multifaceted model of learning given the needs, infrastructure, social and cultural mix of the target community?
- What are the demonstrable benefits to the learner, to the community and to the educators of this activity?
- How are people motivated to participate in communities of learning, particularly those that are set up to support rural business and community development?
- How will individual participants be graded in team-based experiential learning activities, which are part of an accredited course?
- How can this activity be cost effective and efficient?

The Research Approach

In this research, participatory studies of two cases have been used to investigate how well a combination of technology, social awareness and educational techniques, can support and enable communities of learning and practice. Each project was a response to a real need in a rural setting, adapting a model used on a similar project in an urban environment. The multifaceted model begins with a face-to-face workshop followed by a period online where learners, experts and instructors are linked by a special-purpose, Internet-based communication and group-support package. During this period the community of learners
undertake a team-based, problem-solving project where experiential learning takes place through the generation of skills, ideas and solutions.

The progress of the projects was recorded and analysed, using a developmental research method, as dynamic activity systems, which contribute to expansive learning cycles, in the manner of Engestrom (1987). Development research is disciplined investigation conducted in the context of the development of a product or program for the purpose of improving either the thing being developed or the developer. It is therefore ideal for this investigation, as it is both contextual and evolutionary, where a prototype model is constructed, used with the target group, which is observed and questioned before the prototype is revised. In our research, the model incorporates technology together with social and learning processes and discipline is imposed on our investigation by the analysis of each case as an activity system.

In an activity system the unit of analysis is the work activity itself, which is culturally and historically located. Engestrom (1987), who first applied the theory to workplace learning, shows that the work activity system is comprised of the following components:

- the purpose to which members of the community direct their activity,
- individual workers/learners, their colleagues and co-workers/learners,
- the conceptual models, tools and equipment they use, and
- the rules, culture and context that govern how they work, and learn through their work.

In DWR, all of these elements are analysed together as a unified and dynamic whole. A key feature of the DWR approach is that activity is mediated both by tools from the particular culture and setting and by the less visible social mediators of work activity. The holistic nature of this approach allows us to consider learning and doing as an integrated whole.
This chapter will describe two cases that are part of ongoing research into distributed communities, framing them as phases of an activity system in expansive learning cycles in the context of the whole program. An analysis of the cases will be presented as a description of each in terms of the four components of an activity system listed above followed by a holistic account of how the activity has developed through each case viewed as a learning cycle of the activity system. A discussion will then relate these results to the five issues identified in the first section of the chapter as significant in the search for a functional multifaceted model of communities.

Results

In this developmental research, innovative ICT and social systems have been used to support new forms of activity that meet several real needs in the community at once and represent an emerging solution of benefit to each of the active stakeholders. The two cases presented in this chapter, implemented, in a rural setting, a multifaceted model of experiential, team-based learning that had already proved successful in creating awareness of the new science of Photonics among communities of high school students and teachers in a large city. The first case moved this activity into the rural setting, although the object of the activity was the same as that of the previous city communities and the community was based in a single town. The second, subsequent case expanded the activity to incorporate a different purpose with a more geographically distributed community membership.

Background

The Australian Photonics industry has a research centre and several small spin-off companies at the Australian Technology Park. The centre piloted its innovative program to:

- Increase awareness of the nature of Photonics and career opportunities in the field.
Distributed Communities of Learning and Practice

• Enable direct links between interested young people, scientists and entrepreneurial business development in the field.
• Provide extended and enriched learning experiences for students in schools, colleges and universities.
• Work cooperatively with teachers, students and parents to create e-learning experiences and learning materials that motivate and engage young people in the adventure of entrepreneurial research and development in Photonics.
• Facilitate pathways for people wishing to obtain qualifications and careers in the field.

The underlying need was to mobilise new knowledge and understanding of its importance to the community more quickly than has been possible through traditional educational activity. The motivation for the photonics industry was largely economic and a need to recruit able young people; the motivation for students was a personal need to learn about new opportunities and to connect with real people with expertise; and finally the motivation for the education sector was to explore the possibilities of supportive relationships that enhance the learning opportunities in schools.

So a multifaceted approach was developed where scientists, business developers, teachers, technologists, museums and business people contributed to:

• Intensive workshops at the Technology Park.
• An online ‘community of interest’ that supports sustained creative activity as new materials are built and knowledge is exchanged.
• Community celebrations where young people show their creative work and explain their new learning and interest to members of the community including politicians, local government officials and the media.

Technologists and research students at the Technology Park, under the guidance of educationalists, collected a suite of ICT tools to support these endeavours, particularly the online
community. So a successful activity system was developed as a community of learning and practice.

The enthusiasm of this group stimulated the activity into a cycle of expansive learning. They recognised the mediating effect of new ICT capability on such an activity and looked for an opportunity to extend the community outside of the city into regional areas where the model could be tested in a more distributed environment.

Case study one: Innovative Science Awareness in a Regional School

The decision to expand the Photonics activity system into a regional high school, prompted an analysis of the model of learning that had been developed for it at the Technology Park in a major city, in order to understand how it would work in a small, distant country town.

A central principle of the research and development underlying the program is that innovation occurs most successfully when people engage deeply with others outside their usual day to day routine (Metzas et al 2001, Engemstrom 1999, Latour 1996). The community is therefore designed for people who are prepared to actively engage in real tasks and is designed to facilitate creative actions between formerly separate systems of activity rather than automating routine operations. The community also facilitates purposeful knowledge exchanges between different groups. Researchers play a modelling and mentoring role and also make suggestions for development projects. The students in the community are challenged to use their distinctive knowledge and skills to build challenging and interesting multimedia learning experiences for other students. They consult with scientists, seek help from technical experts and work in teams to build their solutions.

In the original activity, while the students and teachers came from different schools, they were not far from each other or the scientists at the Technology Park. In the new form of the activity it would be important to retain these principles but expand the
cycle of learning. While the object, ie purpose, of the activity would be unchanged, there would be a difference in how the tools (ICT, processes and procedures) would be used, and the community (relationships, rules, culture and context). As stated above, tools and community mediate the activity undertaken by people towards an object motivated by a purpose. In the expanded activity system, all the students and teachers would be at the same regional school and have well-defined existing relationships of power. The scientists and researchers would be in the city, five hours away and so the capability of the technology, although of inferior quality of bandwidth and reliability, would play a more important role in communications with them.

It was decided to build the community as follows. The researchers worked with the school principal to select and engage a group of suitable and willing students, teachers and, if possible, parents and local business people. It was interesting that no parents or business people became part of the community. The researchers then travelled to the town to meet the group one evening socially and the following day run a workshop in an Education Centre opposite the school. The workshop was used for face to face community building, creating enthusiasm for experiential, project-based learning among the community and developing skills in the use of the technology. Although the scientist did not come, a videoconference was arranged between them, in the city and the rest of the community in the town, to build up trust as mentioned in the introduction. This was certainly worthwhile for both students and scientists. The students and teachers were then arranged into teams of 4 or 5 with complementary skills and began to plan to meet their challenge. This was to build the sort of exciting website that would attract people like themselves to be interested in Photonics. At the conclusion of the workshop a community had been formed with a common purpose and an appreciation of the value of their community for learning and practice.
The teams then spent the following eight weeks creating their solutions, communicating with each other at school and online with the researchers, technical experts and scientists. The teams then demonstrated their solutions at a function, attended by the researchers, the school principal and staff, parents, local dignitaries and the local media. This success inspired the next cycle of the activity system as a second case study.

Case study two: Information Systems Awareness in Regional Schools

The university, who delivered distance courses through the education centre used in the first case study, was impressed by the model of community learning evident in the Photonics case study. One of the lecturers asked to trial the delivery of one of its introductory modules in Information Systems with high school students to interest them in studying this course at the university after completing school. The researchers used this as an opportunity to extend the model to a geographically more diverse community and to expand the activity for a different purpose, focussed on a more specific learning outcome.

Students were motivated to sign up for this activity with the promise that they would be awarded a certificate of attainment by the university that would exempt them from the corresponding module if they undertook the course in information systems at the university. In this community, the students came from different schools in towns up to two hours from the Education Centre and the researchers, experts and technical support were also located in different cities. There was considerable tension within the activity system following this change, as there was no longer backing from the expertise of Photonics so that a redevelopment of the ICT system and its support was required. Also, as many of the students worked from home, rather than at school, their Internet connections could be very unreliable. However, the activity went ahead using the same model of a face-to-face workshop, followed by an eight week online period of experiential learning where students, in teams, identified and built “information systems” such as web
pages, brochures, databases, each for a small virtual business that they created for the exercise. Preparations for a celebratory presentation evening of the outcomes are underway at the time of writing this chapter.

The Next Cycle

The researchers claim that the fact that the communities have worked and learnt together harmoniously and productively for the intended time and produced innovative and exciting outcomes, provides evidence that the model has merit. However, as with all activity systems, a new learning cycle builds on lessons learnt from the previous one. In this activity, growth requires at least two changes, one is to extend the membership of the community beyond school students in these regional areas. The other is to keep improving the supporting technological and social systems. A new community is currently being formed in another town in a nearby region. This will again focus on the learning of introductory information systems concepts but will include both school students and other members of the local community. In addition, the ICT application will be made more robust for low bandwidth connection, more modular and undergo usability testing. The processes are also being accessed to make these communities financially viable once they move out of the research arena.

Discussion

In this developmental research there is no requirement of an absolute end to the learning cycles of the activity system or any way in which formal criteria can be set against which success or failure can be measured. Instead, the emphasis is on improvement both of the thing being developed and in the understanding of the developers, in this case the researchers. For the research team, a major aim of the developmental process is to learn to identify the indicators of success. The results above are now discussed in relation to the five issues identified in the first section of the chapter as significant in the search for a functional, multifaceted model of communities.
1. Community purpose, cooperation and knowledge sharing. Through each cycle of the activity system it became clear that each of the communities had a common purpose in sustaining the community to complete the team projects and that this could best be achieved through cooperation, even across teams, and through knowledge sharing. A key component of the model is to engender this from the beginning and that awareness-sessions, and team-building exercises in the initial face-to-face workshops, are invaluable. The literature cited above supports the view that this is much more difficult to achieve in purely online groups. Case one indicated that where face-to-face was impossible, videoconference may be helpful as a substitute. Critical to the learning process is the opportunity to engage in practice with others involving sustained relations over time among community members and contexts in which they function and among more and less experienced colleagues. (Moore & Barab 2002).

2. The extent and valuing of diversity. In each case, teams were set up in an effort to include a mix of technical, artistic and social skills, and those with similar attributes, or who knew each other, were encouraged to split up. In case one, teachers and senior students were distributed across teams and, in case two, students from the same school did not work together so that communication was mostly conducted using the threaded discussion facility online. The value of asynchronous learning networks has been recognised by others. Caverly and MacDonald (2002), for example, describe how online asynchronous threaded discussions, when orchestrated appropriately, create a group orientation where individuals help each other reach goals, are productive because of the think-time students are given and the inherent cooperative grouping, encourage students to invest energy to support each other and have a high value to achieve and create positive interpersonal relationships as group members engage each other for assistance. This also has an
advantage for the researchers in that their discussion is visible to them.

3. **The blurred boundaries between work and learning**: An activity system, by its very nature, brings work and learning together, so that both tools and community mediate both. Delong et al (2002) have noted that, in rural areas in particular, there is an increasing need to diversify and optimise economic opportunities in order to maintain both economic and community viability. They recommend that a carefully developed program for use of the Internet could be a valuable resource for rural businesses where participants with common, overlapping interests can become a community of learners. In fact, rural areas are ideally placed to take advantage of e-commerce solutions to both business and education.

4. **The development of trust**: Through the learning cycle experiences, trust develops as part of the relationships between the members of the community, an issue addressed in points 1 and 2. However, participants also learn to trust in the fact that a new form of learning occurs through the experience of interacting with others towards a common goal and that this learning is as valid as, and much more relevant than, that which takes place in a traditional classroom where instruction remains primarily didactic, dominated by lecture, demonstration, textbook readings and memorisation. Communities of practice and learning offer a new way of looking at and approaching professional development that is not something you receive, but something in that you invent creatively through participating reflectively as a part of your everyday activities (Moore & Barab 2002).

5. **Integrating the functions of technology and skills of people**: One of the aims of the research was to create a new socio-technological infrastructure that would enable and support the kind of community of learning practice envisaged in the introduction to the chapter. In summary,
the socio-technological context of our model provided a new system of cooperative activity that:

- Enthuses and informs young people, in rural and city regions, about new scientific and technological developments and the opportunities for them in the emerging industry
- Cooperates with existing education providers in the development and marketing of new courses and in recruiting students to the courses
- Enables innovators of all kinds, researchers, developers, business entrepreneurs to communicate more effectively and efficiently with the wider community.

People are most motivated to use new technologies for purposes to which they have commitment and where they understand the benefits and the need to change. These conditions are fostered when people actively participate in creating the solutions they will use. The outcomes of case one were cost effective and realistic in terms of projected recruiting needs for the industry. For people using scientific and technical applications, innovation is always a forward-looking adventure in which the risks are measured against the possible benefits. A key aspect of the Photonics Program is to provide an ICT enabled and extended context that supports and facilitates a similar journey for young people.

Both cases are working examples of applied design that enables researchers, industry, business and the education sector to work together in new ways that effectively mobilise new knowledge. The evolving multifaceted model reinforces the need for an integration of processes recommended by others (Moore & Barab 2002, Caverly & MacDonald 2002) where social participation refers to not just local events of engagement in certain activities but a more encompassing process of being active participants in the practices of social communities that have collaborative workspaces with face-to-face workshops in addition to virtual ones where community members can
1. respond not only to the instructor but to workers and learners

2. engage in advanced reasoning process: identifying a problem, the details and beliefs/assumptions about the problem, apply problem solving and engage in strategy production.

3. be encouraged and supported in their interactive processes (where skills are developed to get to know each other, to communicate unambiguously, constructively resolve conflicts, to collaborate towards a commonly accepted goal).

4. allow social processes to occur for group cohesiveness, so that remote members become part of the academic, scientific and business community, to create positive interdependence.

Conclusion

The authors believe that this research continues to meet its objective of increasing the understanding of how individual and community growth can be promoted, supported and maintained in distributed communities with an integrated application of currently available technologies and social learning systems. The cases presented here demonstrate the usefulness of a multifaceted model of community that is continually improved through a developmental research approach where it is seen as a tool for a dynamic activity system.

A series of pragmatic questions were posed about the viability of maintaining learning and practice in diverse communities, which can only exist with the aid of innovative uses of ICT. We claim that this research does, to some extent, demonstrate that such communities are viable with a wide range of benefits. However more work needs to be done in order to determine if they are sustainable, economically and socially, in the future.
References

Bannon L. (1999) CSCW A challenge to certain (G)DSS perspectives on the role of decisions, information, and technology in organisations? @ http://www.ul.ie/~idc/library/

