Efficient File Sharing in Electronic Health Records

Clémentine Gritti, Willy Susilo and Thomas Plantard

University of Wollongong, Australia

27/02/2015

VISIONARY / PASSIONATE / DYNAMIC CONNECT: UOW

1 Introduction

2 Solution

3 Construction

4 Security

VISIONARY / PASSIONATE / DYNAMIC CONNECT: UOW

Scenario

Entities and Roles

1 Hospital forwarding important information (EHR) to Doctors

- Hospital = Broadcaster
- Forwarding = Broadcasting
- 2 Government and other legislators granting the license for Doctors
 - Legislators = Certifiers
 - License = Certificate
- **3** Doctors working in that Hospital
 - Doctors = Users

Previous Results

- Multi-Receiver Certificate-Based Encryption (MR-CBE)
- However not suitable results: size of public parameters and ciphertexts linear in the number of users *n* + only 1 certifier + selective CPA security in ROM
- C.-I. Fan, P.-J. Tsai, J.-J. Huang and W.-T. Chen, *Anonymous Multi-receiver Certificate-Based Encryption*. In CyberC 2013.
- C. Sur, C. D. Jung and K.-H. Rhee, *Multi-receiver Certificate-Based Encryption and Application to Public Key Broadcast Encryption*. In BLISS 2007.

1 Introduction

2 Solution

3 Construction

4 Security

VISIONARY / PASSIONATE / DYNAMIC CONNECT: UOW

Broadcast Encryption (BE)

Certificate-Based Encryption (CBE)

Suitable Results

- BE: constant size for secret key and ciphertext + selective CPA security in SM
- CBE: constant size for certificate and ciphertext + adaptive CCA security in ROM
- D. Boneh, C. Gentry, and B. Waters, *Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys*. In CRYPTO 2005.
- C. Gentry, Certificate-Based Encryption and the Certificate Revocation Problem. In EUROCRYPT 2003.

Simple Combination

- BE: communication between 1 sender and n receivers
- CBE: communication between 1 sender and 1 receiver
- However not so appropriate results: simple combination BE + CBE gives size for ciphertext linear in number of users and number of certifiers

Efficient Combination

- File Sharing in Electronic Health Records (FSEHR)
 - Constant size for secret key, certificate and ciphertext
 - Selective CCA security in ROM
 - Size for public parameters linear in number of users and number of certifiers

1 Introduction

2 Solution

3 Construction

4 Security

VISIONARY / PASSIONATE / DYNAMIC CONNECT: UOW

Our Scheme - Setup

- On input security parameter λ, total number n of users and total number k of certifiers
- **Run** $(p, \mathbb{G}, \mathbb{G}_T, e) \leftarrow \mathbf{GroupGen}(\lambda, n, k)$
- For $i = 1, \dots, n, n + 2, \dots, 2n$, for $g \in_R \mathbb{G}$, $\alpha \in_R \mathbb{Z}_p$ and $\gamma \in_R \mathbb{Z}_p$, compute $g_i = g^{(\alpha^i)}$ and $v = g^{\gamma}$
- Hash functions $H_1 : \mathbb{G} \times \{0,1\}^* \to \mathbb{G}$, $H_2 : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ and $H_3 : \mathbb{G}_T \times \mathbb{G} \times \mathbb{G} \times \mathbb{G} \times \mathbb{G} \to \{0,1\}^{\lambda}$
- For $i \in \{1, \cdots, n\}$, compute user i's secret key $d_i = g_i^{\gamma}(=v^{(\alpha^i)})$
- For $j \in \{1, \dots, k\}$, for $\sigma_j \in_R \mathbb{Z}_p$, compute certifier j's public key $w_j = g^{\sigma_j}$ and secret key $d_{c_j} = \sigma_j$
- Set public parameters $PK = (p, \mathbb{G}, \mathbb{G}_T, g, g_1, \cdots, g_n, g_{n+2}, \cdots, g_{2n}, v, w_1, \cdots, w_k, H_1, H_2, H_3)$

Our Scheme - Certif

- On input public parameters PK, certifier j's secret key d_{c_j} , user i and time period l represented as a string in $\{0,1\}^*$
- For $r_{i,j,l} \in_R \mathbb{Z}_p$, compute user *i*'s certificate $e_{i,j,l}$

$$e_{i,j,l,1} = g_i^{\sigma_j} \cdot H_1(w_j, l)^{\sigma_j \cdot r_{i,j,l}} = w_j^{(\alpha^i)} \cdot H_1(w_j, l)^{\sigma_j \cdot r_{i,j,l}} \\ e_{i,j,l,2} = g^{\sigma_j \cdot r_{i,j,l}} = w_j^{r_{i,j,l}}$$

UNIVER

Our Scheme - Encrypt

• On input public parameters PK, set $S_u \subseteq \{1, \cdots, n\}$ of users, set $S_c \subseteq \{1, \cdots, k\}$ of certifiers and time period l

For $t \in_R \mathbb{Z}_p$, compute session key $K = e(g_{n+1}, g)^t$ and ciphertext C

$$C_1 = g^{\circ} C_2 = \prod_{j \in S_c} H_1(w_j, l)^t C_3 = (v \cdot \prod_{j \in S_c} w_j \cdot \prod_{i' \in S_u} g_{n+1-i'})^t C_4 = H_2(C_1, C_3)^t C_5 = H_3(K, C_1, C_2, C_3, C_4)$$

Our Scheme - Decrypt

• On input public parameters PK, set $S_u \subseteq \{1, \dots, n\}$ of users, set $S_c \subseteq \{1, \dots, k\}$ of certifiers, time period l, user $i \in S_u$ with its secret key d_i and its certificates $e_{i,j,l}$ for $j \in S_c$ and l, and ciphertext C

• Check whether
$$e(C_1, H_2(C_1, C_3)) \stackrel{?}{=} e(g, C_4)$$

• Compute $K = \frac{e(g_i, C_3) \cdot e(\prod_{j \in S_c} e_{i,j,l,2}, C_2)}{e(d_i \cdot \prod_{j \in S_c} e_{i,j,l,1} \cdot \prod_{i' \in S_u} \setminus_{\{i\}} g_{n+1-i'+i}, C_1)} = e(g_{n+1}, g)^t$

• Compute
$$C'_5 = H_3(K, C_1, C_2, C_3, C_4)$$

• If $C_5' = C_5$, then return K; otherwise return \perp

1 Introduction

2 Solution

3 Construction

4 Security

17/20

Assumption

Definition (Decisional *n*-Bilinear Diffie-Hellman Exponent assumption)

For any t-time adversary \mathcal{B} that is given $(g, h, g^a, g^{a^2}, \cdots, g^{a^n}, g^{a^{n+2}}, \cdots, g^{a^{2n}}) \in \mathbb{G}^{2n+1}$, and a candidate to the Decisional *n*-BDHE problem that is either $e(g, h)^{a^{n+1}} \in \mathbb{G}_T$ or a random value T, cannot distinguish the two cases with advantage greater than ε :

$$\begin{aligned} AdvBDHE_{\mathcal{B},n} &= |Pr[\mathcal{B}(g,h,g^{a},g^{a^{2}},\cdots,g^{a^{n}},g^{a^{n+2}},\cdots,g^{a^{2n}},e(g,h)^{a^{n+1}}) = 1] \\ -Pr[\mathcal{B}(g,h,g^{a},g^{a^{2}},\cdots,g^{a^{n}},g^{a^{n+2}},\cdots,g^{a^{2n}},T) = 1]| \\ &\leq \varepsilon. \end{aligned}$$

Security Proofs

Theorem (Selective CCA Security)

The File Sharing scheme in Electronic Health Records FSEHR achieves Selective CCA Security under the Decisional *n*-BDHE assumption, in the random oracle model.

Theorem (Collusion Resistance)

The File Sharing scheme in Electronic Health Records FSEHR is fully secure against any number of colluders, in the random oracle model.

Thank you for your attention

Any Questions?

