Cramer-Shoup Encryption

Rongmao Chen
University of Wollongong

August 29, 2014

Literature

Ronald Cramer and Victor Shoup.
A practical public key cryptosystems provably secure against adaptive chosen ciphertext attack.
In CRYPTO, pages 13-25, 1998.

Public Key Encryption

A public key encryption (PKE) scheme consists of the following algorithms,

- KeyGen: Taking as input a security parameter 1^{λ}, return a public/secret key pair (pk, sk).
- Enc: Taking as input a plaintext m and the public key $p k$, return the ciphertext c.
- Dec: Taking as input a ciphertext c and the secret key $s k$, return the plaintext m or \perp.

Security Model

Challenger Adversary

Output 1 if $b^{\prime}=b$, otherwise \qquad output 0 .

Cramer-Shoup Encryption

Contribution of Cramer-Shoup Encryption

Before the Cramer-Shoup encryption scheme, all the proposed PKE schemes provably secure against adaptive chosen ciphertext attack suffer from either of the following weaknesses.

- Provably secure under standard assumptions but impractical. (none-interactive zero-knowledge proof)
- Practical but provably secure under non-standard assumption. (random oracle)

Cramer-Shoup Encryption

Contribution of Cramer-Shoup Encryption

Before the Cramer-Shoup encryption scheme, all the proposed PKE schemes provably secure against adaptive chosen ciphertext attack suffer from either of the following weaknesses.

- Provably secure under standard assumptions but impractical. (none-interactive zero-knowledge proof)
- Practical but provably secure under non-standard assumption. (random oracle)

While, the CS scheme is both practical and provably secure under standard assumption.

Cramer-Shoup Encryption

Let \mathbb{G} be a group of prime order p and $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{p}$ be a secure one-way function, $g_{1}, g_{2} \in \mathbb{G}$.

- KeyGen: sk $=\left(\alpha, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}\right) \in \mathbb{Z}_{p}^{6}, p k=\left(g_{1}, g_{2}, h, u, v\right)=$ $\left(g_{1}, g_{2}, g_{1}^{\alpha}, g_{1}^{\beta_{1}} g_{2}^{\beta_{2}}, g_{1}^{\gamma_{1}} g_{2}^{\gamma_{2}}\right)$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow_{R} \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}, C_{3}, C_{4}>=<g_{1}^{r}, g_{2}^{r}, h^{r} m, u^{r} v^{r \theta}>
$$

where $\theta=H\left(C_{1}, C_{2}, C_{3}\right)$.

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$: If $C_{4}=C_{1}^{\beta_{1}+\theta \gamma_{1}} C_{2}^{\beta_{2}+\theta \gamma_{2}}$, where $\theta=H\left(C_{1}, C_{2}, C_{3}\right)$, output

$$
m=C_{3} \cdot C_{1}^{-\alpha}
$$

otherwise output \perp.

Schemes to Describe

Reduction Proof-" Guess" Reduction

What is "Guess" Reduction?

- Solve the hard problem based on the adversary's final guess in the security model;
- Always reduction to decision hard problem, e.g., DDH;
- Sketchy of the reduction proof
- Case 1: The input decision problem is True. Prove that the simulation is polynomially indistinguishable from the actual attack;
- Case 2: The input decision problem is False. Prove that the challenge ciphertext is "one-time pad" encryption from the view of the adversary.

One-time pad encryption:
Given the ciphertext, any message from the message space has the same probability to be the corresponding plaintext!

It is a challenge to prove the "one-time pad"!!

"Guess" Reduction Map

ElGamal Encryption

Let \mathbb{G} be a group of prime order $p, g \in \mathbb{G}$.

- KeyGen: $s k=\alpha \in \mathbb{Z}_{p}, p k=(g, h)$ where $h=g^{\alpha}$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow_{R} \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}>=<g^{r}, h^{r} m>.
$$

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}\right):$ Output $m=C_{2} \cdot C_{1}^{-\alpha}$.

ElGamal Encryption

Let \mathbb{G} be a group of prime order $p, g \in \mathbb{G}$.

- KeyGen: $s k=\alpha \in \mathbb{Z}_{p}, p k=(g, h)$ where $h=g^{\alpha}$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow_{R} \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}>=<g^{r}, h^{r} m>
$$

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}\right):$ Output $m=C_{2} \cdot C_{1}^{-\alpha}$.

Proof for IND-CPA Security

DDH: Given $<g, g^{a}, g^{b}, Z>$, decide $Z \stackrel{?}{=} g^{a b}$.
Suppose \mathcal{A} is an IND-CPA attacker on the EIGamal scheme with advantage ε.

ElGamal Encryption

Reduction algorithm $\mathcal{B}\left(g, g^{a}, g^{b}, Z\right)$

- KeyGen: \mathcal{B} gives \mathcal{A} the public key $p k=\left(g, g^{a}\right)$.
- Challenge: After \mathcal{A} outputs two messages $m_{0}, m_{1}, \mathcal{B}$ chooses $c \leftarrow R\{0,1\}$ and outputs

$$
C T^{*}=<C_{1}^{*}, C_{2}^{*}>=<g^{b}, Z \cdot m_{c}>.
$$

- Output: After \mathcal{A} outputs its guess c^{\prime} on c, \mathcal{B} outputs 1 if $c^{\prime}=c$, otherwise outputs 0 .

Case 1: $Z=g^{a b}$. The simulation is indistinguishable from the actual attack, that is $P\left[c^{\prime}=c \mid Z=g^{a b}\right]=\varepsilon . \sqrt{ }$
Case 2: $Z \neq g^{a b}$. As Z is random and independent of \mathcal{A} 's view, Z is a perfect one-time pad, that is $P\left[c^{\prime}=c \mid Z \neq g^{a b}\right]=1 / 2 . \sqrt{ }$

Therefore, \mathcal{B} solves the DDH problem with probability,

$$
\varepsilon^{\prime}=\varepsilon-1 / 2
$$

Variant of DDH Problem

Variant of DDH Problem

Given $D=<g_{1}, g_{2}, u_{1}, u_{2}>$, if there exist an r that $u_{1}=g_{1}^{r}$, $u_{2}=g_{2}^{r}$, then D is a DDH-tuple.

Modified EIGamal Encryption

Modified EIGamal Encryption

Let \mathbb{G} be a group of prime order $p, g_{1}, g_{2} \in \mathbb{G}$.

- KeyGen: sk $=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}_{p}^{2}, p k=(g, h)$ where $h=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}}$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow R \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}, C_{3}>=<g_{1}^{r}, g_{2}^{r}, h^{r} \cdot m>
$$

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}, C_{3}\right):$ Output $m=C_{3} \cdot C_{1}^{-\alpha_{1}} \cdot C_{2}^{-\alpha_{2}}$.

Modified EIGamal Encryption

Modified EIGamal Encryption

Let \mathbb{G} be a group of prime order $p, g_{1}, g_{2} \in \mathbb{G}$.

- KeyGen: sk $=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}_{p}^{2}, p k=(g, h)$ where $h=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}}$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow_{R} \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}, C_{3}>=<g_{1}^{r}, g_{2}^{r}, h^{r} \cdot m>
$$

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}, C_{3}\right):$ Output $m=C_{3} \cdot C_{1}^{-\alpha_{1}} \cdot C_{2}^{-\alpha_{2}}$.

IND-CPA Secure?

Given DDH instance $D=<g_{1}, g_{2}, u_{1}, u_{2}>$, suppose the challenge ciphertext is

$$
C T^{*}=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b}>
$$

Modified EIGamal Encryption

Let $\log _{g_{1}}(\cdot)=\log (\cdot)$, suppose that $\log g_{2}=w$, then from the public key, we have

$$
\begin{equation*}
\log h=\alpha_{1}+w \alpha_{2} \tag{1}
\end{equation*}
$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. $\sqrt{ }$

Modified EIGamal Encryption

Let $\log _{g_{1}}(\cdot)=\log (\cdot)$, suppose that $\log g_{2}=w$, then from the public key, we have

$$
\begin{equation*}
\log h=\alpha_{1}+w \alpha_{2} \tag{1}
\end{equation*}
$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. $\sqrt{ }$

Case 2: D is not a DDH-tuple. Suppose that $u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}$, consider the term $u_{1}^{\alpha} u_{2}^{\alpha_{2}}$, we have

$$
\begin{equation*}
\log u_{1}^{\alpha} u_{2}^{\alpha_{2}}=r_{1} \alpha_{1}+r_{2} w \alpha_{2} \tag{2}
\end{equation*}
$$

As equation (2) is linearly independent from equation (1), $u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}$ is independent of \mathcal{A} 's view, which follows that C_{3}^{*} is one-time pad encryption.

Modified EIGamal Encryption

Let $\log _{g_{1}}(\cdot)=\log (\cdot)$, suppose that $\log g_{2}=w$, then from the public key, we have

$$
\begin{equation*}
\log h=\alpha_{1}+w \alpha_{2} \tag{1}
\end{equation*}
$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. $\sqrt{ }$

Case 2: D is not a DDH-tuple. Suppose that $u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}$, consider the term $u_{1}^{\alpha} u_{2}^{\alpha_{2}}$, we have

$$
\begin{equation*}
\log u_{1}^{\alpha} u_{2}^{\alpha_{2}}=r_{1} \alpha_{1}+r_{2} w \alpha_{2} \tag{2}
\end{equation*}
$$

As equation (2) is linearly independent from equation (1), $u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}$ is independent of \mathcal{A} 's view, which follows that C_{3}^{*} is one-time pad encryption.

IND-CPA Secure!

Modified EIGamal Encryption

Let $\log _{g_{1}}(\cdot)=\log (\cdot)$, suppose that $\log g_{2}=w$, then from the public key, we have

$$
\begin{equation*}
\log h=\alpha_{1}+w \alpha_{2} \tag{1}
\end{equation*}
$$

Case 1: D is a DDH-tuple. The simulation is indistinguishable from the actual attack. $\sqrt{ }$

Case 2: D is not a DDH-tuple. Suppose that $u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}$, consider the term $u_{1}^{\alpha} u_{2}^{\alpha_{2}}$, we have

$$
\begin{equation*}
\log u_{1}^{\alpha} u_{2}^{\alpha_{2}}=r_{1} \alpha_{1}+r_{2} w \alpha_{2} \tag{2}
\end{equation*}
$$

As equation (2) is linearly independent from equation (1), $u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}$ is independent of \mathcal{A} 's view, which follows that C_{3}^{*} is one-time pad encryption.

IND-CPA Secure!

IND-CCA1 Secure?

Modified EIGamal Encryption

IND-CCA1 Secure?

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>$, where $C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}$ and $r_{1}^{\prime} \neq r_{2}^{\prime}$. Using the decryption result m^{\prime}, \mathcal{A} has the following info,

$$
\begin{equation*}
\log C_{3}^{\prime} / m^{\prime}=r_{1}^{\prime} \alpha_{1}+r_{2}^{\prime} w \alpha_{2} \tag{3}
\end{equation*}
$$

Since equations (1), (3) are linearly independent, \mathcal{A} can solve the linear equations to get the value of α_{1}, α_{2}, i.e., the secret key.

Modified EIGamal Encryption

IND-CCA1 Secure?

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>$, where $C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}$ and $r_{1}^{\prime} \neq r_{2}^{\prime}$. Using the decryption result m^{\prime}, \mathcal{A} has the following info,

$$
\begin{equation*}
\log C_{3}^{\prime} / m^{\prime}=r_{1}^{\prime} \alpha_{1}+r_{2}^{\prime} w \alpha_{2} \tag{3}
\end{equation*}
$$

Since equations (1), (3) are linearly independent, \mathcal{A} can solve the linear equations to get the value of α_{1}, α_{2}, i.e., the secret key.
Case 2 can not be proved!

Modified EIGamal Encryption

IND-CCA1 Secure?

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>$, where $C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}$ and $r_{1}^{\prime} \neq r_{2}^{\prime}$. Using the decryption result m^{\prime}, \mathcal{A} has the following info,

$$
\begin{equation*}
\log C_{3}^{\prime} / m^{\prime}=r_{1}^{\prime} \alpha_{1}+r_{2}^{\prime} w \alpha_{2} \tag{3}
\end{equation*}
$$

Since equations (1), (3) are linearly independent, \mathcal{A} can solve the linear equations to get the value of α_{1}, α_{2}, i.e., the secret key.
Case 2 can not be proved!
Fail to prove IND-CCA1 security!

Modified EIGamal Encryption

IND-CCA1 Secure?

Suppose that \mathcal{A} submit an invalid ciphertext to the decryption oracle , say $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>$, where $C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}$ and $r_{1}^{\prime} \neq r_{2}^{\prime}$. Using the decryption result m^{\prime}, \mathcal{A} has the following info,

$$
\begin{equation*}
\log C_{3}^{\prime} / m^{\prime}=r_{1}^{\prime} \alpha_{1}+r_{2}^{\prime} w \alpha_{2} \tag{3}
\end{equation*}
$$

Since equations (1), (3) are linearly independent, \mathcal{A} can solve the linear equations to get the value of α_{1}, α_{2}, i.e., the secret key.
Case 2 can not be proved!

Fail to prove IND-CCA1 security!

Solution: Check the validity of the ciphertext before decryption \Rightarrow Proving consistency of exponentiations, i.e., ensure that,

$$
\log _{g_{1}} C_{1}^{\prime}=\log _{g_{2}} C_{2}^{\prime} ?
$$

Proving consistency of exponentiations

Proving Consistency of Exponentiations

Q: Given $g_{1}, g_{2}, X_{1}, X_{2}$, prove that there is an r where $X_{1}=g_{1}^{r}$, $X_{2}=g_{2}^{r}$.

Proving Consistency of Exponentiations

Q: Given $g_{1}, g_{2}, X_{1}, X_{2}$, prove that there is an r where $X_{1}=g_{1}^{r}$, $X_{2}=g_{2}^{r}$.
Prover
\(\underset{\substack{Compute

V=Z^{r}}}{ } \longrightarrow\)\begin{tabular}{c}
$V=g_{1}^{b_{1}} g_{2}^{b_{2}}$

Verifier

Choose b_{1}, b_{2}

randomly
\end{tabular}

Accept if
$X_{1}^{b_{1}} X_{2}^{b_{2}}=V$

Proving consistency of exponentiations

Proving Consistency of Exponentiations

Q: Given $g_{1}, g_{2}, X_{1}, X_{2}$, prove that there is an r where $X_{1}=g_{1}^{r}$, $X_{2}=g_{2}^{r}$.

Prover

Compute $V=Z^{r}$

Verifier
Choose b_{1}, b_{2}
randomly
randomly

$$
V=Z^{r}
$$

$$
\begin{gathered}
\text { Accept if } \\
X_{1}^{b_{1}} X_{2}^{b_{2}}=V
\end{gathered}
$$

Soundness: if $X_{1}=g_{1}^{r_{1}}, X_{2}=g_{2}^{r_{2}}=g_{2}^{r_{1}+\Delta r}$, then

$$
X_{1}^{b_{1}} X_{2}^{b_{2}}=g_{1}^{r_{1} b_{1}} g_{2}^{\left(r_{1}+\Delta r\right) b_{2}}=g_{1}^{r_{1} b_{1}} g_{2}^{r_{1} b_{2}} g_{2}^{\Delta r b_{2}}=Z^{r_{1}}\left(g_{2}^{\Delta r}\right)^{b_{2}}
$$

Independent of the prover's view!

Simplified Cramer-Shoup Encryption

Simplified Cramer-Shoup Encryption

Let \mathbb{G} be a group of prime order $p, g_{1}, g_{2} \in \mathbb{G}$.

- KeyGen: $s k=\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right) \in \mathbb{Z}_{p}^{4}, p k=(g, h, u)$ where $h=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}}, u=g_{1}^{\beta_{1}} g_{2}^{\beta_{2}}$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow_{R} \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}, C_{3}, C_{4}>=<g_{1}^{r}, g_{2}^{r}, h^{r} \cdot m, u^{r}>.
$$

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$: If $C_{4}=C_{1}^{\beta_{1}} C_{2}^{\beta_{2}}$, output

$$
m=C_{3} \cdot C_{1}^{-\alpha_{1}} \cdot C_{2}^{-\alpha_{2}}
$$

otherwise output \perp.

Simplified Cramer-Shoup Encryption

IND-CCA1 Secure?

From the public key u, \mathcal{A} gets the following info,

$$
\begin{equation*}
\log u=\beta_{1}+w \beta_{2} \tag{4}
\end{equation*}
$$

For a query $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}>, C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}, r_{1}^{\prime} \neq r_{2}^{\prime}$. If it is accepted, then $C_{4}^{\prime}=C_{1}^{\prime \beta_{1}} C_{2}^{\prime \beta_{2}}$, i.e, the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2} \tag{5}
\end{equation*}
$$

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Simplified Cramer-Shoup Encryption

IND-CCA1 Secure?

From the public key u, \mathcal{A} gets the following info,

$$
\begin{equation*}
\log u=\beta_{1}+w \beta_{2} \tag{4}
\end{equation*}
$$

For a query $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}>, C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}, r_{1}^{\prime} \neq r_{2}^{\prime}$. If it is accepted, then $C_{4}^{\prime}=C_{1}^{\prime \beta_{1}} C_{2}^{\prime \beta_{2}}$, i.e, the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2} \tag{5}
\end{equation*}
$$

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{ }$

Simplified Cramer-Shoup Encryption

IND-CCA1 Secure?

From the public key u, \mathcal{A} gets the following info,

$$
\begin{equation*}
\log u=\beta_{1}+w \beta_{2} \tag{4}
\end{equation*}
$$

For a query $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}>, C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}, r_{1}^{\prime} \neq r_{2}^{\prime}$. If it is accepted, then $C_{4}^{\prime}=C_{1}^{\prime \beta_{1}} C_{2}^{\prime \beta_{2}}$, i.e, the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2} \tag{5}
\end{equation*}
$$

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{ }$ IND-CCA1 secure!

Simplified Cramer-Shoup Encryption

IND-CCA1 Secure?

From the public key u, \mathcal{A} gets the following info,

$$
\begin{equation*}
\log u=\beta_{1}+w \beta_{2} \tag{4}
\end{equation*}
$$

For a query $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}>, C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}, r_{1}^{\prime} \neq r_{2}^{\prime}$. If it is accepted, then $C_{4}^{\prime}=C_{1}^{\prime \beta_{1}} C_{2}^{\prime \beta_{2}}$, i.e, the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2} \tag{5}
\end{equation*}
$$

Since equations (4), (5) are linearly independent, this happens with only negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{ }$ IND-CCA1 secure!

IND-CCA2 secure?

Simplified Cramer-Shoup Encryption

IND-CCA2 Secure?

Suppose that the challenge ciphertext is as follows,

$$
C T^{*}=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b}, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}}>
$$

There are two aspects need to be considered.

- Malleability. \mathcal{A} chooses Δm randomly and submits the follow ciphertext to the decryption oracle.

$$
C T=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*} \cdot \Delta m, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b} \cdot \Delta m, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}}>
$$

Since $C T \neq C T^{*}$ and is a valid ciphertext, the decryption oracle returns $m^{\prime}=m_{b} \cdot \Delta m$ to \mathcal{A}. Thus \mathcal{A} can compute $m_{b}=m^{\prime} / \Delta m$ and output its guess correctly regardless of tuple D.

Simplified Cramer-Shoup Encryption

IND-CCA2 Secure?

Suppose that the challenge ciphertext is as follows,

$$
C T^{*}=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b}, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}}>
$$

There are two aspects need to be considered.

- Malleability. \mathcal{A} chooses Δm randomly and submits the follow ciphertext to the decryption oracle.

$$
C T=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*} \cdot \Delta m, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b} \cdot \Delta m, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}}>
$$

Since $C T \neq C T^{*}$ and is a valid ciphertext, the decryption oracle returns $m^{\prime}=m_{b} \cdot \Delta m$ to \mathcal{A}. Thus \mathcal{A} can compute $m_{b}=m^{\prime} / \Delta m$ and output its guess correctly regardless of tuple D.

IND-CCA2 insecure!

Simplified Cramer-Shoup Encryption

IND-CCA2 Secure?

Suppose that the challenge ciphertext is as follows,

$$
C T^{*}=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b}, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}}>
$$

There are two aspects need to be considered.

- Malleability. \mathcal{A} chooses Δm randomly and submits the follow ciphertext to the decryption oracle.

$$
C T=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*} \cdot \Delta m, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b} \cdot \Delta m, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}}>
$$

Since $C T \neq C T^{*}$ and is a valid ciphertext, the decryption oracle returns $m^{\prime}=m_{b} \cdot \Delta m$ to \mathcal{A}. Thus \mathcal{A} can compute $m_{b}=m^{\prime} / \Delta m$ and output its guess correctly regardless of tuple D.

IND-CCA2 insecure!

Solution: Use the message info for validity checking !

Simplified Cramer-Shoup Encryption

- Validity Checking Failure. Suppose that D is not a DDH tuple ($u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}, r_{1} \neq r_{2}$). Based on the challenge ciphertext, the (powerful) adversary \mathcal{A} can get the following info,

$$
\begin{equation*}
\log C_{4}^{*}=r_{1} \beta_{1}+r_{2} w \beta_{2} \tag{6}
\end{equation*}
$$

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_{1}, β_{2}. It follows that the ciphertext validity checking would be a failure.

Simplified Cramer-Shoup Encryption

- Validity Checking Failure. Suppose that D is not a DDH tuple ($u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}, r_{1} \neq r_{2}$). Based on the challenge ciphertext, the (powerful) adversary \mathcal{A} can get the following info,

$$
\begin{equation*}
\log C_{4}^{*}=r_{1} \beta_{1}+r_{2} w \beta_{2} \tag{6}
\end{equation*}
$$

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_{1}, β_{2}. It follows that the ciphertext validity checking would be a failure.

Validity checking Fails! \Rightarrow Case 2 cannot be proved!

Simplified Cramer-Shoup Encryption

- Validity Checking Failure. Suppose that D is not a DDH tuple ($u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}, r_{1} \neq r_{2}$). Based on the challenge ciphertext, the (powerful) adversary \mathcal{A} can get the following info,

$$
\begin{equation*}
\log C_{4}^{*}=r_{1} \beta_{1}+r_{2} w \beta_{2} \tag{6}
\end{equation*}
$$

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_{1}, β_{2}. It follows that the ciphertext validity checking would be a failure.

$$
\text { Validity checking Fails! } \Rightarrow \text { Case } 2 \text { cannot be proved! }
$$

Still fail to prove IND-CCA2 security!

- Validity Checking Failure. Suppose that D is not a DDH tuple ($u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}, r_{1} \neq r_{2}$). Based on the challenge ciphertext, the (powerful) adversary \mathcal{A} can get the following info,

$$
\begin{equation*}
\log C_{4}^{*}=r_{1} \beta_{1}+r_{2} w \beta_{2} \tag{6}
\end{equation*}
$$

Since equations (4),(6) are linearly independent, \mathcal{A} can solve the linear equations to get the value of β_{1}, β_{2}. It follows that the ciphertext validity checking would be a failure.

$$
\text { Validity checking Fails! } \Rightarrow \underline{\text { Case } 2 \text { cannot be proved! }}
$$

Still fail to prove IND-CCA2 security!

Solution: Use more random augments for validity checking!

Cramer-Shoup Encryption

Cramer-Shoup Encryption

Let \mathbb{G} be a group of prime order p and $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{p}$ be a secure one-way function, $g_{1}, g_{2} \in \mathbb{G}$.

- KeyGen: sk $=\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}\right) \in \mathbb{Z}_{p}^{6}, p k=(g, h, u, v)$ where $h=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}}, u=g_{1}^{\beta_{1}} g_{2}^{\beta_{2}}, v=g_{1}^{\gamma_{1}} g_{2}^{\gamma_{2}}$.
- $\operatorname{Enc}_{p k}(m): r \leftarrow_{R} \mathbb{Z}_{p}$, output

$$
C T=<C_{1}, C_{2}, C_{3}, C_{4}>=<g_{1}^{r}, g_{2}^{r}, h^{r} m, u^{r} v^{r \theta}>
$$

where $\theta=H\left(C_{1}, C_{2}, C_{3}\right)$.

- $\operatorname{Dec}_{s k}\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$: If $C_{4}=C_{1}^{\beta_{1}+\theta \gamma_{1}} C_{2}^{\beta_{2}+\theta \gamma_{2}}$, where $\theta=H\left(C_{1}, C_{2}, C_{3}\right)$, output

$$
m=C_{3} \cdot C_{1}^{-\alpha_{1}} \cdot C_{2}^{-\alpha_{2}}
$$

otherwise output \perp.

Cramer-Shoup Encryption

IND-CCA2 Secure?

From the public key v, \mathcal{A} can get the following info,

$$
\begin{equation*}
\log v=\gamma_{1}+w \gamma_{2} \tag{7}
\end{equation*}
$$

Suppose that D is not a DDH tuple ($u_{1}=g_{1}^{r_{1}}, u_{2}=g_{2}^{r_{2}}, r_{1} \neq r_{2}$), then the challenge ciphertext is as follows,
$C T^{*}=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}, C_{4}^{*}>=<u_{1}, u_{2}, u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} m_{b}, u_{1}^{\beta_{1}} u_{2}^{\beta_{2}} u_{1}^{\gamma_{1} \theta^{*}} u_{2}^{\gamma_{2} \theta^{*}}>$
where $\theta^{*}=H\left(C_{1}^{*}, C_{2}^{*}, C_{3}^{*}\right)$. Therefore, \mathcal{A} can get the following info,

$$
\begin{equation*}
\log C_{4}^{*}=r_{1} \beta_{1}+r_{2} w \beta_{2}+r_{1} \gamma_{1} \theta^{*}+r_{2} w \gamma_{2} \theta^{*} \tag{8}
\end{equation*}
$$

If \mathcal{A} queries an invalid ciphertext to the decryption oracle, say $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}>$, where $C_{1}^{\prime}=g_{1}^{r_{1}^{\prime}}, C_{2}^{\prime}=g_{2}^{r_{2}^{\prime}}$ and $r_{1}^{\prime} \neq r_{2}^{\prime}$. As for this decryption query, we should consider the followings.

Cramer-Shoup Encryption

- If $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>, C_{4}^{\prime} \neq C_{4}^{*}$. This query will always be rejected.
- If $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>\neq<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>, C_{4}^{\prime}=C_{4}^{*}$. Since H is collision-resistant and \mathcal{A} runs in polynomial time, this happens with only negligible probability.
- If $H\left(C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right) \neq H\left(C_{1}^{*}, C_{2}^{*}, C_{3}^{*}\right)$. If the ciphertext is accepted by the simulator, it should satisfy the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2}+r_{1}^{\prime} \gamma_{1} \theta^{\prime}+r_{2}^{\prime} w \gamma_{2} \theta^{\prime} \tag{9}
\end{equation*}
$$

where $\theta^{\prime}=H\left(C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right)$. Since equations (4), (7), (8), (9) are linearly independent, this happens only with negligible probability.

Cramer-Shoup Encryption

- If $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>, C_{4}^{\prime} \neq C_{4}^{*}$. This query will always be rejected.
- If $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>\neq<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>, C_{4}^{\prime}=C_{4}^{*}$. Since H is collision-resistant and \mathcal{A} runs in polynomial time, this happens with only negligible probability.
- If $H\left(C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right) \neq H\left(C_{1}^{*}, C_{2}^{*}, C_{3}^{*}\right)$. If the ciphertext is accepted by the simulator, it should satisfy the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2}+r_{1}^{\prime} \gamma_{1} \theta^{\prime}+r_{2}^{\prime} w \gamma_{2} \theta^{\prime} \tag{9}
\end{equation*}
$$

where $\theta^{\prime}=H\left(C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right)$. Since equations (4), (7), (8), (9) are linearly independent, this happens only with negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{ }$

Cramer-Shoup Encryption

- If $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>=<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>, C_{4}^{\prime} \neq C_{4}^{*}$. This query will always be rejected.
- If $<C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}>\neq<C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>, C_{4}^{\prime}=C_{4}^{*}$. Since H is collision-resistant and \mathcal{A} runs in polynomial time, this happens with only negligible probability.
- If $H\left(C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right) \neq H\left(C_{1}^{*}, C_{2}^{*}, C_{3}^{*}\right)$. If the ciphertext is accepted by the simulator, it should satisfy the following equation,

$$
\begin{equation*}
\log C_{4}^{\prime}=r_{1}^{\prime} \beta_{1}+r_{2}^{\prime} w \beta_{2}+r_{1}^{\prime} \gamma_{1} \theta^{\prime}+r_{2}^{\prime} w \gamma_{2} \theta^{\prime} \tag{9}
\end{equation*}
$$

where $\theta^{\prime}=H\left(C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right)$. Since equations (4), (7), (8), (9) are linearly independent, this happens only with negligible probability.

Validity checking works! \Rightarrow Case 2 can be proved! $\sqrt{ }$ IND-CCA2 secure!

Conclusion

What can we learn from CS scheme?

- Some schemes seem to be secure without attacks, but they cannot be proved. We must change schemes to make them provably secure.
- Use "guarded" decryption, i.e., checking the validity of ciphertext before or after decryption to remove the scheme's property of malleability to achieve IND-CCA2 security.
- To construct a practical PKE scheme that is IND-CCA2 secure, "guess" reduction is a useful technique to proof its security under standard assumption.
(how to prove the Case 2 is the key part, i.e, analysis the relationship between the challenge ciphertext and all the information that adversary can get.)
- Adversary sometimes is suppose to be computation-unlimited to make the scheme security provable.
(to bound the advantage of the adversary)

Thank you

Thank you Any questions?

