Rongmao Chen University of Wollongong

August 29, 2014

A⊒ ▶ ∢ ∃

Rongmao Chen University of Wollongong Cramer-Shoup Encryption

Ronald Cramer and Victor Shoup.

A practical public key cryptosystems provably secure against adaptive chosen ciphertext attack. In *CRYPTO*, pages 13–25, 1998.

 A public key encryption (PKE) scheme consists of the following algorithms,

- KeyGen: Taking as input a security parameter 1^λ, return a public/secret key pair (*pk*, *sk*).
- **Enc:** Taking as input a plaintext *m* and the public key *pk*, return the ciphertext *c*.
- **Dec:** Taking as input a ciphertext c and the secret key sk, return the plaintext m or \perp .

向下 イヨト イヨト

Security Model

Rongmao Chen University of Wollongong

æ

Contribution of Cramer-Shoup Encryption

Before the Cramer-Shoup encryption scheme, all the proposed PKE schemes provably secure against adaptive chosen ciphertext attack suffer from either of the following weaknesses.

- Provably secure under standard assumptions but impractical. (none-interactive zero-knowledge proof)
- Practical but provably secure under non-standard assumption. (random oracle)

A B K A B K

Contribution of Cramer-Shoup Encryption

Before the Cramer-Shoup encryption scheme, all the proposed PKE schemes provably secure against adaptive chosen ciphertext attack suffer from either of the following weaknesses.

- Provably secure under standard assumptions but impractical. (none-interactive zero-knowledge proof)
- Practical but provably secure under non-standard assumption. (random oracle)

While, the CS scheme is both practical and provably secure under standard assumption.

伺下 イヨト イヨト

Let \mathbb{G} be a group of prime order p and $H : \{0,1\}^* \to \mathbb{Z}_p$ be a secure one-way function, $g_1, g_2 \in \mathbb{G}$.

• KeyGen: $sk = (\alpha, \beta_1, \beta_2, \gamma_1, \gamma_2) \in \mathbb{Z}_p^6, pk = (g_1, g_2, h, u, v) = (g_1, g_2, g_1^{\alpha}, g_1^{\beta_1} g_2^{\beta_2}, g_1^{\gamma_1} g_2^{\gamma_2}).$

• **Enc**_{*pk*}(*m*):
$$r \leftarrow_R \mathbb{Z}_p$$
, output

$$CT = \langle C_1, C_2, C_3, C_4 \rangle = \langle g_1^r, g_2^r, h^r m, u^r v^{r\theta} \rangle,$$

where $\theta = H(C_1, C_2, C_3)$.

• $\mathbf{Dec}_{sk}(C_1, C_2, C_3, C_4)$: If $C_4 = C_1^{\beta_1 + \theta \gamma_1} C_2^{\beta_2 + \theta \gamma_2}$, where $\theta = H(C_1, C_2, C_3)$, output

$$m=C_3\cdot C_1^{-\alpha},$$

(《圖》 《문》 《문》 - 문

otherwise output \perp .

イロン イヨン イヨン イヨン

æ

Reduction Proof-"Guess" Reduction

What is "Guess" Reduction?

- Solve the hard problem based on the adversary's final guess in the security model;
- Always reduction to decision hard problem, e.g., DDH;
- Sketchy of the reduction proof
 - **Case 1:** The input decision problem is *True*. Prove that the simulation is polynomially indistinguishable from the actual attack;
 - **Case 2:** The input decision problem is *False*. Prove that the challenge ciphertext is "one-time pad" encryption from the view of the adversary.

One-time pad encryption:

Given the ciphertext, any message from the message space has the same probability to be the corresponding plaintext!

It is a challenge to prove the "one-time pad"!!

"Guess" Reduction

"Guess" Reduction Map

Rongmao Chen University of Wollongong

Let \mathbb{G} be a group of prime order $p, g \in \mathbb{G}$.

- KeyGen: $sk = \alpha \in \mathbb{Z}_p$, pk = (g, h) where $h = g^{\alpha}$.
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = < C_1, C_2 > = < g^r, h^r m > .$$

個 と く ヨ と く ヨ と …

• $\mathbf{Dec}_{sk}(C_1, C_2)$: Output $m = C_2 \cdot C_1^{-\alpha}$.

Let \mathbb{G} be a group of prime order $p, g \in \mathbb{G}$.

- KeyGen: $sk = \alpha \in \mathbb{Z}_p$, pk = (g, h) where $h = g^{\alpha}$.
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = < C_1, C_2 > = < g^r, h^r m > .$$

•
$$\mathbf{Dec}_{sk}(C_1, C_2)$$
: Output $m = C_2 \cdot C_1^{-\alpha}$.

Proof for IND-CPA Security

DDH: Given $\langle g, g^a, g^b, Z \rangle$, decide $Z \stackrel{?}{=} g^{ab}$.

Suppose \mathcal{A} is an IND-CPA attacker on the ElGamal scheme with advantage ε .

白 と く ヨ と く ヨ と …

ElGamal Encryption

Reduction algorithm $\mathcal{B}(g, g^a, g^b, Z)$

- KeyGen: \mathcal{B} gives \mathcal{A} the public key $pk = (g, g^a)$.
- **Challenge**: After A outputs two messages m_0, m_1, B chooses $c \leftarrow_R \{0, 1\}$ and outputs

$$CT^* = \langle C_1^*, C_2^* \rangle = \langle g^b, Z \cdot m_c \rangle.$$

• **Output**: After A outputs its guess c' on c, B outputs 1 if c' = c, otherwise outputs 0.

Case 1: $Z = g^{ab}$. The simulation is indistinguishable from the actual attack, that is $P[c' = c | Z = g^{ab}] = \varepsilon$. $\sqrt{}$

Case 2: $Z \neq g^{ab}$. As Z is random and independent of A's view, Z is a perfect one-time pad, that is $P[c' = c | Z \neq g^{ab}] = 1/2.\sqrt{2}$

Therefore, ${\mathcal B}$ solves the DDH problem with probability,

$$\varepsilon' = \varepsilon - 1/2.$$

(ロ) (同) (E) (E) (E)

Variant of DDH Problem

Given $D = \langle g_1, g_2, u_1, u_2 \rangle$, if there exist an r that $u_1 = g_1^r$, $u_2 = g_2^r$, then D is a DDH-tuple.

・ 回 と ・ ヨ と ・ ヨ と

æ

Let \mathbb{G} be a group of prime order p, $g_1, g_2 \in \mathbb{G}$.

- KeyGen: $sk = (\alpha_1, \alpha_2) \in \mathbb{Z}_p^2$, pk = (g, h) where $h = g_1^{\alpha_1} g_2^{\alpha_2}$.
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = \langle C_1, C_2, C_3 \rangle = \langle g_1^r, g_2^r, h^r \cdot m \rangle$$

御 と く ヨ と く ヨ と …

• $\mathbf{Dec}_{sk}(C_1, C_2, C_3)$: Output $m = C_3 \cdot C_1^{-\alpha_1} \cdot C_2^{-\alpha_2}$.

Let \mathbb{G} be a group of prime order p, $g_1, g_2 \in \mathbb{G}$.

- KeyGen: $sk = (\alpha_1, \alpha_2) \in \mathbb{Z}_p^2$, pk = (g, h) where $h = g_1^{\alpha_1} g_2^{\alpha_2}$.
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = \langle C_1, C_2, C_3 \rangle = \langle g_1^r, g_2^r, h^r \cdot m \rangle$$

• $\mathbf{Dec}_{sk}(C_1, C_2, C_3)$: Output $m = C_3 \cdot C_1^{-\alpha_1} \cdot C_2^{-\alpha_2}$.

IND-CPA Secure?

Given DDH instance $D = \langle g_1, g_2, u_1, u_2 \rangle$, suppose the challenge ciphertext is

$$CT^* = < C_1^*, C_2^*, C_3^* > = < u_1, u_2, u_1^{\alpha_1} u_2^{\alpha_2} m_b >$$

(《圖》 《문》 《문》 - 문

Let $\log_{g_1}(\cdot) = \log(\cdot)$, suppose that $\log g_2 = w$, then from the public key, we have

$$\log h = \alpha_1 + w\alpha_2 \tag{1}$$

白 と く ヨ と く ヨ と …

Case 1: ${\it D}$ is a DDH-tuple. The simulation is indistinguishable from the actual attack. \surd

Let $\log_{g_1}(\cdot) = \log(\cdot)$, suppose that $\log g_2 = w$, then from the public key, we have

$$\log h = \alpha_1 + w\alpha_2 \tag{1}$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. \surd

Case 2: *D* is not a DDH-tuple. Suppose that $u_1 = g_1^{r_1}$, $u_2 = g_2^{r_2}$, consider the term $u_1^{\alpha} u_2^{\alpha_2}$, we have

$$\log u_1^{\alpha} u_2^{\alpha_2} = r_1 \alpha_1 + r_2 w \alpha_2 \tag{2}$$

イロン イ部ン イヨン イヨン 三日

As equation (2) is linearly independent from equation (1), $u_1^{\alpha_1}u_2^{\alpha_2}$ is independent of \mathcal{A} 's view, which follows that C_3^* is one-time pad encryption. $\sqrt{}$

Let $\log_{g_1}(\cdot) = \log(\cdot)$, suppose that $\log g_2 = w$, then from the public key, we have

$$\log h = \alpha_1 + w\alpha_2 \tag{1}$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. \surd

Case 2: *D* is not a DDH-tuple. Suppose that $u_1 = g_1^{r_1}$, $u_2 = g_2^{r_2}$, consider the term $u_1^{\alpha} u_2^{\alpha_2}$, we have

$$\log u_1^{\alpha} u_2^{\alpha_2} = r_1 \alpha_1 + r_2 w \alpha_2 \tag{2}$$

(本部) (本語) (本語) (語)

As equation (2) is linearly independent from equation (1), $u_1^{\alpha_1}u_2^{\alpha_2}$ is independent of \mathcal{A} 's view, which follows that C_3^* is one-time pad encryption. $\sqrt{}$

IND-CPA Secure!

Let $\log_{g_1}(\cdot) = \log(\cdot)$, suppose that $\log g_2 = w$, then from the public key, we have

$$\log h = \alpha_1 + w\alpha_2 \tag{1}$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. \surd

Case 2: *D* is not a DDH-tuple. Suppose that $u_1 = g_1^{r_1}$, $u_2 = g_2^{r_2}$, consider the term $u_1^{\alpha} u_2^{\alpha_2}$, we have

$$\log u_1^{\alpha} u_2^{\alpha_2} = r_1 \alpha_1 + r_2 w \alpha_2 \tag{2}$$

イロト イポト イヨト イヨト 三国

As equation (2) is linearly independent from equation (1), $u_1^{\alpha_1}u_2^{\alpha_2}$ is independent of \mathcal{A} 's view, which follows that C_3^* is one-time pad encryption. $\sqrt{}$

IND-CPA Secure!

IND-CCA1 Secure?

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $< C'_1, C'_2, C'_3 >$, where $C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}$ and $r'_1 \neq r'_2$. Using the decryption result m', \mathcal{A} has the following info,

$$\log C_3'/m' = r_1'\alpha_1 + r_2'w\alpha_2 \tag{3}$$

伺 とう ヨン うちょう

Since equations (1), (3) are linearly independent, \mathcal{A} can solve the linear equations to get the value of α_1, α_2 , i.e., the secret key.

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $< C'_1, C'_2, C'_3 >$, where $C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}$ and $r'_1 \neq r'_2$. Using the decryption result m', \mathcal{A} has the following info,

 $\log C_3'/m' = r_1'\alpha_1 + r_2'w\alpha_2 \tag{3}$

米部 シネヨシネヨシ 三日

Since equations (1), (3) are linearly independent, A can solve the linear equations to get the value of α_1, α_2 , i.e., the secret key.

Case 2 can not be proved!

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $< C'_1, C'_2, C'_3 >$, where $C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}$ and $r'_1 \neq r'_2$. Using the decryption result m', \mathcal{A} has the following info,

 $\log C_3'/m' = r_1'\alpha_1 + r_2'w\alpha_2 \tag{3}$

Since equations (1), (3) are linearly independent, A can solve the linear equations to get the value of α_1, α_2 , i.e., the secret key.

Case 2 can not be proved!

Fail to prove IND-CCA1 security!

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $< C'_1, C'_2, C'_3 >$, where $C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}$ and $r'_1 \neq r'_2$. Using the decryption result m', \mathcal{A} has the following info,

 $\log C_3'/m' = r_1'\alpha_1 + r_2'w\alpha_2 \tag{3}$

(ロ) (同) (E) (E) (E)

Since equations (1), (3) are linearly independent, A can solve the linear equations to get the value of α_1, α_2 , i.e., the secret key.

Case 2 can not be proved!

Fail to prove IND-CCA1 security!

Solution: Check the validity of the ciphertext before decryption \Rightarrow Proving consistency of exponentiations, i.e., ensure that,

$$\log_{g_1} C_1' = \log_{g_2} C_2'?$$

Proving consistency of exponentiations

Proving Consistency of Exponentiations

Q: Given g_1, g_2, X_1, X_2 , prove that there is an r where $X_1 = g_1^r$, $X_2 = g_2^r$.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

3

Proving consistency of exponentiations

Proving Consistency of Exponentiations

Q: Given g_1, g_2, X_1, X_2 , prove that there is an r where $X_1 = g_1^r$, $X_2 = g_2^r$.

イロト イヨト イヨト イヨト

3

Proving consistency of exponentiations

Proving Consistency of Exponentiations

Q: Given g_1, g_2, X_1, X_2 , prove that there is an r where $X_1 = g_1^r$, $X_2 = g_2^r$.

Soundness: if $X_1 = g_1^{r_1}, X_2 = g_2^{r_2} = g_2^{r_1 + \Delta r}$, then

$$X_1^{b_1}X_2^{b_2} = g_1^{r_1b_1}g_2^{(r_1+\Delta r)b_2} = g_1^{r_1b_1}g_2^{r_1b_2}g_2^{\Delta rb_2} = Z^{r_1}(g_2^{\Delta r})^{b_2}$$

Independent of the prover's view!

Let \mathbb{G} be a group of prime order p, $g_1, g_2 \in \mathbb{G}$.

- KeyGen: $sk = (\alpha_1, \alpha_2, \beta_1, \beta_2) \in \mathbb{Z}_p^4$, pk = (g, h, u) where $h = g_1^{\alpha_1} g_2^{\alpha_2}$, $u = g_1^{\beta_1} g_2^{\beta_2}$.
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = \langle C_1, C_2, C_3, C_4 \rangle = \langle g_1^r, g_2^r, h^r \cdot m, u^r \rangle.$$

• $\mathbf{Dec}_{sk}(C_1, C_2, C_3, C_4)$: If $C_4 = C_1^{\beta_1} C_2^{\beta_2}$, output

$$m=C_3\cdot C_1^{-\alpha_1}\cdot C_2^{-\alpha_2},$$

回 と く ヨ と く ヨ と …

otherwise output \perp .

IND-CCA1 Secure?

From the public key u, A gets the following info,

$$\log u = \beta_1 + w\beta_2 \tag{4}$$

For a query $< C'_1, C'_2, C'_3, C'_4 >, C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}, r'_1 \neq r'_2$. If it is accepted, then $C'_4 = C'^{\beta_1}_1 C'^{\beta_2}_2$, i.e, the following equation,

$$\log C_4' = r_1'\beta_1 + r_2'w\beta_2 \tag{5}$$

(《圖》 《문》 《문》 - 문

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

IND-CCA1 Secure?

From the public key u, A gets the following info,

$$\log u = \beta_1 + w\beta_2 \tag{4}$$

For a query $< C'_1, C'_2, C'_3, C'_4 >, C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}, r'_1 \neq r'_2$. If it is accepted, then $C'_4 = C'^{\beta_1}_1 C'^{\beta_2}_2$, i.e, the following equation,

$$\log C_4' = r_1'\beta_1 + r_2'w\beta_2 \tag{5}$$

(ロ) (同) (E) (E) (E)

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{}$

IND-CCA1 Secure?

From the public key u, A gets the following info,

$$\log u = \beta_1 + w\beta_2 \tag{4}$$

For a query $< C'_1, C'_2, C'_3, C'_4 >, C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}, r'_1 \neq r'_2$. If it is accepted, then $C'_4 = C'^{\beta_1}_1 C'^{\beta_2}_2$, i.e, the following equation,

$$\log C_4' = r_1'\beta_1 + r_2'w\beta_2 \tag{5}$$

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! \checkmark

IND-CCA1 secure!

IND-CCA1 Secure?

From the public key u, A gets the following info,

$$\log u = \beta_1 + w\beta_2 \tag{4}$$

For a query $< C'_1, C'_2, C'_3, C'_4 >, C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}, r'_1 \neq r'_2$. If it is accepted, then $C'_4 = C'^{\beta_1}_1 C'^{\beta_2}_2$, i.e, the following equation,

$$\log C_4' = r_1'\beta_1 + r_2'w\beta_2 \tag{5}$$

・ロト ・回ト ・ヨト ・ヨト

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! \checkmark

IND-CCA1 secure!

IND-CCA2 secure?

IND-CCA2 Secure?

Suppose that the challenge ciphertext is as follows,

$$CT^* = < C_1^*, C_2^*, C_3^*, C_4^* > = < u_1, \ u_2, \ u_1^{\alpha_1} u_2^{\alpha_2} m_b, \ u_1^{\beta_1} u_2^{\beta_2} >$$

There are two aspects need to be considered.

• **Malleability.** A chooses Δm randomly and submits the follow ciphertext to the decryption oracle.

$$CT = < C_1^*, C_2^*, C_3^* \cdot \Delta m, C_4^* > = < u_1, u_2, u_1^{\alpha_1} u_2^{\alpha_2} m_b \cdot \Delta m, u_1^{\beta_1} u_2^{\beta_2} >$$

Since $CT \neq CT^*$ and is a valid ciphertext, the decryption oracle returns $m' = m_b \cdot \Delta m$ to \mathcal{A} . Thus \mathcal{A} can compute $m_b = m'/\Delta m$ and output its guess correctly regardless of tuple D.

IND-CCA2 Secure?

Suppose that the challenge ciphertext is as follows,

$$CT^* = < C_1^*, C_2^*, C_3^*, C_4^* > = < u_1, \ u_2, \ u_1^{\alpha_1}u_2^{\alpha_2}m_b, \ u_1^{\beta_1}u_2^{\beta_2} >$$

There are two aspects need to be considered.

• **Malleability.** A chooses Δm randomly and submits the follow ciphertext to the decryption oracle.

$$CT = < C_1^*, C_2^*, C_3^* \cdot \Delta m, C_4^* > = < u_1, u_2, u_1^{\alpha_1} u_2^{\alpha_2} m_b \cdot \Delta m, u_1^{\beta_1} u_2^{\beta_2} >$$

Since $CT \neq CT^*$ and is a valid ciphertext, the decryption oracle returns $m' = m_b \cdot \Delta m$ to \mathcal{A} . Thus \mathcal{A} can compute $m_b = m'/\Delta m$ and output its guess correctly regardless of tuple D.

IND-CCA2 insecure!

Suppose that the challenge ciphertext is as follows,

$$CT^* = < C_1^*, C_2^*, C_3^*, C_4^* > = < u_1, \ u_2, \ u_1^{\alpha_1} u_2^{\alpha_2} m_b, \ u_1^{\beta_1} u_2^{\beta_2} >$$

There are two aspects need to be considered.

• Malleability. A chooses Δm randomly and submits the follow ciphertext to the decryption oracle.

$$CT = < C_1^*, C_2^*, C_3^* \cdot \Delta m, C_4^* > = < u_1, u_2, u_1^{\alpha_1} u_2^{\alpha_2} m_b \cdot \Delta m, u_1^{\beta_1} u_2^{\beta_2} >$$

Since $CT \neq CT^*$ and is a valid ciphertext, the decryption oracle returns $m' = m_b \cdot \Delta m$ to \mathcal{A} . Thus \mathcal{A} can compute $m_b = m'/\Delta m$ and output its guess correctly regardless of tuple D.

IND-CCA2 insecure!

Solution: Use the message info for validity checking !

• Validity Checking Failure. Suppose that D is not a DDH tuple $(u_1 = g_1^{r_1}, u_2 = g_2^{r_2}, r_1 \neq r_2)$. Based on the challenge ciphertext, the (powerful) adversary A can get the following info,

$$\log C_4^* = r_1\beta_1 + r_2w\beta_2 \tag{6}$$

・日・ ・ ヨ・ ・ ヨ・

Since equations (4),(6) are linearly independent, A can solve the linear equations to get the value of β_1, β_2 . It follows that the ciphertext *validity checking would be a failure*.

• Validity Checking Failure. Suppose that D is not a DDH tuple $(u_1 = g_1^{r_1}, u_2 = g_2^{r_2}, r_1 \neq r_2)$. Based on the challenge ciphertext, the (powerful) adversary A can get the following info,

$$\log C_4^* = r_1\beta_1 + r_2w\beta_2 \tag{6}$$

・日・ ・ ヨ・ ・ ヨ・

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_1, β_2 . It follows that the ciphertext *validity checking would be a failure*.

Validity checking Fails! \Rightarrow Case 2 cannot be proved!

• Validity Checking Failure. Suppose that D is not a DDH tuple $(u_1 = g_1^{r_1}, u_2 = g_2^{r_2}, r_1 \neq r_2)$. Based on the challenge ciphertext, the (powerful) adversary A can get the following info,

$$\log C_4^* = r_1\beta_1 + r_2w\beta_2 \tag{6}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_1, β_2 . It follows that the ciphertext *validity checking would be a failure*.

Validity checking Fails! \Rightarrow Case 2 cannot be proved!

Still fail to prove IND-CCA2 security!

• Validity Checking Failure. Suppose that D is not a DDH tuple $(u_1 = g_1^{r_1}, u_2 = g_2^{r_2}, r_1 \neq r_2)$. Based on the challenge ciphertext, the (powerful) adversary A can get the following info,

$$\log C_4^* = r_1\beta_1 + r_2w\beta_2 \tag{6}$$

伺下 イヨト イヨト

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_1, β_2 . It follows that the ciphertext *validity checking would be a failure*.

Validity checking Fails! \Rightarrow Case 2 cannot be proved!

Still fail to prove IND-CCA2 security!

Solution: Use more random augments for validity checking!

Let \mathbb{G} be a group of prime order p and $H: \{0,1\}^* \to \mathbb{Z}_p$ be a secure one-way function, $g_1, g_2 \in \mathbb{G}$.

• KeyGen: $sk = (\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2) \in \mathbb{Z}_p^6, pk = (g, h, u, v)$ where $h = g_1^{\alpha_1} g_2^{\alpha_2}, u = g_1^{\beta_1} g_2^{\beta_2}, v = g_1^{\gamma_1} g_2^{\gamma_2}.$

• **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = < C_1, C_2, C_3, C_4 > = < g_1^r, g_2^r, h^r m, u^r v^{r\theta} >,$$

where $\theta = H(C_1, C_2, C_3)$.

• $Dec_{sk}(C_1, C_2, C_3, C_4)$: If $C_4 = C_1^{\beta_1 + \theta \gamma_1} C_2^{\beta_2 + \theta \gamma_2}$, where $\theta = H(C_1, C_2, C_3)$, output

$$m=C_3\cdot C_1^{-\alpha_1}\cdot C_2^{-\alpha_2},$$

(本間) (本語) (本語) (語)

otherwise output \perp .

From the public key v, \mathcal{A} can get the following info,

$$\log v = \gamma_1 + w\gamma_2 \tag{7}$$

□ > < E > < E > < E</p>

Suppose that D is not a DDH tuple $(u_1 = g_1^{r_1}, u_2 = g_2^{r_2}, r_1 \neq r_2)$, then the challenge ciphertext is as follows,

$$CT^* = < C_1^*, C_2^*, C_3^*, C_4^* > = < u_1, u_2, u_1^{\alpha_1} u_2^{\alpha_2} m_b, u_1^{\beta_1} u_2^{\beta_2} u_1^{\gamma_1 \theta^*} u_2^{\gamma_2 \theta^*} >$$

where $\theta^*=H(\mathit{C}_1^*,\mathit{C}_2^*,\mathit{C}_3^*).$ Therefore , $\mathcal A$ can get the following info,

$$\log C_4^* = r_1\beta_1 + r_2w\beta_2 + r_1\gamma_1\theta^* + r_2w\gamma_2\theta^*$$
(8)

If \mathcal{A} queries an invalid ciphertext to the decryption oracle, say $< C'_1, C'_2, C'_3, C'_4 >$, where $C'_1 = g_1^{r'_1}, C'_2 = g_2^{r'_2}$ and $r'_1 \neq r'_2$. As for this decryption query, we should consider the followings.

- If $< C'_1, C'_2, C'_3 > = < C^*_1, C^*_2, C^*_3 >, C'_4 \neq C^*_4$. This query will always be rejected.
- If < C'_1, C'_2, C'_3 > ≠ < C^*_1, C^*_2, C^*_3 >, C'_4 = C^*_4. Since H is collision-resistant and A runs in polynomial time, this happens with only negligible probability.
- If $H(C'_1, C'_2, C'_3) \neq H(C^*_1, C^*_2, C^*_3)$. If the ciphertext is accepted by the simulator, it should satisfy the following equation,

$$\log C'_4 = r'_1\beta_1 + r'_2w\beta_2 + r'_1\gamma_1\theta' + r'_2w\gamma_2\theta'$$
(9)

(ロ) (同) (E) (E) (E)

where $\theta' = H(C'_1, C'_2, C'_3)$. Since equations (4), (7), (8), (9) are linearly independent, this happens only with negligible probability.

- If $< C'_1, C'_2, C'_3 > = < C^*_1, C^*_2, C^*_3 >, C'_4 \neq C^*_4$. This query will always be rejected.
- If $< C'_1, C'_2, C'_3 > \neq < C^*_1, C^*_2, C^*_3 >, C'_4 = C^*_4$. Since *H* is collision-resistant and *A* runs in polynomial time, this happens with only negligible probability.
- If $H(C'_1, C'_2, C'_3) \neq H(C^*_1, C^*_2, C^*_3)$. If the ciphertext is accepted by the simulator, it should satisfy the following equation,

$$\log C'_4 = r'_1\beta_1 + r'_2w\beta_2 + r'_1\gamma_1\theta' + r'_2w\gamma_2\theta'$$
(9)

・ロン ・回 と ・ 回 と ・ 回 と

where $\theta' = H(C'_1, C'_2, C'_3)$. Since equations (4), (7), (8), (9) are linearly independent, this happens only with negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{}$

- If $< C'_1, C'_2, C'_3 > = < C^*_1, C^*_2, C^*_3 >, C'_4 \neq C^*_4$. This query will always be rejected.
- If < C'_1, C'_2, C'_3 > ≠ < C^*_1, C^*_2, C^*_3 >, C'_4 = C^*_4. Since H is collision-resistant and A runs in polynomial time, this happens with only negligible probability.
- If $H(C'_1, C'_2, C'_3) \neq H(C^*_1, C^*_2, C^*_3)$. If the ciphertext is accepted by the simulator, it should satisfy the following equation,

$$\log C'_4 = r'_1\beta_1 + r'_2w\beta_2 + r'_1\gamma_1\theta' + r'_2w\gamma_2\theta'$$
(9)

イロン イヨン イヨン イヨン

where $\theta' = H(C'_1, C'_2, C'_3)$. Since equations (4), (7), (8), (9) are linearly independent, this happens only with negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! \checkmark

IND-CCA2 secure!

Conclusion

What can we learn from CS scheme?

- Some schemes seem to be secure without attacks, but they cannot be proved. We must change schemes to make them provably secure.
- Use "guarded" decryption, i.e., checking the validity of ciphertext before or after decryption to remove the scheme's property of malleability to achieve IND-CCA2 security.
- To construct a practical PKE scheme that is IND-CCA2 secure, "guess" reduction is a useful technique to proof its security under standard assumption.

(how to prove the **Case 2** is the key part, i.e, analysis the relationship between the challenge ciphertext and all the information that adversary can get.)

 Adversary sometimes is suppose to be computation-unlimited to make the scheme security provable. (to bound the advantage of the adversary)

Thank you

Rongmao Chen University of Wollongong Cramer-Shoup Encryption

・ロト ・回ト ・ヨト ・ヨト

æ

Thank you Any questions?

→ 同 → → 三 →

< ∃⇒

æ