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Public Key Encryption

A public key encryption (PKE) scheme consists of the following
algorithms,

KeyGen: Taking as input a security parameter 1λ, return a
public/secret key pair (pk, sk).

Enc: Taking as input a plaintext m and the public key pk,
return the ciphertext c .

Dec: Taking as input a ciphertext c and the secret key sk ,
return the plaintext m or ⊥.
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Security Model
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Cramer-Shoup Encryption

Contribution of Cramer-Shoup Encryption

Before the Cramer-Shoup encryption scheme, all the proposed
PKE schemes provably secure against adaptive chosen ciphertext
attack suffer from either of the following weaknesses.

Provably secure under standard assumptions but impractical.
(none-interactive zero-knowledge proof)

Practical but provably secure under non-standard assumption.
(random oracle)

While, the CS scheme is both practical and provably secure under
standard assumption.
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Cramer-Shoup Encryption

Let G be a group of prime order p and H : {0, 1}∗ → Zp be a
secure one-way function, g1, g2 ∈ G.

KeyGen: sk = (α, β1, β2, γ1, γ2) ∈ Z6
p, pk = (g1, g2, h, u, v) =

(g1, g2, g
α
1 , g

β1
1 gβ2

2 , gγ1
1 gγ2

2 ).

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3,C4 >=< g r
1 , g

r
2 , h

rm, urv rθ >,

where θ = H(C1,C2,C3).

Decsk(C1,C2,C3,C4): If C4 = Cβ1+θγ1
1 Cβ2+θγ2

2 , where
θ = H(C1,C2,C3), output

m = C3 · C−α1 ,

otherwise output ⊥.
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Schemes to Describe
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Reduction Proof–”Guess” Reduction

What is ”Guess” Reduction?

Solve the hard problem based on the adversary’s final guess in
the security model;

Always reduction to decision hard problem, e.g., DDH;

Sketchy of the reduction proof

Case 1: The input decision problem is True. Prove that the
simulation is polynomially indistinguishable from the actual
attack;
Case 2: The input decision problem is False. Prove that the
challenge ciphertext is ”one-time pad” encryption from the
view of the adversary.

One-time pad encryption:

Given the ciphertext, any message from the message space has the
same probability to be the corresponding plaintext!

It is a challenge to prove the ”one-time pad”!!
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”Guess” Reduction

”Guess” Reduction Map
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ElGamal Encryption

Let G be a group of prime order p, g ∈ G.

KeyGen: sk = α ∈ Zp, pk = (g , h) where h = gα.

Encpk(m): r ←R Zp, output

CT =< C1,C2 >=< g r , hrm > .

Decsk(C1,C2): Output m = C2 · C−α1 .

Proof for IND-CPA Security

DDH: Given < g , ga, gb,Z >, decide Z
?
= gab.

Suppose A is an IND-CPA attacker on the ElGamal scheme with
advantage ε.
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ElGamal Encryption

Reduction algorithm B(g , ga, gb,Z )

KeyGen: B gives A the public key pk = (g , ga).

Challenge: After A outputs two messages m0,m1, B chooses
c ←R {0, 1} and outputs

CT ∗ =< C ∗1 ,C
∗
2 >=< gb,Z ·mc > .

Output: After A outputs its guess c ′ on c , B outputs 1 if
c ′ = c , otherwise outputs 0.

Case 1: Z = gab. The simulation is indistinguishable from the
actual attack, that is P[c ′ = c |Z = gab] = ε.

√

Case 2: Z 6= gab. As Z is random and independent of A’s view,
Z is a perfect one-time pad, that is P[c ′ = c |Z 6= gab] = 1/2.

√

Therefore, B solves the DDH problem with probability,

ε′ = ε− 1/2.
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Variant of DDH Problem

Variant of DDH Problem

Given D =< g1, g2, u1, u2 >, if there exist an r that u1 = g r
1 ,

u2 = g r
2 , then D is a DDH-tuple.
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Modified ElGamal Encryption

Modified ElGamal Encryption

Let G be a group of prime order p, g1, g2 ∈ G.

KeyGen: sk = (α1, α2) ∈ Z2
p, pk = (g , h) where h = gα1

1 gα2
2 .

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3 >=< g r
1 , g

r
2 , h

r ·m > .

Decsk(C1,C2,C3): Output m = C3 · C−α1
1 · C−α2

2 .

IND-CPA Secure?

Given DDH instance D =< g1, g2, u1, u2 >, suppose the challenge
ciphertext is

CT ∗ =< C ∗1 ,C
∗
2 ,C

∗
3 >=< u1, u2, u

α1
1 uα2

2 mb >
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Modified ElGamal Encryption

Modified ElGamal Encryption

Let G be a group of prime order p, g1, g2 ∈ G.

KeyGen: sk = (α1, α2) ∈ Z2
p, pk = (g , h) where h = gα1

1 gα2
2 .

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3 >=< g r
1 , g

r
2 , h

r ·m > .

Decsk(C1,C2,C3): Output m = C3 · C−α1
1 · C−α2

2 .

IND-CPA Secure?

Given DDH instance D =< g1, g2, u1, u2 >, suppose the challenge
ciphertext is

CT ∗ =< C ∗1 ,C
∗
2 ,C

∗
3 >=< u1, u2, u

α1
1 uα2

2 mb >

Rongmao Chen University of Wollongong Cramer-Shoup Encryption



Modified ElGamal Encryption

Let logg1
(·) = log(·), suppose that log g2 = w , then from the

public key, we have
log h = α1 + wα2 (1)

Case 1: D is a DDH-tuple. The simulation is indistinguishable
from the actual attack.

√

Case 2: D is not a DDH-tuple. Suppose that u1 = g r1
1 , u2 = g r2

2 ,
consider the term uα1 u

α2
2 , we have

log uα1 u
α2
2 = r1α1 + r2wα2 (2)

As equation (2) is linearly independent from equation (1), uα1
1 uα2

2

is independent of A’s view, which follows that C ∗3 is one-time pad
encryption.

√

IND-CPA Secure!

IND-CCA1 Secure?
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Modified ElGamal Encryption

IND-CCA1 Secure?

Suppose that A submit an invalid ciphertext to the decryption

oracle , say < C ′1,C
′
2,C

′
3 >, where C ′1 = g

r ′1
1 ,C ′2 = g

r ′2
2 and r ′1 6= r ′2.

Using the decryption result m′, A has the following info,

logC ′3/m
′ = r ′1α1 + r ′2wα2 (3)

Since equations (1), (3) are linearly independent, A can solve the
linear equations to get the value of α1, α2, i.e., the secret key.

Case 2 can not be proved!

Fail to prove IND-CCA1 security!

Solution: Check the validity of the ciphertext before decryption⇒
Proving consistency of exponentiations, i.e., ensure that,

logg1
C ′1 = logg2

C ′2?
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Proving consistency of exponentiations

Proving Consistency of Exponentiations

Q: Given g1, g2,X1,X2, prove that there is an r where X1 = g r
1 ,

X2 = g r
2 .

Soundness: if X1 = g r1
1 ,X2 = g r2

2 = g r1+∆r
2 , then

X b1
1 X b2

2 = g r1b1
1 g

(r1+∆r)b2

2 = g r1b1
1 g r1b2

2 g∆rb2
2 = Z r1(g∆r

2 )b2

Independent of the prover’s view!
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Simplified Cramer-Shoup Encryption

Simplified Cramer-Shoup Encryption

Let G be a group of prime order p, g1, g2 ∈ G.

KeyGen: sk = (α1, α2, β1, β2) ∈ Z4
p, pk = (g , h, u) where

h = gα1
1 gα2

2 , u = gβ1
1 gβ2

2 .

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3,C4 >=< g r
1 , g

r
2 , h

r ·m, ur > .

Decsk(C1,C2,C3,C4): If C4 = Cβ1
1 Cβ2

2 , output

m = C3 · C−α1
1 · C−α2

2 ,

otherwise output ⊥.
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Simplified Cramer-Shoup Encryption

IND-CCA1 Secure?

From the public key u, A gets the following info,

log u = β1 + wβ2 (4)

For a query < C ′1,C
′
2,C

′
3,C

′
4 >,C

′
1 = g

r ′1
1 ,C

′
2 = g

r ′2
2 , r

′
1 6= r ′2. If it is

accepted, then C ′4 = C ′β1
1 C ′β2

2 , i.e, the following equation,

logC ′4 = r ′1β1 + r ′2wβ2 (5)

Since equations (4), (5) are linearly independent, this happens with
only negligible probability.

Validity checking works! ⇒Case 2 can be proved!
√

IND-CCA1 secure!

IND-CCA2 secure?
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Simplified Cramer-Shoup Encryption
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Simplified Cramer-Shoup Encryption
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Simplified Cramer-Shoup Encryption

IND-CCA2 Secure?

Suppose that the challenge ciphertext is as follows,

CT ∗ =< C ∗1 ,C
∗
2 ,C

∗
3 ,C

∗
4 >=< u1, u2, u

α1
1 uα2

2 mb, u
β1
1 uβ2

2 >

There are two aspects need to be considered.

Malleability. A chooses ∆m randomly and submits the
follow ciphertext to the decryption oracle.

CT =< C ∗1 ,C
∗
2 ,C

∗
3 ·∆m,C ∗4 >=< u1, u2, u

α1
1 uα2

2 mb·∆m, uβ1
1 uβ2

2 >

Since CT 6= CT ∗ and is a valid ciphertext, the decryption
oracle returns m′ = mb ·∆m to A. Thus A can compute
mb = m′/∆m and output its guess correctly regardless of
tuple D.

IND-CCA2 insecure!

Solution: Use the message info for validity checking !
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Simplified Cramer-Shoup Encryption

Validity Checking Failure. Suppose that D is not a DDH
tuple (u1 = g r1

1 , u2 = g r2
2 , r1 6= r2). Based on the challenge

ciphertext, the (powerful) adversary A can get the following
info,

logC ∗4 = r1β1 + r2wβ2 (6)

Since equations (4),(6) are linearly independent, A can solve
the linear equations to get the value of β1, β2. It follows that
the ciphertext validity checking would be a failure.

Validity checking Fails! ⇒Case 2 cannot be proved!

Still fail to prove IND-CCA2 security!

Solution: Use more random augments for validity checking!
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the linear equations to get the value of β1, β2. It follows that
the ciphertext validity checking would be a failure.

Validity checking Fails! ⇒Case 2 cannot be proved!

Still fail to prove IND-CCA2 security!

Solution: Use more random augments for validity checking!
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Cramer-Shoup Encryption

Cramer-Shoup Encryption

Let G be a group of prime order p and H : {0, 1}∗ → Zp be a
secure one-way function, g1, g2 ∈ G.

KeyGen: sk = (α1, α2, β1, β2, γ1, γ2) ∈ Z6
p, pk = (g , h, u, v)

where h = gα1
1 gα2

2 , u = gβ1
1 gβ2

2 , v = gγ1
1 gγ2

2 .

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3,C4 >=< g r
1 , g

r
2 , h

rm, urv rθ >,

where θ = H(C1,C2,C3).

Decsk(C1,C2,C3,C4): If C4 = Cβ1+θγ1
1 Cβ2+θγ2

2 , where
θ = H(C1,C2,C3), output

m = C3 · C−α1
1 · C−α2

2 ,

otherwise output ⊥.
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Cramer-Shoup Encryption

IND-CCA2 Secure?
From the public key v , A can get the following info,

log v = γ1 + wγ2 (7)

Suppose that D is not a DDH tuple (u1 = g r1
1 , u2 = g r2

2 , r1 6= r2),
then the challenge ciphertext is as follows,

CT ∗ =< C ∗1 ,C
∗
2 ,C

∗
3 ,C

∗
4 >=< u1, u2, u

α1
1 uα2

2 mb, u
β1
1 uβ2

2 uγ1θ
∗

1 uγ2θ
∗

2 >

where θ∗ = H(C ∗1 ,C
∗
2 ,C

∗
3 ). Therefore , A can get the following

info,
logC ∗4 = r1β1 + r2wβ2 + r1γ1θ

∗ + r2wγ2θ
∗ (8)

If A queries an invalid ciphertext to the decryption oracle, say

< C ′1,C
′
2,C

′
3,C

′
4 >, where C ′1 = g

r ′1
1 ,C ′2 = g

r ′2
2 and r ′1 6= r ′2. As for

this decryption query, we should consider the followings.
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Cramer-Shoup Encryption

If < C ′1,C
′
2,C

′
3 >=< C ∗1 ,C

∗
2 ,C

∗
3 >,C

′
4 6= C ∗4 . This query will

always be rejected.

If < C ′1,C
′
2,C

′
3 >6=< C ∗1 ,C

∗
2 ,C

∗
3 >,C

′
4 = C ∗4 . Since H is

collision-resistant and A runs in polynomial time,this happens
with only negligible probability.

If H(C ′1,C
′
2,C

′
3) 6= H(C ∗1 ,C

∗
2 ,C

∗
3 ). If the ciphertext is

accepted by the simulator, it should satisfy the following
equation,

logC ′4 = r ′1β1 + r ′2wβ2 + r ′1γ1θ
′ + r ′2wγ2θ

′ (9)

where θ′ = H(C ′1,C
′
2,C

′
3). Since equations (4), (7), (8), (9)

are linearly independent, this happens only with negligible
probability.

Validity checking works! ⇒Case 2 can be proved!
√

IND-CCA2 secure!
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Cramer-Shoup Encryption
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Conclusion

What can we learn from CS scheme?

Some schemes seem to be secure without attacks, but they
cannot be proved. We must change schemes to make them
provably secure.

Use ”guarded” decryption, i.e., checking the validity of
ciphertext before or after decryption to remove the scheme’s
property of malleability to achieve IND-CCA2 security.

To construct a practical PKE scheme that is IND-CCA2
secure, ”guess” reduction is a useful technique to proof its
security under standard assumption.
(how to prove the Case 2 is the key part, i.e, analysis the
relationship between the challenge ciphertext and all the
information that adversary can get.)

Adversary sometimes is suppose to be computation-unlimited
to make the scheme security provable.
(to bound the advantage of the adversary)
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Thank you

Any questions?
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